Deceiving The Myths of Nanotechnology in Relation to Nanotoxicity
Pharmaceutical Science-Pharmacy
DOI:
https://doi.org/10.22376/ijlpr.2023.13.5.P162-P190Keywords:
Nanotechnology, Nanotoxicity, Biological Effective Dose, Zebra Fish, Nanomedicine, Regulatory ChallengesAbstract
The toxicity of nanoparticles (NPs) is a critical research topic in nanotechnology, as it is essential to understand thehazards posed by the wide spectrum of NPs that vary in shape, size, and composition. Previous reviews have yet to thoroughlyexplore the Biological Effective Doses of NPs, which drive toxicity and are influenced by factors such as solubility, charge, shape,contaminants, and the ability of NPs to translocate from the deposition site in the lungs. This review aims to fill the gap in theliterature by providing an overview of the possible toxicity of nanoparticles in zebrafish during growth stages, with a focus onoxidative stress, and exploring the available modes of toxicity that are relevant to conventional pathogenic particles. This reviewalso discusses the effects of nanomaterials on the reproductive system in animal models, providing insight into the potential toxicityof nanoparticles in humans. This review aims to provide a comprehensive overview of the toxicity of nanoparticles and to criticallyexplore the challenges associated with implementing nanotechnology, particularly in the pharmaceutical development of noveltherapeutic products and regulatory issues. The review also considers recent uses and projected nanotechnology advancements,providing a basis for future research in this field. In conclusion, this review rectifies the lacunae in previously published reviews byproviding a comprehensive overview of the toxicity of nanoparticles and exploring the challenges associated with implementingnanotechnology. The aim and objective of this review are to provide a comprehensive understanding of the toxicity of nanoparticlesand to guide future research in this field.
References
Hobson DW. Commercialization of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(2):189-202. doi 10.1002/WNAN.28, PMID 20049790.
Bowman DM. More than a decade of mapping today's regulatory and policy landscapes following the publication of Nanoscience and Nanotechnologies: opportunities and Uncertainties. NanoEthics. 2017;11(2):169-86. doi: 10.1007/S11569-017-0281-X.
Nanotechnologies—terminology ISO. Definitions for nano-objects—nanoparticle, nanofibre, and nanoplate. International Organization for Standardization; 2008.
OECD. O for EC and D. Inhalation toxicity testing: expert meeting on potential revisions to OECD test guidelines and guidance document. Series on the Safety of Manufactured Nanomaterials. Vol. 35; 2012.
Executive H and S. Risk Management of Carbon Nanotubes. 2009.
Aitken RA, Bassan A, Firedrichs S, et al. Specific advice on fulfilling information requirements for nanomaterials under REACH (RIP-on2); 2011.
Aitken RA, Bassan A, Friedrichs S, et al. Specific advice on exposure assessment and hazard/risk characterization for nanomaterials under REACH (RIP-oN 3)-final project report; 2011.
Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health, and safety perspective. Nat Nanotechnol. 2009;4(10):634-41. doi 10.1038/nano.2009.242, PMID 19809453.
Fubini B, Ghiazza M, Fenoglio I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. http://dx.doi.org/103109/174353902010509519. Nanotoxicology. 2010;4(4):347-63. doi: 10.3109/17435390.2010.509519, PMID 20858045.
Potocnik J. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Commun Legis. 2011;275:38-40.
Norppa H, Catalań J, Falck G, Hannukainen K, Siivola K, Savolainen K. Nano-specific genotoxic effects. J Biomed Nanotechnol. 2011;7(1):19. doi: 10.1166/JBN.2011.1179, PMID 21485781.
Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, et al. The biologically effective dose in inhalation nanotoxicology. Acc Chem Res. 2013;46(3):723-32. doi: 10.1021/ar300092y, PMID 23003923.
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360, PMID 30177965.
Anonymous. Commission recommendation of 18 October 2011 on the definition of nanomaterial text with EEA relevance – publications office of the EU; n.d. [cited 9/8/2022] Available from: https://op.europa.eu/en/publication-detail/-/publication/17af73d9-da70-4a46-a421-c62e3d1df6ce/language-en.
Anonymous. Considering whether an FDA-regulated product involves the application of nanotechnology | FDA; n.d. [cited 9/8/2022] Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology.
Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EH, Koers-Jacquemijns M, et al. Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol. 2013;65(1):119-25. doi: 10.1016/J.YRTPH.2012.11.007, PMID 23200793.
Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73(1):137-50. doi: 10.1016/J.YRTPH.2015.06.001, PMID 26111608.
Seabra AB, Durán N. Nanotoxicology of metal oxide nanoparticles. Metals. 2015;5(2):934-75. doi: 10.3390/MET5020934.
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):544-68. doi: 10.1002/WNAN.103, PMID 20681021.
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603-5. doi: 10.1038/363603a0.
Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363(6430):605-7. doi 10.1038/363605a0.
Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature. 1997;386(6624):474-7. doi 10.1038/386474a0.
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637-40. doi 10.1126/science.287.5453.637. PMID 10649994.
Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613-6. doi: 10.1103/PhysRevLett.84.4613, PMID 10990753.
Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B, Sağlam N. Nanotoxicity: a challenge for future medicine. Turk J Med Sci. 2020;50(4):1180-96. doi: 10.3906/SAG-1912-209, PMID 32283898.
Gurevitch D, Shuster-Meiseles T, Nov O, Zick Y, Rudich A, Rudich Y. TiO2 nanoparticles induce insulin resistance in liver-derived cells directly and via macrophage activation. Nanotoxicology. 2012;6(8):804-12. doi: 10.3109/17435390.2011.625128, PMID 22007682.
Mohammadipour A, Fazel A, Haghir H, Motejaded F, Rafatpanah H, Zabihi H, et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ Toxicol Pharmacol. 2014;37(2):617-25. doi: 10.1016/J.ETAP.2014.01.014, PMID 24577229.
Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, et al. A systematic review of potential health risks posed by pharmaceutical, occupational, and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide, and its soluble salts. Crit Rev Toxicol. 2014;44;Suppl 4;Suppl 4(Suppl 4):1–80:1-80. doi: 10.3109/10408444.2014.934439, PMID 25233067.
Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci. 2012;126(2):478-86. doi: 10.1093/TOXSCI/KFS008, PMID 22240978.
Tripathi SK, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum dots and their potential role in cancer theranostics. Crit Rev Ther Drug Carrier Syst. 2015;32(6):461-502. doi: 10.1615/CRITREVTHERDRUGCARRIERSYST.2015012360, PMID 26559550.
Luo G, Long J, Zhang B, Liu C, Ji S, Xu J, et al. Quantum dots in cancer therapy. Expert Opin Drug Deliv. 2012;9(1):47-58. doi: 10.1517/17425247.2012.638624, PMID 22171712.
Donaldson K, Poland CA. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol. 2013;24(4):724-34. doi: 10.1016/J.COPBIO.2013.05.003, PMID 23768801.
Povey A. Molecular assessment of exposure, effect, and effect modification. Epidemiology of work-related diseases. 2nd ed; 2008. p. 463-84. doi: 10.1002/9780470695005.CH21.
Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, et al. The biologically effective dose in inhalation nanotoxicology. Acc Chem Res. 2013;46(3):723-32. doi: 10.1021/ar300092y, PMID 23003923.
Civeira MS, Pinheiro RN, Gredilla A, de Vallejuelo SF, Oliveira ML, Ramos CG, et al. The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire. Sci Total Environ. 2016;544:892-900. doi: 10.1016/J.SCITOTENV.2015.12.026, PMID 26706762.
Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, et al. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol. 2013;47(19):11232-40. doi: 10.1021/es403377p, PMID 23988335.
Buzea C, Pacheco II, Robbie K. Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17-71. doi: 10.1116/1.2815690, PMID 20419892.
Auffan M, Rose J, Wiesner MR, Bottero JY. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut. 2009;157(4):1127-33. doi: 10.1016/J.ENVPOL.2008.10.002, PMID 19013699.
Tee JK, Ong CN, Bay BH, Ho HK, Leong DT. Oxidative stress by inorganic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(3):414-38. doi: 10.1002/WNAN.1374, PMID 26359790.
Sharma VK, Filip J, Zboril R, Varma RS. Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem Soc Rev. 2015;44(23):8410-23. doi: 10.1039/C5CS00236B, PMID 26435358.
Chaudhuri S, Sardar S, Bagchi D, Dutta S, Debnath S, Saha P, et al. Photoinduced dynamics and toxicity of a cancer drug in the proximity of inorganic nanoparticles under visible light. ChemPhysChem. 2016;17(2):270-7. doi: 10.1002/CPHC.201500905, PMID 26563628.
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126-34. doi: 10.1093/TOXSCI/KFG243, PMID 14514958.
Yao M, He L, McClements DJ, Xiao H. Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. J Agric Food Chem. 2015;63(36):8044-9. doi: 10.1021/ACS.JAFC.5B03242, PMID 26313743.
Parker JP, Ude Z, Marmion CJ. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumors: targeting some of the hallmarks of cancer. Metallomics. 2016;8(1):43-60. doi: 10.1039/C5MT00181A, PMID 26567482.
Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation, and inflammation. J Mater Sci Mater Med. 2004;15(4):321-5. doi: 10.1023/B:JMSM.0000021095.36878.1B, PMID 15332593.
Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev. 2009;109(3):897-1091. doi: 10.1021/cr000013v, PMID 19228015.
Niu X, Zou W, Liu C, Zhang N, Fu C. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Drug Dev Ind Pharm. 2009;35(11):1375-83. doi: 10.3109/03639040902939221, PMID 19832638.
Chen Y, Wang Q, Wang T. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via selective etching. Nanoscale. 2015;7(39):16442-50. doi: 10.1039/C5NR04123F, PMID 26394819.
TS K, S E, M E-M, et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine 2012;7:221; doi: 10.2147/IJN.S27709.
Liu Y, Deng H, Xiao C, Xie C, Zhou X. Cytotoxicity of calcium rectorite micro/nanoparticles before and after organic modification. Chem Res Toxicol. 2014;27(8):1401-10. doi: 10.1021/TX500115P, PMID 25025490.
Lehto M, Karilainen T, Róg T, Cramariuc O, Vanhala E, Tornaeus J, et al. Co-exposure with fullerene may strengthen the health effects of organic industrial chemicals. PLOS ONE. 2014;9(12):e114490. doi: 10.1371/JOURNAL.PONE.0114490, PMID 25473947.
Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2006;89(1):338-47. doi: 10.1093/TOXSCI/KFJ027, PMID 16237191.
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target. 2004;12(9-10):635-41. doi: 10.1080/10611860400015936, PMID 15621689.
Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53-62. doi 10.1016/J.JCONREL.2004.06.015, PMID 15342180.
Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: a review of their properties about pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5-22. doi: 10.1093/TOXSCI/KFJ130, PMID 16484287.
Kumar S, Sharma A, Tripathi B, Srivastava S, Agrawal S, Singh M, et al. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes. Micron. 2010;41(7):909-14. doi: 10.1016/J.MICRON.2010.05.016, PMID 20579893.
Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol. 2004;4(8):1019-24. doi: 10.1166/JNN.2004.146, PMID 15656196.
Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb). 2004;4(1):16-7. doi: 10.1039/B311254C, PMID 14737310.
Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 2005;155(3):377-84. doi: 10.1016/J.TOXLET.2004.11.004, PMID 15649621.
Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155(1):73-85. doi: 10.1016/J.TOXLET.2004.08.015, PMID 15585362.
Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro. 2006;20(7):1202-12. doi: 10.1016/J.TIV.2006.03.008, PMID 16697548.
Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160(2):121-6. doi: 10.1016/J.TOXLET.2005.06.020, PMID 16125885.
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005;39(5):1378-83. doi: 10.1021/ES048729L.
Favi PM, Valencia MM, Elliott PR, Restrepo A, Gao M, Huang H, et al. Shape and surface chemistry affect the cytotoxicity and cellular uptake of metallic nanorods and nanospheres. J Biomed Mater Res A. 2015;103(12):3940-55. doi: 10.1002/JBM.A.35518, PMID 26053238.
El-Ansary A, Al-Daihan S, ben Bacha AB, Kotb M. Toxicity of novel nanosized formulations used in medicine. Methods Mol Biol. 2013;1028:47-74. doi: 10.1007/978-1-62703-475-3_4, PMID 23740113.
Perez JE, Contreras MF, Vilanova E, Felix LP, Margineanu MB, Luongo G, et al. Cytotoxicity and intracellular dissolution of nickel nanowires. http://dx.doi.org/103109/1743539020151132343. Nanotoxicology. 2016;10(7):871-80. doi: 10.3109/17435390.2015.1132343, PMID 26692167.
Jeannet N, Fierz M, Schneider S, Künzi L, Baumlin N, Salathe M, et al. Acute toxicity of silver and carbon nano aerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology. 2016;10(3):279-91. doi: 10.3109/17435390.2015.1049233, PMID 26011645.
Liu H, Liu T, Wang H, Li L, Tan L, Fu C, et al. Impact of pegylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nano rattles. Biomaterials. 2013;34(28):6967-75. doi: 10.1016/J.BIOMATERIALS.2013.05.059, PMID 23777913.
Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, et al. Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol. 2010;58(3):455-73. doi: 10.1016/J.YRTPH.2010.08.017, PMID 20800639.
Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol Vitro. 2011;25(8):2105-12. doi: 10.1016/J.TIV.2011.09.013.
Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4(10):1881-7. doi: 10.1021/nl0489586.
Injac R, Prijatelj M, Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol. 2013;1028:75-100. doi: 10.1007/978-1-62703-475-3_5, PMID 23740114.
Oughton DH, Hertel-Aas T, Pellicer E, Mendoza E, Joner EJ. Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxicol Chem. 2008;27(9):1883-7. doi: 10.1897/07-578.1, PMID 19086315.
Kahru A, Ivask A. Mapping the dawn of nano ecotoxicological research. Acc Chem Res. 2013;46(3):823-33. doi: 10.1021/ar3000212, PMID 23148404.
Stone V, Nowack B, Baun A, van den Brink N, Kammer Fv, Dusinska M, et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterization. Sci Total Environ. 2010;408(7):1745-54. doi: 10.1016/J.SCITOTENV.2009.10.035, PMID 19903569.
Kahru A, Dubourguier HC. From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269(2-3):105-19. doi: 10.1016/J.TOX.2009.08.016, PMID 19732804.
Sigg L, Behra R, Groh K, Isaacson C, Odzak N, Piccapietra F, et al. Chemical aspects of nanoparticle ecotoxicology. Chimia (Aarau). 2014;68(11):806-11. doi: 10.2533/chimia.2014.806, PMID 26508489.
Hassellöv M, Readman JW, Ranville JF, Tiede K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 2008;17(5):344-61. doi: 10.1007/S10646-008-0225-X, PMID 18483764.
Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 2008;17(4):287-314. doi: 10.1007/S10646-008-0199-8, PMID 18351458.
Rickerby DG, Morrison M. Nanotechnology and the environment: A European perspective. Sci Technol Adv Mater. 2007;8(1-2):19-24. doi: 10.1016/J.STAM.2006.10.002.
Lv M, Huang W, Chen Z, Jiang H, Chen J, Tian Y, et al. Metabolomics techniques for nanotoxicity investigations. Bioanalysis. 2015;7(12):1527-44. doi: 10.4155/BIO.15.83, PMID 26168257.
Gao Y, Jin B, Shen W, Sinko PJ, Xie X, Zhang H, et al. China and the United States--Global partners, competitors, and collaborators in nanotechnology development. Nanomedicine. 2016;12(1):13-9. doi: 10.1016/J.NANO.2015.09.007, PMID 26427355.
Spruit SL, Hoople GD, Rolfe DA. Just a cog in the machine? The individual responsibility of researchers in nanotechnology is a duty to collectivize. Sci Eng Ethics. 2016;22(3):871-87. doi: 10.1007/s11948-015-9718-1, PMID 26538353.
Loux NT, Su YS, Hassan SM. Issues in assessing environmental exposures to manufactured nanomaterials. Int J Environ Res Public Health. 2011;8(9):3562-78. doi: 10.3390/IJERPH8093562, PMID 22016703.
Lowry GV, Gregory KB, Apte SC, Lead JR. Transformations of nanomaterials in the environment. Environ Sci Technol. 2012;46(13):6893-9. doi: 10.1021/es300839e. PMID 22582927.
Meesters JA, Veltman K, Hendriks AJ, van de Meent D. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Integr Environ Assess Manag. 2013;9(3):e15-26. doi: 10.1002/IEAM.1446, PMID 23633247.
Mitrano DM, Motellier S, Clavaguera S, Nowack B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int. 2015;77:132-47. doi: 10.1016/J.ENVINT.2015.01.013, PMID 25705000.
Soni D, Naoghare PK, Saravanadevi S, et al. Release, transport, and toxicity of engineered nanoparticles. Rev Environ Contam Toxicol. 2015;234:1-47. doi: 10.1007/978-3-319-10638-0_1.
Baalousha M, Lead JR. Overview of nanoscience in the environment. Environ Hum Health Impacts Nanotechnol. 2009:1-29. doi: 10.1002/9781444307504.CH1.
Tiwari AJ, Marr LC. The role of atmospheric transformations in determining environmental impacts of carbonaceous nanoparticles. J Environ Qual. 2010;39(6):1883-95. doi: 10.2134/JEQ2010.0050, PMID 21284286.
Gouin T, Roche N, Lohmann R, Hodges G. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol. 2011;45(4):1466-72. doi: 10.1021/es1032025, PMID 21268630.
Gidhagen L, Johansson C, Omstedt G, Langner J, Olivares G. Model simulations of NOx and ultrafine particles close to a Swedish highway. Environ Sci Technol. 2004;38(24):6730-40. doi: 10.1021/ES0498134, PMID 15669334.
Clarke AG, Robertson LA, Hamilton RS, Gorbunov B. A Lagrangian model of the evolution of the particulate size distribution of vehicular emissions. Sci Total Environ. 2004;334-335:197-206. doi: 10.1016/J.SCITOTENV.2004.04.038, PMID 15504506.
Nogueira V, Lopes I, Rocha-Santos T, Gonçalves F, Pereira R. Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquat Toxicol. 2015;165:172-8. doi: 10.1016/J.AQUATOX.2015.05.021, PMID 26057932.
Jang MH, Bae SJ, Lee SK, Lee YJ, Hwang YS. Effect of material properties on stability of silver nanoparticles in water. J Nanosci Nanotechnol. 2014;14(12):9665-9. doi: 10.1166/JNN.2014.10161, PMID 25971117.
Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ. Ecotoxicological impact of engineered nanomaterials in bivalve mollusks: an overview. Mar Environ Res. 2015;111:74-88. doi: 10.1016/J.MARENVRES.2015.06.013, PMID 26152602.
Grillo R, Rosa AH, Fraceto LF. Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere. 2015;119:608-19. doi: 10.1016/J.CHEMOSPHERE.2014.07.049, PMID 25128893.
Ma S, Lin D. The physicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Process Impacts. 2013;15(1):145-60. doi: 10.1039/C2EM30637A, PMID 24592433.
Matranga V, Corsi I. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res. 2012;76:32-40. doi: 10.1016/J.MARENVRES.2012.01.006, PMID 22391237.
Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, et al. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology. 2016;10(1):102-10. doi: 10.3109/17435390.2015.1022888, PMID 25962682.
Mukhopadhyay SS. Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl. 2014;7(2):63-71. doi: 10.2147/NSA.S39409, PMID 25187699.
Viswanath B, Kim S. Influence of nanotoxicity on human health and environment: the alternative strategies. Rev Environ Contam Toxicol. 2017;242:61-104. doi: 10.1007/398_2016_12/COVER.
Li XQ, Elliott DW, Zhang WX. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences. 2006;31(4):111-22. doi: 10.1080/10408430601057611.
Boxall ABA, Tiede K, Chaudhry Q. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine (Lond). 2007;2(6):919-27. doi: 10.2217/17435889.2.6.919, PMID 18095854.
Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2006;90(2):619-27. doi: 10.1529/BIOPHYSJ.105.061895, PMID 16239330.
Jafar G, Hamzeh G. Ecotoxicity of nanomaterials in soil. Ann Biol Res. 2013.
Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci. 2006;61(3):1017-26. doi: 10.1016/J.CES.2005.05.067.
Samorì B, Zuccheri G. DNA codes for nanoscience. Angew Chem Int Ed Engl. 2005;44(8):1166-81. doi: 10.1002/ANIE.200400652, PMID 15532060.
Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater. 2003;2(9):577-85. doi: 10.1038/NMAT964, PMID 12951599.
Seeman NC. DNA in a material world. Nature. 2003;421(6921):427-31. doi: 10.1038/nature01406, PMID 12540916.
Zhao X, Zhang S. Molecular designer self-assembling peptides. Chem Soc Rev. 2006;35(11):1105-10. doi: 10.1039/B511336A, PMID 17057839.
Åkerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A. 2002;99(20):12617-21. doi: 10.1073/pans.152463399, PMID 12235356.
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818-22. doi: 10.1126/SCIENCE.1095833, PMID 15031496.
Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377-80. doi: 10.1126/SCIENCE.279.5349.377, PMID 9430587.
Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-3. doi: 10.1126/SCIENCE.8128245, PMID 8128245.
Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov. 2003;2(1):29-37. doi: 10.1038/NRD988, PMID 12509757.
Sui J, Tleugabulova D, Brennan JD. Direct and indirect monitoring of peptide-silica interactions using time-resolved fluorescence anisotropy. Langmuir. 2005;21(11):4996-5001. doi: 10.1021/LA0473963, PMID 15896042.
Taylor JR, Fang MM, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal Chem. 2000;72(9):1979-86. doi: 10.1021/AC9913311, PMID 10815954.
Klein J. Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2029-30. doi: 10.1073/pans.0611610104, PMID 17284585.
Lerer D. Big things in small packages: evaluating the City of Berkeley’s nanotechnology ordinance effectiveness as a model of targeted transparency ARTICLE big things in small packages: evaluating the City of Berkeley’s nanotechnology ordinance effectiveness as a model of targeted transparency; 2013.
Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003;21(10):1166-70. doi: 10.1038/nbt875, PMID 14520401.
Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, et al. Meeting report: hazard assessment for nanoparticles–report from an interdisciplinary workshop. Environ Health Perspect. 2007;115(11):1654-9. doi: 10.1289/ehp.10327, PMID 18007999.
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622-7. doi: 10.1126/SCIENCE.1114397, PMID 16456071.
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39. doi: 10.1289/EHP.7339, PMID 16002369.
Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4(1):11-8. doi: 10.1021/nl0347334, PMID 28890669.
Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles without photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1-2):66-73. doi: 10.1016/J.TOX.2005.05.007, PMID 15970370.
Ramires PA, Cosentino F, Milella E, Torricelli P, Giavaresi G, Giardino R. In vitro response of primary rat osteoblasts to titania/hydroxyapatite coatings compared with transformed human osteoblast-like cells. J Mater Sci Mater Med. 2002;13(8):797-801. doi: 10.1023/A:1016183326864, PMID 15348568.
Soto KF, Carrasco A, Powell TG, et al. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res. 2005;7(2-3):145-69. doi: 10.1007/S11051-005-3473-1/METRICS.
Suh WH, Jang AR, Suh Y-H, Suslick K. Porous, hollow, and ball-in-ball metal oxide microspheres: preparation, endocytosis, and cytotoxicity. Adv Mater. 2006;18(14):1832-7. doi: 10.1002/ADMA.200600222.
Yoshida K, Morita M, Mishina H. Cytotoxicity of metal and ceramic particles in different sizes. JSME Int J Ser C. 2003;46(4):1284-9. doi: 10.1299/JSMEC.46.1284.
Borm PJA, Kreyling W. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521-31. doi: 10.1166/JNN.2004.081, PMID 15503438.
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469-78. doi: 10.1038/nano.2007.223, PMID 18654343.
Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond). 2006;56(5):307-11. doi: 10.1093/OCCMED/KQL052, PMID 16868128.
Handy RD, Shaw BJ. Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk & Society. 2007;9(2):125-44. doi: 10.1080/13698570701306807.
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114(2):165-72. doi: 10.1289/EHP.8284, PMID 16451849.
Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172-8. doi: 10.1289/EHP.9030, PMID 16882521.
Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552-8. doi: 10.1038/SJ.BJP.0707130, PMID 17245366.
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39. doi: 10.1289/EHP.7339, PMID 16002369.
Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893-946. doi: 10.1021/cr030027b, PMID 15352782.
Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res. 2002;35(12):1035-44. doi: 10.1021/AR0101640, PMID 12484791.
Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1(5):482-501. doi: 10.1002/SMLL.200500006, PMID 17193474.
Jeong U, Teng X, Wang Y, Yang H, Xia Y. Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater. 2007;19(1):33-60. doi: 10.1002/ADMA.200600674.
Lee J, Kim J, Hyeon T. Recent progress in synthesizing porous carbon materials. Adv Mater. 2006;18(16):2073-94. doi: 10.1002/ADMA.200501576.
Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46(8):1222-44. doi: 10.1002/ANIE.200602866, PMID 17278160.
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labeling, and sensing. Nat Mater. 2005;4(6):435-46. doi: 10.1038/NMAT1390, PMID 15928695.
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538-44. doi: 10.1126/SCIENCE.1104274, PMID 15681376.
Chan VSW. Nanomedicine: an unresolved regulatory issue. Regul Toxicol Pharmacol. 2006;46(3):218-24. doi: 10.1016/J.YRTPH.2006.04.009, PMID 17081666.
del Pino Pd, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles – from the past to the future. Mater Horiz. 2014;1(3):301-13. doi: 10.1039/C3MH00106G.
Pearson RM, Juettner VV, Hong S. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front Chem. 2014;2:108. doi: 10.3389/fchem.2014.00108. PMID 25506050.
Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med. 2010;363(25):2434-43. doi: 10.1056/NEJMra0912273, PMID 21158659.
Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. It is understanding physicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543-57. doi: 10.1038/nmat2442, PMID 19525947.
Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Åslund AKO, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326:164-71. doi: 10.1016/J.JCONREL.2020.07.007, PMID 32681950.
Anonymous, ETPN. Nanomedicine European Technology Platform; n.d. [cited 9/8/2022] Available from: https://etp-nanomedicine.eu/.
Suh NP, Suh PN. The principles of design. Oxf Univ Press Demand. 1990.
Ray MA, Trammell RA, Verhulst S, Ran S, Toth LA. Development of a mouse model for assessing fatigue during chemotherapy. Comp Med. 2011;61(2):119-30. PMID 21535922.
Babaie S, del Bakhshayesh ARD, Ha JW, Hamishehkar H, Kim KH. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel). 2020;10(2). doi: 10.3390/NANO10020341, PMID 32079276.
Zhao B, He YY, Chignell CF, Yin JJ, Andley U, Roberts JE. The difference in phototoxicity of cyclodextrin complexed fullerene [(γ-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem Res Toxicol. 2009;22(4):660-7. doi: 10.1021/TX800478U, PMID 19281132.
Arts JHE, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, et al. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol. 2014;70(2):492-506. doi: 10.1016/J.YRTPH.2014.07.025, PMID 25108058.
Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. J Nanopart Res. 2017;19(5):171. doi: 10.1007/s11051-017-3850-6. PMID 28553159.
Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, et al. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology. 2018;12(1):1-17. doi: 10.1080/17435390.2017.1415388, PMID 29251527.
Müller RH, Gohla S, Keck CM. State of the art of nanocrystals--special features, production, nanotoxicology aspects, and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1-9. doi: 10.1016/J.EJPB.2011.01.007, PMID 21266197.
Rycroft T, Trump B, Poinsatte-Jones K, Linkov I. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment. J Nanopart Res. 2018;20(2). doi: 10.1007/S11051-018-4160-3.
Magaye RR, Yue X, Zou B, Shi H, Yu H, Liu K, et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine. 2014;9(1):1393-402. doi: 10.2147/IJN.S56212, PMID 24648736.
Arefian Z, Pishbin F, Negahdary M, et al. Potential toxic effects of zirconia oxide nanoparticles on liver and kidney factors; 2015.
Bellusci M, la Barbera A, Padella F, Mancuso M, Pasquo A, Grollino MG, et al. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int J Nanomedicine. 2014;9(1):1919-29. doi: 10.2147/IJN.S56394, PMID 24790434.
Babadi VY, Najafi L, Najafi A, et al. Evaluation of Iron oxide nanoparticles effects on tissue and thyroid enzymes in Rats; 2013.
Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, et al. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLOS ONE. 2013;8(8):e70618. doi: 10.1371/JOURNAL.PONE.0070618, PMID 23950972.
Awaad A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver, and genital tract of mice following intravaginal instillation. J Basic Appl Zool. 2015;71:32-47. doi: 10.1016/j.jobaz.2015.03.003.
Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, et al. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part Fibre Toxicol. 2017;14(1). doi: 10.1186/S12989-017-0193-5.
Sadeghi L, Yousefi Babadi V, Espanani HR. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy. 2015;116(6):373-8. doi: 10.4149/BLL_2015_071, PMID 26084739.
S S, K V, S P, N R, K K. In vitro cytotoxicity of zinc oxide, iron oxide, and copper nanopowders prepared by green synthesis. Toxicol Rep. 2017;4:427-30. doi: 10.1016/J.TOXREP.2017.07.005, PMID 28959669.
Fartkhooni FM, Noori A, Mohammadi A. Effects of titanium dioxide nanoparticles toxicity on the kidney of male rats. Int J Life Sci. 2016;10(1):65-9. doi: 10.3126/IJLS.V10I1.14513.
Raju HB, Hu Y, Vedula A, Dubovy SR, Goldberg JL. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLOS ONE. 2011;6(5):e17452. doi: 10.1371/JOURNAL.PONE.0017452, PMID 21637340.
Kim DK. Nanomedicine for inner ear diseases: a review of recent in vivo studies. BioMed Res Int. 2017;2017:3098230. doi: 10.1155/2017/3098230, PMID 29130038.
Ibrahim A. Ibrahim, M.d. AFAAMS;, Manal M. Morsy, M.d. HELMMD;. Effect of Zinc Oxide Nanoparticles on the Structure of Testis of Adult Albino Rats and the Possible Protective Role of Naringenin. The Medical Journal of Cairo University. 2019;87(September):3469-83. doi: 10.21608/mjcu.2019.65644.
Kong L, Tang M, Zhang T, Wang D, Hu K, Lu W, et al. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci. 2014;15(11):21253-69. doi: 10.3390/IJMS151121253, PMID 25407529.
Gonzalez L, Lison D, Kirsch-Volders M. Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology. 2008;2(4):252-73. doi: 10.1080/17435390802464986.
Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, et al. Phototoxicity of Nano titanium dioxides in HaCaT keratinocytes--generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol. 2012;263(1):81-8. doi: 10.1016/J.TAAP.2012.06.001, PMID 22705594.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/J.BIOCEL.2006.07.001, PMID 16978905.
Meng H, Xia T, George S, Nel AE. A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano. 2009;3(7):1620-7. doi: 10.1021/NN9005973, PMID 21452863.
Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disrupting ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater. 2012;219-220:221-30. doi: 10.1016/J.HAZMAT.2012.03.083, PMID 22521136.
Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol. 2013;33(2):78-89. doi: 10.1002/JAT.2792, PMID 22936301.
de Moura MB, dos Santos LS, van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen. 2010;51(5):391-405. doi: 10.1002/EM.20575, PMID 20544881.
Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. ROS mediates the apoptotic effect of nanosilver- and JNK-dependent mechanisms involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008;179(3):130-9. doi: 10.1016/J.TOXLET.2008.04.015, PMID 18547751.
Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology. 2010;276(2):95-102. doi: 10.1016/J.TOX.2010.07.010, PMID 20654680.
Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S. Protective effect of sulforaphane against oxidative stress-mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci. 2012;37(1):139-48. doi: 10.2131/JTS.37.139, PMID 22293418.
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22(1):64-75. doi: 10.1016/J.JFDA.2014.01.005, PMID 24673904.
Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66(20):1909-26. doi: 10.1080/713853956, PMID 14514433.
Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res. 2013;46(3):672-80. doi: 10.1021/AR3000585, PMID 22775328.
Fan Z, Lu JG. Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol. 2005;5(10):1561-73. doi: 10.1166/JNN.2005.182, PMID 16245516.
Liu Y, Li X, Bao S, Lu Z, Li Q, Li CM. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology. 2013;24(17):175501. doi: 10.1088/0957-4484/24/17/175501, PMID 23558511.
Wang Y, Aker WG, Hwang HM, Yedjou CG, Yu H, Tchounwou PB. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using primary catfish hepatocytes and human HepG2 cells. Sci Total Environ. 2011;409(22):4753-62. doi: 10.1016/J.SCITOTENV.2011.07.039, PMID 21851965.
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622-7. doi: 10.1126/SCIENCE.1114397, PMID 16456071.
Yoshida T, Yoshikawa T, Nabeshi H, Tsutsumi Y. [Relation analysis between the intracellular distribution of nanomaterials, ROS generation, and DNA damage]. Yakugaku Zasshi. 2012;132(3):295-300. doi: 10.1248/YAKUSHI.132.295, PMID 22382833.
Boyoglu C, He Q, Willing G, Boyoglu-Barnum S, Dennis VA, Pillai S, et al. Microscopic studies of various sizes of gold nanoparticles and their cellular localization. ISRN Nanotechnol. 2013;2013:1-13. doi: 10.1155/2013/123838.
Persson H, Købler C, Mølhave K, Samuelson L, Tegenfeldt JO, Oredsson S, et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small. 2013;9(23):4006-16. doi: 10.1002/SMLL.201300644, PMID 23813871.
Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. The challenge in understanding size and shape-dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008;463(1-3):145-9. doi: 10.1016/J.CPLETT.2008.08.039, PMID 24068836.
Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN. Toxicity and developmental defects of different sizes and shapes nickel nanoparticles in zebrafish. Environ Sci Technol. 2009;43(16):6349-56. doi: 10.1021/ES9010543, PMID 19746736.
Oh WK, Kim S, Choi M, Kim C, Jeong YS, Cho BR, et al. Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano. 2010;4(9):5301-13. doi: 10.1021/NN100561E, PMID 20698555.
Studer AM, Limbach LK, van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett. 2010;197(3):169-74. doi: 10.1016/J.TOXLET.2010.05.012, PMID 20621582.
Shen C, James SA, de Jonge MD, Turney TW, Wright PF, Feltis BN. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci. 2013;136(1):120-30. doi: 10.1093/TOXSCI/KFT187, PMID 23997113.
Jastrzębska E, Bazylińska U, Bułka M, Tokarska K, Chudy M, Dybko A, et al. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nano encapsulated indocyanine-type photosensitizers. Biomicrofluidics. 2016;10(1):014116. doi: 10.1063/1.4941681, PMID 26909122.
Daimon T, Nosaka Y. Formation and Behavior of Singlet Molecular Oxygen in TiO 2 Photocatalysis Studied by Detection of Near-Infrared Phosphorescence. J Phys Chem C. 2007;111(11):4420-4. doi: 10.1021/JP070028Y.
Liao KH, Lin YS, MacOsko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces. 2011;3(7):2607-15. doi: 10.1021/AM200428V, PMID 21650218.
Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27(1):1-35. doi: 10.1080/10590500802708267, PMID 19204862.
Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726-32. doi: 10.1021/TX800064J, PMID 18710264.
Zhu X, Hondroulis E, Liu W, Li CZ. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small. 2013;9(9-10):1821-30. doi: 10.1002/SMLL.201201593, PMID 23417999.
Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, et al. Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. J Nanopart Res. 2010;12(5):1645-54. doi: 10.1007/S11051-009-9740-9.
Stankic S, Suman S, Haque F, Vidic J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology. 2016;14(1):73. doi: 10.1186/S12951-016-0225-6, PMID 27776555.
Papadiamantis AG, Jänes J, Voyiatzis E, Sikk L, Burk J, Burk P, et al. Predicting cytotoxicity of metal oxide nanoparticles using the Isalos analytics platform. Nanomaterials (Basel). 2020;10(10):1-19. doi: 10.3390/NANO10102017, PMID 33066094.
Kawasaki RK, Romano M, Dietrich N, Araki K. Titanium and iron oxide nanoparticles for cancer therapy: surface chemistry and biological implications. Front Nanotechnol. 2021;3:68. doi: 10.3389/fnano.2021.735434.
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 4777 2020;21(13):4777. 2020;21(13). doi: 10.3390/IJMS21134777, PMID 32640524.
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomedicine. 2020;15:3447-70. doi: 10.2147/IJN.S249441, PMID 32523343.
Brun NR, Lenz M, Wehrli B, Fent K. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: the importance of zinc ions. Sci Total Environ. 2014;476-477:657-66. doi: 10.1016/J.SCITOTENV.2014.01.053, PMID 24508854.
D’Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F. Effects of metal oxide nanoparticles in zebrafish. Oxid Med Cell Longev. 2022;2022:3313016. doi: 10.1155/2022/3313016, PMID 35154565.
Zhang Y, Zhu L, Zhou Y, Chen J. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci (China). 2015;30:223-30. doi: 10.1016/J.JES.2014.08.024, PMID 25872731.
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064-110. doi: 10.1021/cr068445e, PMID 18543879.
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a model for anticancer nanomedicine studies. Pharmaceuticals (Basel). 2021;14(7). doi: 10.3390/PH14070625, PMID 34203407.
Mohiuddin Hafiz S, Sameer Kulkarni S, Kapil Thakur M. In-vivo toxicity assessment of biologically synthesized iron oxide nanoparticles in zebrafish (Danio rerio). Biosci Biotech Res Asia. 2018;15(2):419-25. doi: 10.13005/BBRA/2645.
Malhotra N, Chen JR, Sarasamma S, Audira G, Siregar P, Liang ST, et al. Ecotoxicity assessment of Fe3O4 magnetic nanoparticle exposure in adult zebrafish at a pertinent environmental concentration by behavioral and biochemical testing. Nanomaterials (Basel). 2019;9(6). doi: 10.3390/NANO9060873, PMID 31181856.
Zheng M, Lu J, Zhao D. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Sci Total Environ. 2018;622-623:930-41. doi: 10.1016/J.SCITOTENV.2017.12.018, PMID 29227944.
de Oliveira GMT, Kist LW, Pereira TCB, Bortolotto JW, Paquete FL, de Oliveira EM, et al. Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in the brain of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2014;162(1):77-84. doi: 10.1016/J.CBPC.2014.03.010, PMID 24704546.
Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008;43(3):278-84. doi: 10.1080/10934520701792779, PMID 18205059.
Zhu X, Wang J, Zhang X, Chang Y, Chen Y. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology. 2009;20(19):195103. doi: 10.1088/0957-4484/20/19/195103, PMID 19420631.
Zhao X, Ren X, Zhu R, Luo Z, Ren B. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol. 2016;180:56-70. doi: 10.1016/J.AQUATOX.2016.09.013, PMID 27658222.
Chen TH, Lin CC, Meng PJ. Zinc oxide nanoparticles alter zebrafish's hatching and larval locomotor activity (Danio rerio). J Hazard Mater. 2014;277:134-40. doi: 10.1016/J.HAZMAT.2013.12.030, PMID 24424259.
Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJ. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem. 2014;33(12):2859-68. doi: 10.1002/ETC.2758, PMID 25244315.
Zhou Z, Son J, Harper B, Zhou Z, Harper S. Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein J Nanotechnol. 2015;6(1):1568-79. doi: 10.3762/BJNANO.6.160, PMID 26425408.
Rahman HS, Othman HH, Abdullah R, Edin HYAS, Al-Haj NA. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet Med Sci. 2022;8(4):1769-79. doi: 10.1002/VMS3.814, PMID 35588498.
Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A et al.. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007;4:10. doi: 10.1186/1743-8977-4-10. PMID 17949501.
de Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912-9. doi: 10.1016/J.BIOMATERIALS.2007.12.037, PMID 18242692.
Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol. 2010;5(9):683-9. doi: 10.1038/nano.2010.153, PMID 20693989.
Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A. 2008;105(5):1410-5. doi: 10.1073/pans.0707654105, PMID 18230737.
Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2006;89(1):338-47. doi: 10.1093/TOXSCI/KFJ027, PMID 16237191.
JANI P, HALBERT GW, LANGRIDGE J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42(12):821-6. doi: 10.1111/J.2042-7158.1990.TB07033.X, PMID 1983142.
Wang B, He X, Zhang Z, Zhao Y, Feng W. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res. 2013;46(3):761-9. doi: 10.1021/ar2003336, PMID 23964655.
Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476-89. doi: 10.1021/nn103530b, PMID 21526751.
Thomas DG, Smith JN, Thrall BD, Baer DR, Jolley H, Munusamy P, et al. ISD3: a pharmacokinetic model for predicting the combined effects of particle sedimentation, diffusion, and dissolution on cellular dosimetry for in vitro systems. Part Fibre Toxicol. 2018;15(1):6. doi: 10.1186/S12989-018-0243-7, PMID 29368623.
Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol. 2012;258(2):151-65. doi: 10.1016/J.TAAP.2011.11.010, PMID 22178382.
Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25(1):231-41. doi: 10.1016/J.TIV.2010.11.008, PMID 21092754.
Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: developing an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388-401. doi: 10.1021/MP900056G, PMID 19473014.
Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al. Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294(1):116-9. doi: 10.1016/S0006-291X(02)00445-X, PMID 12054749.
Fiorito S, Serafino A, Andreola F, Bernier P. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon. 2006;44(6):1100-5. doi: 10.1016/J.CARBON.2005.11.009.
Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5(7):5717-28. doi: 10.1021/NN2013904, PMID 21630682.
Gonzalez L, Sanderson BJS, Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis. 2011;26(1):185-91. doi: 10.1093/MUTAGE/GEQ088, PMID 21164201.
Karlsson HL. The comet assay in nanotoxicology research. Anal Bioanal Chem. 2010;398(2):651-66. doi: 10.1007/S00216-010-3977-0, PMID 20640410.
Uo M, Tamura K, Sato Y, Yokoyama A, Watari F, Totsuka Y, et al. The cytotoxicity of metal-encapsulating carbon nanocapsules. Small. 2005;1(8-9):816-9. doi: 10.1002/SMLL.200400143, PMID 17193530.
Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221-31. doi: 10.1016/J.TAAP.2005.01.008, PMID 16129115.
Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Baquey C. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon. 2006;44(6):1093-9. doi: 10.1016/J.CARBON.2005.11.007.
Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, et al. Quantum dots for human mesenchymal stem cell labeling. A size-dependent autophagy activation. Nano Lett. 2006;6(12):2826-32. doi: 10.1021/NL0619711, PMID 17163713.
Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007;2(2):108-13. doi: 10.1038/NNANO.2006.209, PMID 18654229.
Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 2006;44(6):1070-8. doi: 10.1016/J.CARBON.2005.11.004.
Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS. Implications of silver nanoparticle-induced cell apoptosis for in vitro gene therapy. Nanotechnology. 2008;19(7):075104. doi: 10.1088/0957-4484/19/7/075104, PMID 21817629.
Fernández-Urrusuno R, Fattal E, Féger J, Couvreur P, Thérond P. Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials. 1997;18(6):511-7. doi: 10.1016/S0142-9612(96)00178-0, PMID 9111956.
Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb). 2018;7(6):1048-60. doi: 10.1039/C8TX00156A, PMID 30510678.
Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol In Vitro. 2019;54:105-13. doi: 10.1016/J.TIV.2018.08.014, PMID 30248392.
Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on the current state and future directions. Int J Nanomedicine. 2014;9(1):1005-23. doi: 10.2147/IJN.S55359, PMID 24600222.
Ehmann F, Sakai-Kato K, Duncan R, Hernán Pérez de la Ossa D, Pita R, Vidal JM, et al. Next-generation nanomedicines and nano similars: EU regulators' initiatives on developing and evaluating nanomedicines. Nanomedicine (Lond). 2013;8(5):849-56. doi: 10.2217/NNM.13.68, PMID 23656268.
Tinkle S, Mcneil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35-56. doi: 10.1111/NYAS.12403, PMID 24673240.
Astier A, Barton Pai A, Bissig M, Crommelin DJA, Flühmann B, Hecq JD, et al. How to select a nanosimilar. Ann N Y Acad Sci. 2017;1407(1):50-62. doi: 10.1111/NYAS.13382, PMID 28715605.
Mühlebach S, Borchard G, Yildiz S. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. Nanomedicine (Lond). 2015;10(4):659-74. doi: 10.2217/NNM.14.189, PMID 25723097.
Schellekens H, Stegemann S, Weinstein V, de Vlieger JS, Flühmann B, Mühlebach S, et al. How to regulate nonbiological complex drugs (NBCD) and their follow-on versions: points to consider. AAPS J. 2014;16(1):15-21. doi: 10.1208/S12248-013-9533-Z, PMID 24065600.
CHMP. Reflection paper on the data requirements for intravenous liposomal products developed concerning an innovator liposomal product Final; 2013.
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9(JUL):790. doi: 10.3389/par.2018.00790, PMID 30065653.
Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, et al. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond). 2013;8(3):403-23. doi: 10.2217/NNM.13.16, PMID 23477334.
Krug HF, Wick P. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl. 2011;50(6):1260-78. doi: 10.1002/ANIE.201001037, PMID 21290492.
Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. Use metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano. 2012;6(5):4349-68. doi: 10.1021/NN3010087, PMID 22502734.
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009;21;Suppl 1;Suppl 1(SUPPL. 1):55–60:55-60. doi: 10.1080/08958370902942517, PMID 19558234.
Oberdörster G. Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol. 1995;21(1):123-35. doi: 10.1006/RTPH.1995.1017, PMID 7784625
Published
How to Cite
Issue
Section
Copyright (c) 2023 Jeenatara Begum, Tamalika Chakraborty, Pramit Sahoo, Pritam Roy, Sebabrata Bhakta

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.