Design and In-silico Molecular Docking of NMDA NR2B Receptor Antagonist and Pharmacokinetic Prediction of Some Piperazine Sulfonyl Amine Derivatives for Alzheimer’s Disease
Pharmaceutical Science-Pharmaceutical chemistry
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.6.P132-141Keywords:
Alzheimer’s disease, N-methyl d-aspartate (NMDA) receptor, piperazine sulfonyl amine derivatives, Molecular docking, Pharmacokinetics, toxicology prediction.Abstract
Alzheimer's disease is a rare and progressive neurologic disease caused by degeneration of neurons within the brain that causes the brain to shrink (atrophy) and brain cells to die. In the US, approximately 5.5 million people are affected, and the prevalence worldwide is estimated to be as high as 24 million. Treatment is available to reduce the symptoms but no permanent cure. NMDA receptors play a crucial role in the treatment of Alzheimer's. Our aim and objective of the present work are to design some piperazine sulfonyl amine derivatives for treating Alzheimer's disease. To achieve this objective, we have docked the designed ligands with NMDA receptors. In our study, we have designed some piperazine sulfonyl amine derivatives, which were then subjected to virtual screening. The three-dimensional crystal structure of the selected protein NMDA receptor subunit NR2B (PDB Id: 3JPW) was retrieved from the RCSB Protein Data Bank (PDB). The ligands that showed low binding energy were further predicted for pharmacokinetic properties, and Lipinski's rule of 5 and the results are discussed. The final 19 compounds were used to develop a pharmacophore. The finalized 19 compounds were subjected to various in silico screening processes like drug-likeness, ADME properties and toxicity prediction. All 19 compounds exhibited good draggability nature, while ligands SE-B-15 and SE-B-12 were carcinogenic and SE-E-2 and SE-E-13 were prone to cause immunotoxicity. Ligands SE – C – 13 and SE – B – 2 exhibited good docking scores and best pharmacokinetic properties.
References
De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer’s disease. Subcell Biochem. 2012;65:329-52. doi: 10.1007/978-94-007-5416-4_14, PMID [CrossRef], Google Scholar.
Singh R, StatPearlsSNM. Stat. 2020. [(accessed on 8 December 2020)]. Cholinesterase Inhibitors. Google Scholar.
Eldufani J, Blaise G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: a review of recent clinical applications. Alzheimers Dement (N Y). 2019;5:175-83. doi: 10.1016/j.trci.2019.03.004, PMID [CrossRef]. Google Scholar. (PMC [Free article]).
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review) [review]. Mol Med Rep. 2019;20(2):1479-87. doi: 10.3892/mmr.2019.10374, PMID [CrossRef]. Google Scholar. (PMC [Free article]).
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405-96. doi: 10.1124/pr.109.002451, PMID 20716669.
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8(6):413-26. doi: 10.1038/nrn2153, PMID 17514195.
Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol. 2009;157(8):1301-17. doi: 10.1111/j.1476-5381.2009.00304.x, PMID 19594762.
Prime. v3.1. Portland: Schrödinger. LLC; 2012.
Maestro. v9.3. Portland: Schrödinger. LLC; 2012.
Waqar M, Batool S. In silico analysis of binding interaction of conantokins with NMDA receptors for potential therapeutic use in Alzheimer’s disease Dis.2017Sep20;23:42. J Venom Anim Toxins Incl Trop Dis;23:42. doi: 10.1186/s40409-017-0132-9, PMID 28943883, PMCID PMC5607497.
LiGPrep. v2.5. Portland: Schrödinger. LLC; 2012.
Brooks WH, Daniel KG, Sung SS, Guida WC. Computational validation of the importance of absolute stereochemistry in virtual screening. J Chem Inf Model. 2008;48(3):639-45. doi: 10.1021/ci700358r, PMID 18266348.
Du J, Sun H, Xi L, Li J, Yang Y, Liu H et al. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation. J Comput Chem. 2011;32(13):2800-9. doi: 10.1002/jcc.21859, PMID 21717478.
Albers HM, Hendrickx LJ, van Tol RJ, Hausmann J, Perrakis A, Ovaa H. Structure-based design of novel boronic acid-based inhibitors of autotaxin. J Med Chem. 2011;54(13):4619-26. doi: 10.1021/jm200310q, PMID 21615078.
Kenyon V, Chorny I, Carvajal WJ, Holman TR, Jacobson MP. Novel human lipoxygenase inhibitors discovered using virtual screening with homology models. J Med Chem. 2006;49(4):1356-63. doi: 10.1021/jm050639j, PMID 16480270.
William AD, Lee AC, Blanchard S, Poulsen A, Teo EL, Nagaraj. Het al.discovery of the macrocycle 11-(2-pyrrolidine-1-yl-ethoxy)- 14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6). 1(8,12)]heptacosa1(25). J Med Chem. 2011, 54;3(5),8:2(26),10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma:4638-58.
Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A. 2007;104(18):7391-6. doi: 10.1073/pnas.0609757104, PMID 17463090.
Gadakar PK, Phukan S, Dattatreya P, Balaji VN. Pose prediction accuracy in docking studies and enrichment of actives in the active site of GSK-3beta. J Chem Inf Model. 2007;47(4):1446-59. doi: 10.1021/ci6005036, PMID 17580928.
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules [sci rep]. Sci Rep. 2017;7:42717. doi: 10.1038/srep42717, PMID 28256516.
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235-49. doi: 10.1016/s1056-8719(00)00107-6, PMID 11274893.
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007, PMID 24981612. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H et al.. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0. PMID 32194981.
Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-63. doi: 10.1093/nar/gky318, PMID 29718510.
Kandagalla S, Sharath BS, Bharath BR, Hani U, Manjunatha H. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacol. 2017;5(1):15. doi: 10.1007/s40203-017-0034-0, PMID 29308351.
Hussein YT, Azeez YH. DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. J Biomol Struct Dyn. 20212021Dec21:1-10. doi: 10.1080/07391102.2021.2017350, PMID 34931599.
Bitew M, Desalegn T, Demissie TB, Belayneh A, Endale M, Eswaramoorthy R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: molecular docking and DFT study. PLoS One. 2021;16(12):e0260853. doi: 10.1371/journal.pone.0260853, PMID 34890431, PMCID PMC8664201.
Çankaya N, Azarkan SY, Tanış E. The molecular interaction of human anti-apoptotic proteins and in silicoADMET, drug-likeness and toxicity computation of N-cyclohexylmethacrylamide. Drug Chem Toxicol2021Mar26:1-8. 2022;45(5):1963-70. doi: 10.1080/01480545.2021.1894711, PMID 33771072.
Chavarria D, Fernandes C, Silva V, Silva C, Gil-Martins E, Soares P et al. Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: structure-activity-toxicity, drug-likeness and efflux transport studies. Eur J Med Chem. 2020;1852020Jan1;185:111770. doi: 10.1016/j.ejmech.2019.111770, PMID 31711793.
Alqahtani S. In silicoADME-Tox modeling: progress and prospects. Expert Opin Drug Metab Toxicol. 2017;13(11):1147-58. doi: 10.1080/17425255.2017.1389897, PMID 28988506.
Tao L, Zhang P, Qin C, Chen SY, Zhang C, Chen Z et al. Recent progresses in the exploration of machine learning methods as in-silicoADME prediction tools. Adv Drug Deliv Rev. 2015;862015Jun23;86:83-100. doi: 10.1016/j.addr.2015.03.014, PMID 26037068.
Wan H, Ulander J. High-throughput pKa screening and prediction amenable for ADME profiling. Expert Opin Drug Metab Toxicol. 2006;2(1):139-55. doi: 10.1517/17425255.2.1.139, PMID 16863474.
Beresford AP, Segall M, Tarbit MH. In silico prediction of ADME properties: are we making progress? Curr Opin Drug Discov Devel. 2004;7(1):36-42. PMID 14982146.
Kianpour M, Mohammadinasab E, Isfahani TM. Prediction of oralacutetoxicity of organophosphatesusingQSARmethods. Curr Comput Aided Drug Des. 2021;17(1):38-56. doi: 10.2174/1573409916666191227093237, PMID 31880265.
Jain A, Kihara D. NNTox: Gene Ontology-Based Protein Toxicity Prediction Using Neural Network. Sci Rep. 2019;9(1):17923. doi: 10.1038/s41598-019-54405-6, PMID 31784686, PMCID PMC6884647.
Jackson RC. Toxicity prediction from metabolic pathway modelling. Toxicology. 1995;102(1-2):197-205. doi: 10.1016/0300-483x(95)03048-k, PMID 7482554.
Sakhteman A, Failli M, Kublbeck J, Levonen AL, Fortino V. A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity. Environ Int2021Nov. 2021;156:106751. doi: 10.1016/j.envint.2021.106751, PMID 34271427.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Sachin Kumar, A. Elphine Prabahar, Rajesh Kumar Sharma

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.