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Abstract: Alzheimer's disease is a rare and progressive neurologic disease caused by degeneration of neurons within the brain 
that causes the brain to shrink (atrophy) and brain cells to die. In the US, approximately 5.5 million people are affected, and the 
prevalence worldwide is estimated to be as high as 24 million. Treatment is available to reduce the symptoms but no permanent 
cure. NMDA receptors play a crucial role in the treatment of Alzheimer's. Our aim and objective of the present work are to 
design some piperazine sulfonyl amine derivatives for treating Alzheimer's disease. To achieve this objective, we have docked the 
designed ligands with NMDA receptors. In our study, we have designed some piperazine sulfonyl amine derivatives, which were 
then subjected to virtual screening. The three-dimensional crystal structure of the selected protein NMDA receptor subunit 
NR2B (PDB Id: 3JPW) was retrieved from the RCSB Protein Data Bank (PDB). The ligands that showed low binding energy 
were further predicted for pharmacokinetic properties, and Lipinski's rule of 5 and the results are discussed. The final 19 
compounds were used to develop a pharmacophore. The finalized 19 compounds were subjected to various in silico screening 
processes like drug-likeness, ADME properties and toxicity prediction. All 19 compounds exhibited good draggability nature, 
while ligands SE-B-15 and SE-B-12 were carcinogenic and SE-E-2 and SE-E-13 were prone to cause immunotoxicity. Ligands SE –
C – 13 and SE – B – 2 exhibited good docking scores and best pharmacokinetic properties. 
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1. INTRODUCTION 
 
Alzheimer's disease is the leading cause of dementia, 
characterized by a decline in thinking and independence in 
daily activities.1 In the US, approximately 5.5 million people 
are affected, and the prevalence worldwide is estimated to be 
as high as 24 million. The exact origin of AD is ambiguous 
and combinatorial reasons such as genetic, lifestyle, and 
environmental factors are involved in the onset and 
progression of the disease. Formation of toxic amyloid beta 
(Aβ ) protein in the brain, tau protein hyperphosphorylation 
and aggregation, bio metals dysfunction (ions; copper, iron, 
and zinc), alteration of calcium homeostasis, inflammation and 
oxidative stress due to generation of reactive oxygen species 
(ROS), and deficits in the cholinergic transmission have been 
considered as the leading causes of AD. Although several 
single-factor theories have been suggested for AD, no one 
led to a definite treatment. Even more recent pathological 
hallmarks of AD related to the accumulation of 
neurofibrillary tangles and amyloid plaques have failed in 
clinical trials. Up to now, only temporary symptomatic relief 
has been obtained from FDA-approved anti-cholinesterase 
(ChE) drugs via improving the cholinergic neurotransmitter 

systems. There are currently only two classes of approved 
Alzheimer's drugs: cholinesterase inhibitors and NMDA 
antagonists, both of which treat symptoms but do not cure 
or prevent the disease.2-4 NMDARs are glutamate-gated ion 
channels that play an essential role in neuronal 
communication.5 NMDARs are tetrameric complexes 
composed of multiple homologous subunits. The 
composition of NMDAR subunits is flexible, resulting in a 
large number of receptor subtypes. Because each receptor 
subtype has distinct biophysical, pharmacological, and 
signaling properties, determining whether individual subtypes 
perform specific functions in the CNS in both normal and 
pathological conditions is critical. In this study, we developed 
some piperazine sulfonyl amine derivatives that target the 
NMDA receptor to treat Alzheimer's disease. 6,7 

 
2. MATERIALS AND METHODS 
 
Software, tools, and web servers used in the present study 
are Chemsketch, Schrodinger suit, and Swiss ADME. This 
study used a PC with Intel CORE i3-7100U CPU @ 2.40 
GHz processor and 4 GB RAM running Windows 10 
Operating System. 

 

 
 

Fig 1: Structure of NMDA receptor subunit NR2B (3JPW)  
 
2.1 Molecular Docking Studies 
 
2.1.1 In-Silico Molecular Docking  
 
A total of 150 designed ligands were drawn using ACD Labs 
ChemSketch, and further, they were saved in mol format, 
and the designed ligands were prepared using Ligprep. The 
target proteins were obtained in their 3D forms from the 
RCSB PDB. The designed piperazine sulfonyl amine binding 
affinities as ligand molecules to the selected protein target 
were evaluated.8,9 
 
2.1.2 Therapeutic Target Identification 
 
The first step of the methodology included a collection of the 
receptor protein. The subunit N-methyl-D-aspartate 
receptor subtype 2B (NR2B) is the chief excitatory 
neurotransmitter receptor in the mammalian brain. This 
allows for a transmembrane ion flow through the receptor to 
increase the neuron's action potential. This characteristic 

makes the synapsis among these neurons the central memory 
storage unit and associates them with learning and memory. 
As the structure of NMDA receptors in humans is 
unavailable, the structure of NMDAR in Rattusnorvegicus 
(brown rat) has been used for this work. The structure of 
NMDA receptor subunit NR2B (PDB id: 3JPW) was 
retrieved from the Research Collaboratory for Structural 
Bioinformatics (RCSB).10 
 
2.1.3 Active Site Prediction 
 

Site Map was used with the default settings to identify ligand-
binding sites for the selected proteins. The only difference 
was that six sites were chosen instead of the default setting 
of 5 sites for Site Map's site-point group reporting. The 
choice was made to improve the chances of finding more 
ligand binding sites, which were referred to as site-point 
groups in the SiteMap software component. The top-ranked 
site was used to generate a grid. All ligands were first 
subjected to high throughput virtual screening (HTVS), then 
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standard precision (SP), and finally extra precision (XP) 
docking. These three docking modes were applied in this 
order to all docking in this project. The first docking mode 
used to reduce the number of intermediate conformations 
throughout the docking funnel was HTVS docking. The SP 
mode was used to screen ligands with acceptable HTVS 
Glide scores as determined by the user. XP mode was 
created to screen for false positives and active compounds 
that could bind to a specific conformation of the receptor 
using top-scoring ligand poses.11-18 
 
2.2 Drug Likeness Properties and Toxicity  
 

Swiss ADME (http://www. swissadme.ch/) was used to make 
this prediction.18 Lipinski's oral drug-likeness properties were 
predicted using the following parameters: I Molecular weight 
(500 Daltons), ii) the number of hydrogen bond donors (5), 
iii) the number of hydrogen bond acceptors (10), iv) Log P 
(5) and v) Molecular refractivity (140).20-21 The toxicity 
properties of ligands were evaluated using the ProtoxII web 
server (https://tox-new.charite.de/protox II/). All of the 
ligands' pharmacokinetic properties were predicted.22 
 
3. RESULTS AND DISCUSSION 
 
All 150 ligands were subjected to molecular docking through 
three phases, viz. high throughput virtual screening (HTVS) 
docking initially, followed by standard precision (SP) and then 

extra precision (XP) docking. The initial screening was done 
in the first and second phases, using high throughput virtual 
screening (HTVS) and standard precision (SP) docking to 
eliminate any false results. We have chosen 90 ligands for the 
third phase, that is, extra precision (XP) docking, and finally, 
19 ligands (in Table. No:1) with good docking scores were 
used for further computational studies. From work, the 
designed piperazine sulfonyl amine derivatives have shown 
promising activity against NMDA receptor subunit NR2B. 
The 2D interaction diagram shows significant interaction with 
receptor residues in the present study. Out of the designed 
compounds, SE – C - 13 had the best binding conformation 
with a g Score of – 8.145 kcal/mol, followed by SE – B – 2, SE 
– B – 8, and SE – B – 12 with -7.523, -7.246 and -7.166 
respectively (Table No. 1). Lesser the binding energy, the 
greater the binding efficiency, hence augmented inhibition. 
The compound SE – C - 13 interacted with 13 amino acid 
residues in the active site of the NRB2 with two hydrogen 
bonds with amino acid residues ASP 58 (Figures 5 and 6). 
More significant the number of hydrogen bonds, the higher 
the binding efficiency. Despite a higher number of hydrogen 
bonds(four), ligand SE – B - 2 showed less docking score. 
Figure 7 denotes the 3D image active site cleft of the NR2B 
with SE – B - 2 bound to it. Ligand SE – B – 8 AND SE – B – 
12 3c have interacted with 15 and 10 amino acids in the 
active site, respectively.23 
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Table. No: 1 - The designed ligands' docking scores (Glide Scores). 
Title Smile docking score glide evdw glide ecoul glide energy glide e internal glide e model XP H Bond 

SE - C - 13 O=S(=O)(Nc1ccc(cc1O)C(=O)O)N1CCN(Cc2ccccc2)CC1 -8.145 -27.373 -13.124 -40.497 3.980 -56.865 -0.970 
SE - B - 2 O=S(=O)(Nc1ccccc1O)N1CCN(Cc2ccc(O)cc2)CC1 -7.523 -26.086 -16.640 -42.726 9.302 -51.284 -2.800 
SE - B - 8 O=S(=O)(Nc1cccc(O)c1)N1CCN(Cc2ccc(O)cc2)CC1 -7.246 -27.615 -12.954 -40.569 6.140 -48.235 -2.800 
SE - B - 12 O=S(=O)(Nc1ccc(C(=O)O)c(O)c1)N1CCN(Cc2ccc(O)cc2)CC1 -7.166 -27.458 -10.598 -38.056 4.715 -42.866 -1.274 
SE - G - 2 O=S(=O)(Nc1ccc(cc1O)C(=O)O)N1CCN(Cc2ccc(O)cc2)CC1 -6.197 -30.925 -9.522 -40.447 8.515 -48.835 -1.951 
SE - F - 8 O=S(=O)(NC(Cc1ccccc1O)C(=O)O)N1CCN(Cc2ccc(O)cc2)CC1 -5.514 -30.158 -7.587 -37.745 8.101 -41.273 -0.171 
SE - B - 11 O=S(=O)(Nc1nc2ccccc2[NH]1)N1CCN(Cc2ccc(O)cc2)CC1 -5.400 -29.596 -11.820 -41.416 10.545 -52.303 -2.294 
SE - A - 8 O=S(=O)(NCc1nc2ccccc2[NH]1)N1CCN(Cc2ccc(O)cc2)CC1 -5.327 -24.827 -9.113 -33.940 4.070 -41.405 -1.506 
SE - B - 14 O=S(=O)(Nc1nc2cc(O)ccc2[NH]1)N1CCN(Cc2ccc(O)cc2)CC1 -5.234 -31.122 -10.278 -41.400 10.809 -47.480 -1.330 
SE - D - 2 O=S(=O)(Nc1nc2ccccc2n1C)N1CCN(Cc2ccc(O)cc2)CC1 -5.231 -26.221 -12.712 -38.933 9.421 -50.456 -1.890 
SE - B - 3 O=S(=O)(NC(Cc1cccc(O)c1)C(=O)O)N1CCN(Cc2ccc(C)cc2)CC1 -5.229 -32.187 -13.893 -46.080 7.429 -57.214 -0.925 
SE - D - 8 O=S(=O)(NCc1nc2ccccc2[NH]1)N1CCN(Cc2ccc(C)cc2)CC1 -5.224 -32.578 -7.733 -40.311 3.929 -50.426 -1.890 
SE - B - 15 O=S(=O)(Nc1ccccc1O)N1CCN(Cc2ccc(OC)cc2)CC1 -5.221 -32.987 -5.662 -38.650 4.432 -47.899 -0.700 
SE - B - 7 O=S(=O)(Nc1ccc(cc1O)C(=O)O)N1CCN(Cc2ccc(OC)cc2)CC1 -5.176 -29.154 -9.570 -38.724 2.012 -47.078 -1.180 
SE - B - 13 O=S(=O)(NC(Cc1ccccc1O)C(=O)O)N1CCN(Cc2ccc(OC)cc2)CC1 -5.136 -32.091 -10.754 -42.845 4.460 -54.728 -1.119 
SE - E - 13 O=S(=O)(Nc1ccccc1O)N1CCN(Cc2ccc(OC)c(OC)c2)CC1 -5.069 -36.615 -7.734 -44.350 2.434 -57.499 -0.700 
SE - D - 11 O=S(=O)(NCc1nc2ccccc2[NH]1)N1CCN(Cc2ccc(OC)c(OC)c2)CC1 -5.065 -28.783 -12.686 -41.469 20.733 -47.389 -1.384 
SE - C - 9 O=S(=O)(Nc1ccc(cc1O)C(=O)O)N1CCN(CC1)C(=O)c1ccccc1 -5.022 -30.610 -9.947 -40.557 5.814 -53.626 -1.554 
SE - E - 2 O=S(=O)(Nc1ccccc1O)N1CCN(CC1)C(=O)c1ccc(O)cc1 -5.008 -33.921 -9.555 -43.477 6.803 -52.484 -1.890 

 
Table 1 Docking score and other metrics by Glide (Schrodinger Suit) to success the binding affinity of the designed ligands with NMDA NR2B receptor. 

 

   

 
Fig 2: 2D and 3D diagram of compound SE – C - 13 showing interactions with the binding site at best pose 
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Fig 3: 2D and 3D diagram of compound SE – B - 2 showing interactions with the binding site at best pose 
 

  
 
 

Fig 4: 2D and 3D diagram of compound SE – B - 8 showing interactions with the binding site at best pose 
 
 

  
 
 

Fig 5: 2D and 3D diagram interactions with the binding site at best pose 
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3.1 Drug Likeness Properties and Toxicity 
 
All the designed derivatives satisfied their properties 
according to Lipinski’s rule of 5 (Table No.2). Lipinski rule is 
considered one of the essential criteria to predict the oral 
drug-likeness of a drug. None of the derivatives have violated 
the Lipinski rule. To enhance the predictions of drug-likeness, 
Ghose, Veber, Egan, and Muegge filters have been used in the 
study. All the designs obeyed Lipinski, Veber, Egan, and 
Muegge, whereas compounds SE – B -7, SE – B -8, SE – B - 

11, and SE – F 8 did not satisfy Gosh filters. Out of all the 
designed derivatives, SE - E – 2, SE - E – 13, SE - C – 13, SE - 
D – 2, and SE - B - 15 showed good oral absorption, while SE 
- D – 11, SE - G – 2, SE - B – 2, SE - B – 12, SE - B – 13, SE - 
C – 9, SE - B – 3, and SE - B - 14 had moderate oral 
absorption and SE - F – 8, SE - B – 11, SE - D – 8, SE - A – 8, 
SE - B – 7, and SE - B - 8 exhibited poor oral absorption. 
Whereas all the compounds were shown to cross the blood-
brain barrier.24-27 

 

Table. No: 2 – Draggability of the designed ligands. 
S.No Ligand Lipinski (No. of Violations) Ghose Egan Verber Muegge Bioavailability 

1 SE - A - 8 Yes (0) Yes Yes Yes Yes 0.55 

2 SE - B - 2 Yes (0) Yes Yes Yes Yes 0.55 

3 SE - B - 3 Yes (0) Yes Yes Yes Yes 0.55 

4 SE - B - 7 Yes (0) Yes No Yes Yes 0.55 

5 SE - B - 8 Yes (0) Yes No Yes Yes 0.55 

6 SE - B - 11 Yes (0) Yes No Yes Yes 0.55 

7 SE - B - 12 Yes (0) Yes Yes Yes Yes 0.55 

8 SE - B - 13 Yes (0) Yes Yes Yes Yes 0.55 

9 SE - B - 14 Yes (0) Yes Yes Yes Yes 0.55 

10 SE - B - 15 Yes (0) Yes Yes Yes Yes 0.55 

11 SE - C - 9 Yes (0) Yes Yes Yes Yes 0.55 

12 SE - C - 13 Yes (0) Yes Yes Yes Yes 0.55 

13 SE - D - 2 Yes (0) Yes Yes Yes Yes 0.55 

14 SE - D - 8 Yes (0) Yes Yes Yes Yes 0.55 

15 SE - D - 11 Yes (0) Yes Yes Yes Yes 0.55 

16 SE - E - 2 Yes (0) Yes Yes Yes Yes 0.55 

17 SE - E - 13 Yes (0) Yes Yes Yes Yes 0.55 

18 SE - F - 8 Yes (0) Yes No Yes Yes 0.55 

19 SE - G - 2 Yes (0) Yes Yes Yes Yes 0.55 

 
Table 2 Various drug ability parameters such as Lipinski, Ghose, Egan, Verber, and Muegge were predicted, and all the finalized 
ligands were found to have good draggability and good bioavailability scores. 
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Fig 6: The Pharmacophore generated by aligning the best 19 ligands selected from XP docking 
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3.2 ADME Prediction 
 
ADME of the selected drugs was done using QikProp in 
Schrodinger suit and ADMET Lab, an online server. Blood-
Brain Barrier (BBB) penetration, HOA (Human Oral 
Absorption), solubility parameters, metabolism, and 

excretion were estimated. Currently, many approaches exist 
to assess a compound drug-likeness based on topological 
descriptors, fingerprints of molecular drug-likeness structure 
keys, clogP and molecular weight. Based on the predicted 
values, all the selected ligands can penetrate BBB, the 
expected site of action, and have good oral absorption.28-31

 

Table. No: 3 – ADME properties of the selected ligands. 
S.No Ligand Absorption Distribution Metabolism Excretion 

Total 
Clearance 

(Log 
mL/min/kg) 

Solubility 
QPlogS 

% Human 
Oral 

Absorption 

BBB 
perm. 

QPlogBB 

1 SE - B - 2 -1.931 74.553 -0.460 CYP3A4-inhibitor,  CYP3A4-substrate,  
CYP2D6-inhibitor, 

1.039 

2 SE - A - 8 -2.725 44.140 -0.987 CYP3A4-substrate,  CYP2D6-inhibitor, 0.348 

3 SE - B - 3 -2.014 70.378 -0.666 CYP3A4-inhibitor,  CYP3A4-substrate,  
CYP2D6-inhibitor, 

1.094 

4 SE - B - 7 -2.803 33.798 -1.597 CYP2D6-inhibitor, 0.542 

5 SE - B - 8 -2.588 31.061 -1.593 CYP2D6-inhibitor, 1.116 

6 SE - B - 11 -3.065 52.085 -1.319 CYP3A4-inhibitor,  CYP2C9-substrate,  
CYP2D6-inhibitor, 

1.172 

7 SE - B - 12 -2.414 74.236 -0.534 CYP3A4-inhibitor,  CYP2D6-inhibitor, 1.555 

8 SE - B - 13 -1.843 73.710 -0.550 CYP3A4-inhibitor,  CYP2D6-inhibitor, 1.491 

9 SE - B - 14 -2.282 61.158 -1.139 CYP3A4-inhibitor,  CYP2D6-inhibitor, 1.498 

10 SE - G - 2 -3.132 77.979 -1.187 CYP3A4-inhibitor, 1.216 

11 SE - F - 8 -3.246 58.501 -1.723  1.09 

 
12 

 
SE - E - 2 

 
-2.497 

 
89.415 

 
-0.026 

CYP1A2-substrate,  CYP3A4-inhibitor,  
CYP3A4-substrate,  CYP2C9-substrate,  
CYP2C19-substrate,  CYP2D6-inhibitor,  

CYP2D6-substrate 

1.41 

 
13 

 
SE - E - 13 

 
-2.341 

 
88.395 

 
-0.131 

CYP1A2-substrate,  CYP3A4-inhibitor,  
CYP3A4-substrate,  CYP2C19-substrate,  
CYP2D6-inhibitor,  CYP2D6-substrate 

1.53 

 
14 

 
SE - D -11 

 
-3.451 

 
78.653 

 
-0.787 

CYP3A4-inhibitor,  CYP3A4-substrate,  
CYP2C9-substrate,  CYP2D6-inhibitor, 

CYP2D6-substrate 

1.17 

15 SE - D - 8 -2.890 44.449 -1.090 CYP3A4-substrate,  CYP2C19-substrate,  
CYP2D6-inhibitor,  CYP2D6-substrate 

1.29 

 
16 

 
SE - D - 2 

 
-2.253 

 
87.992 

 
0.040 

CYP1A2-substrate,  CYP3A4-inhibitor,  
CYP3A4-substrate,  CYP2C9-substrate,  
CYP2C19-substrate,  CYP2D6-inhibitor,  

CYP2D6-substrate 

1.553 

 
17 

 
SE - C- 13 

 
-2.379 

 
88.068 

 
0.000 

CYP1A2-substrate,  CYP3A4-inhibitor,  
CYP3A4-substrate,  CYP2C19-inhibitor,  
CYP2C19-substrate,  CYP2D6-inhibitor, 

1.794 

18 SE - C - 9 -3.490 73.019 -0.924 CYP3A4-inhibitor,  CYP2C9-substrate,  
CYP2D6-inhibitor, 

1.286 

 
19 

 
SE - B - 15 

 
-2.576 

 
81.115 

 
-0.217 

CYP1A2-substrate,  CYP3A4-inhibitor,  
CYP3A4-substrate,  CYP2C19-substrate,  

CYP2D6-inhibitor, 

1.604 

 
Table 3 ADME parameters solubility, penetration, human oral absorption, blood-brain barrier, metabolism, and excretion were 
predicted for the selected compounds, and all the ligands were found to cross BBB and have good oral absorption.  
 
3.3 Toxicity Prediction 
 
Structure-based design is now fairly routine, but many 
potential drugs fail to reach the clinic because of ADME/Tox 
liabilities. Toxicity risks (Hepatotoxicity, Carcinogenicity, 
Immunotoxicity, Mutagenicity, and Cytotoxicity) of selected 

compounds were calculated by the Protox II web server, and 
their results are shown in Table 4. The present study studied 
drug-likeness properties and toxicity, revealing that ligands 
SE-B-15 and SE-B-12 have carcinogenicity and SE-E-2 and SE-
E-13 have immunotoxicity. All other ligands were indicated 
with no Toxicity risks.32-35 
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Table. No: 4 - Predicted toxicity properties generated by Swiss ADME 
S.No Ligand Predicted 

Toxicity 
Class 

Predicted 
LD 50 

(mg/kg) 

Hepato 
toxicity 

Carcino 
genicity 

Immuno 
toxicity 

Muta 
genicity 

Cyto 
toxicity 

1 SE - A - 8 4 1800 Inactive Inactive Inactive Inactive Inactive 

2 SE - B - 2 5 2300 Inactive Inactive Inactive Inactive Inactive 

3 SE - B - 3 5 2300 Inactive Inactive Inactive Inactive Inactive 

4 SE - B - 7 4 1000 Inactive Inactive Inactive Inactive Inactive 

5 SE - B - 8 4 1800 Inactive Inactive Inactive Inactive Inactive 

6 SE – B-11 5 2500 Inactive Inactive Inactive Inactive Inactive 

7 SE - B - 12 3 245 Inactive Active Inactive Inactive Inactive 

8 SE - B - 13 4 1000 Inactive Inactive Inactive Inactive Inactive 

9 SE - B - 14 4 1200 Inactive Inactive Inactive Inactive Inactive 

10 SE - B - 15 4 330 Inactive Active Inactive Inactive Inactive 

11 SE - C - 9 4 2000 Inactive Inactive Inactive Inactive Inactive 

12 SE - C - 13 4 1000 Inactive Inactive Inactive Inactive Inactive 

13 SE - D - 2 4 750 Inactive Inactive Inactive Inactive Inactive 

14 SE - D - 8 4 1000 Inactive Inactive Inactive Inactive Inactive 

15 SE - D - 11 4 800 Inactive Inactive Inactive Inactive Inactive 

16 SE - E - 2 4 310 Inactive Inactive Active Inactive Inactive 

17 SE - E - 13 4 740 Inactive Inactive Active Inactive Inactive 

18 SE - F - 8 4 1800 Inactive Inactive Inactive Inactive Inactive 

19 SE - G - 2 4 1800 Inactive Inactive Inactive Inactive Inactive 

 

 Class I: fatal if swallowed (LD50 ≤ 5) 
 Class II: fatal if swallowed (5 < LD50 ≤ 50) 
 Class III: toxic if swallowed (50 < LD50 ≤ 300) 
 Class IV: harmful if swallowed (300 < LD50 ≤ 2000) 
 Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000) 
 Class VI: non-toxic (LD50 > 5000) 
 
4. CONCLUSION 
 
Today treating Alzheimer's is an excellent task for physicians, 
leading to research on developing lead molecules and 
precursors. The present research aimed to discover 
piperazine sulfonyl amine-containing compounds that could 
potentially treat Alzheimer's by acting through NMDA 
receptor subunit NR2B (PDB Id: 3JPW). One hundred fifty 
compounds were designed and subjected to virtual screening 
using three phases to take 19 potent compounds. First, the 
active site of the DNA gyrase was determined using the Site 
Map. Then, molecular docking was done using Glide, and the 
interactions between the ligands and protein were predicted. 
Ligands SE – C – 13 and SE – B – 2 with -8.145 and -7.523 as 
docking scores were very effective. Pharmacokinetics and 
toxicity properties of designed compounds were studied and 
reported. On the whole, ligands SE – C – 13 and SE – B – 2 
of the designed pyrazole derivatives were very potent against 
NMDA receptors and showed better drug-likeness and 
pharmacokinetic properties. Hence one could prevent 
infections using these. Furthermore, this research could act 
as a road map for discovering compounds for Alzheimer's. 

Thus, in-silico studies provided rapid and comprehensive 
insights into results in screening compounds.  
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6. LIMITATION AND FUTURE SCOPE 
 
The drug discovery informatics market is growing every year 
and may continue expanding. On the other hand, the need 
for drug therapy for Alzheimer's disease is also mounting. 
NMDA receptors play a crucial role in the treatment of 
Alzheimer's. So, future research on this topic will open new 
horizons in the treatment of Alzheimer.  
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