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Abstract: Alzheimer's disease is a rare and progressive neurologic disease caused by degeneration of neurons within the brain
that causes the brain to shrink (atrophy) and brain cells to die. In the US, approximately 5.5 million people are affected, and the
prevalence worldwide is estimated to be as high as 24 million. Treatment is available to reduce the symptoms but no permanent
cure. NMDA receptors play a crucial role in the treatment of Alzheimer's. Our aim and objective of the present work are to
design some piperazine sulfonyl amine derivatives for treating Alzheimer's disease. To achieve this objective, we have docked the
designed ligands with NMDA receptors. In our study, we have designed some piperazine sulfonyl amine derivatives, which were
then subjected to virtual screening. The three-dimensional crystal structure of the selected protein NMDA receptor subunit
NR2B (PDB Id: 3JPW) was retrieved from the RCSB Protein Data Bank (PDB). The ligands that showed low binding energy
were further predicted for pharmacokinetic properties, and Lipinski's rule of 5 and the results are discussed. The final 19
compounds were used to develop a pharmacophore. The finalized 19 compounds were subjected to various in silico screening
processes like drug-likeness, ADME properties and toxicity prediction. All 19 compounds exhibited good draggability nature,
while ligands SE-B-15 and SE-B-12 were carcinogenic and SE-E-2 and SE-E-13 were prone to cause immunotoxicity. Ligands SE —
C - 13 and SE — B — 2 exhibited good docking scores and best pharmacokinetic properties.
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1. INTRODUCTION

Alzheimer's disease is the leading cause of dementia,
characterized by a decline in thinking and independence in
daily activities.' In the US, approximately 5.5 million people
are affected, and the prevalence worldwide is estimated to be
as high as 24 million. The exact origin of AD is ambiguous
and combinatorial reasons such as genetic, lifestyle, and
environmental factors are involved in the onset and
progression of the disease. Formation of toxic amyloid beta
(AB ) protein in the brain, tau protein hyperphosphorylation
and aggregation, bio metals dysfunction (ions; copper, iron,
and zinc), alteration of calcium homeostasis, inflammation and
oxidative stress due to generation of reactive oxygen species
(ROS), and deficits in the cholinergic transmission have been
considered as the leading causes of AD. Although several
single-factor theories have been suggested for AD, no one
led to a definite treatment. Even more recent pathological
hallmarks of AD related to the accumulation of
neurofibrillary tangles and amyloid plaques have failed in
clinical trials. Up to now, only temporary symptomatic relief
has been obtained from FDA-approved anti-cholinesterase
(ChE) drugs via improving the cholinergic neurotransmitter
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systems. There are currently only two classes of approved
Alzheimer's drugs: cholinesterase inhibitors and NMDA
antagonists, both of which treat symptoms but do not cure
or prevent the disease.”* NMDARs are glutamate-gated ion

channels that play an essential role in neuronal
communication® NMDARs are tetrameric complexes
composed of multiple homologous subunits. The

composition of NMDAR subunits is flexible, resulting in a
large number of receptor subtypes. Because each receptor
subtype has distinct biophysical, pharmacological, and
signaling properties, determining whether individual subtypes
perform specific functions in the CNS in both normal and
pathological conditions is critical. In this study, we developed
some piperazine sulfonyl amine derivatives that target the
NMDA receptor to treat Alzheimer's disease. ¢’

2, MATERIALS AND METHODS

Software, tools, and web servers used in the present study
are Chemsketch, Schrodinger suit, and Swiss ADME. This
study used a PC with Intel CORE i3-7100U CPU @ 2.40
GHz processor and 4 GB RAM running Windows 10
Operating System.

Fig |: Structure of NMDA receptor subunit NR2B (3JPW)

2.1  Molecular Docking Studies
2.1.1 In-Silico Molecular Docking

A total of 150 designed ligands were drawn using ACD Labs
ChemSketch, and further, they were saved in mol format,
and the designed ligands were prepared using Ligprep. The
target proteins were obtained in their 3D forms from the
RCSB PDB. The designed piperazine sulfonyl amine binding
affinities as ligand molecules to the selected protein target
were evaluated.®’

2.1.2 Therapeutic Target Identification

The first step of the methodology included a collection of the
receptor protein. The subunit N-methyl-D-aspartate
receptor subtype 2B (NR2B) is the chief excitatory
neurotransmitter receptor in the mammalian brain. This
allows for a transmembrane ion flow through the receptor to
increase the neuron's action potential. This characteristic

makes the synapsis among these neurons the central memory
storage unit and associates them with learning and memory.
As the structure of NMDA receptors in humans is
unavailable, the structure of NMDAR in Rattusnorvegicus
(brown rat) has been used for this work. The structure of
NMDA receptor subunit NR2B (PDB id: 3JPW) was
retrieved from the Research Collaboratory for Structural
Bioinformatics (RCSB)."°

2.1.3 Active Site Prediction

Site Map was used with the default settings to identify ligand-
binding sites for the selected proteins. The only difference
was that six sites were chosen instead of the default setting
of 5 sites for Site Map's site-point group reporting. The
choice was made to improve the chances of finding more
ligand binding sites, which were referred to as site-point
groups in the SiteMap software component. The top-ranked
site was used to generate a grid. All ligands were first
subjected to high throughput virtual screening (HTVS), then
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standard precision (SP), and finally extra precision (XP)
docking. These three docking modes were applied in this
order to all docking in this project. The first docking mode
used to reduce the number of intermediate conformations
throughout the docking funnel was HTVS docking. The SP
mode was used to screen ligands with acceptable HTVS
Glide scores as determined by the user. XP mode was
created to screen for false positives and active compounds
that could bind to a specific conformation of the receptor
using top-scoring ligand poses.'"'®

2.2  Drug Likeness Properties and Toxicity

Swiss ADME (http://www. swissadme.ch/) was used to make
this prediction.'® Lipinski's oral drug-likeness properties were
predicted using the following parameters: | Molecular weight
(500 Daltons), ii) the number of hydrogen bond donors (5),
iii) the number of hydrogen bond acceptors (10), iv) Log P
(5) and v) Molecular refractivity (140).2?' The toxicity
properties of ligands were evaluated using the ProtoxIl web
server (https://tox-new.charite.de/protox Il/). All of the
ligands' pharmacokinetic properties were predicted.?

3. RESULTS AND DISCUSSION

All 150 ligands were subjected to molecular docking through
three phases, viz. high throughput virtual screening (HTVS)
docking initially, followed by standard precision (SP) and then
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extra precision (XP) docking. The initial screening was done
in the first and second phases, using high throughput virtual
screening (HTVS) and standard precision (SP) docking to
eliminate any false results. We have chosen 90 ligands for the
third phase, that is, extra precision (XP) docking, and finally,
19 ligands (in Table. No:1) with good docking scores were
used for further computational studies. From work, the
designed piperazine sulfonyl amine derivatives have shown
promising activity against NMDA receptor subunit NR2B.
The 2D interaction diagram shows significant interaction with
receptor residues in the present study. Out of the designed
compounds, SE — C - 13 had the best binding conformation
with a g Score of — 8.145 kcal/mol, followed by SE — B — 2, SE
— B -8, and SE — B — 12 with -7.523, -7.246 and -7.166
respectively (Table No. |). Lesser the binding energy, the
greater the binding efficiency, hence augmented inhibition.
The compound SE — C - |3 interacted with 13 amino acid
residues in the active site of the NRB2 with two hydrogen
bonds with amino acid residues ASP 58 (Figures 5 and 6).
More significant the number of hydrogen bonds, the higher
the binding efficiency. Despite a higher number of hydrogen
bonds(four), ligand SE — B - 2 showed less docking score.
Figure 7 denotes the 3D image active site cleft of the NR2B
with SE — B - 2 bound to it. Ligand SE — B —8 AND SE - B —
12 3c have interacted with |5 and 10 amino acids in the
active site, respectively.?
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Table. No: | - The designed ligands' docking scores (Glide Scores).

Title Smile docking score  glide evdw  glide ecoul glide energy glide e internal  glide e model XP H Bond
SE-C- 13 O=S5(=0)(Nclccc(cc I O)C(=O)O)N I CCN(Cc2ccccc2)CCl -8.145 -27.373 -13.124 -40.497 3.980 -56.865 -0.970
SE-B-2 O=S5(=0)(Nclcccccl O)NICCN(Cc2ccc(O)cc2)CCl -7.523 -26.086 -16.640 -42.726 9.302 -51.284 -2.800
SE-B-8 O=S5(=0)(Nclccce(O)cl)NICCN(Cc2ccc(O)cc2)CCl -7.246 -27.615 -12.954 -40.569 6.140 -48.235 -2.800
SE-B-12 O=S5(=0)(Nclccc(C(=0)O)c(O)cl)NICCN(Cc2ccc(O)cc2)CCl -7.166 -27.458 -10.598 -38.056 4715 -42.866 -1.274
SE-G-2 O=S5(=0)(Nclccc(cc | O)C(=O)O)N I CCN(Cc2ccc(O)cc2)CCl -6.197 -30.925 -9.522 -40.447 8515 -48.835 -1.951
SE-F-8 O=S§(=0)(NC(Cclccceccl O)C(=O)O)N I CCN(Cc2ccc(O)cc2)CCl -5514 -30.158 -7.587 -37.745 8.101 -41.273 -0.171
SE-B-1I O=S5(=0)(NcInc2ccccc2[NH] )N I CCN(Cc2ccc(O)cc2)CCl -5.400 -29.596 -11.820 -41.416 10.545 -52.303 -2.294
SE-A-8 O=S§(=0)(NCclnc2ccccc2[NH] )N I CCN(Cc2ccc(O)cc2)CCl -5.327 -24.827 -9.113 -33.940 4.070 -41.405 -1.506
SE-B- 14 O=S5(=0)(NcInc2cc(O)ccc2[NH] )N I CCN(Cc2ccc(O)cc2)CCl -5.234 -31.122 -10.278 -41.400 10.809 -47.480 -1.330
SE-D-2 O=S5(=0)(NcInc2ccccc2n | C)NICCN(Cc2ccc(O)cc2)CCl -5.231 -26.221 -12.712 -38.933 9.421 -50.456 -1.890
SE-B-3 O=S§(=0)(NC(Cclccce(O)cl)C(=0O)O)N I CCN(Cc2ccc(C)cc2)CCl -5.229 -32.187 -13.893 -46.080 7429 -57.214 -0.925
SE-D-8 O=S5(=0)(NCclnc2ccccc2[NH] )N ITCCN(Cc2cec(C)ec2)CCl -5.224 -32.578 -7.733 -40.311 3.929 -50.426 -1.890
SE-B-15 O=S5(=0)(Nclccccc|O)NICCN(Cc2ccc(OC)cc2)CCl -5.221 -32.987 -5.662 -38.650 4.432 -47.899 -0.700
SE-B-7 O=S5(=0)(Nclccc(cc | O)C(=O)O)N I CCN(Cc2ccc(OC)cc2)CClI -5.176 -29.154 -9.570 -38.724 2.012 -47.078 -1.180
SE-B-13 O=S5(=0)(NC(Cclccceccl O)C(=O)O)N I CCN(Cc2ccc(OC)cc2)CCl -5.136 -32.091 -10.754 -42.845 4.460 -54.728 -1.119
SE-E- I3 O=5(=0)(Nclcccccl O)NICCN(Cc2ccc(OC)c(OC)c2)CCl -5.069 -36.615 -7.734 -44.350 2.434 -57.499 -0.700
SE-D- 11 O=S§(=0)(NCclnc2ccccc2[NH] )N ITCCN(Cc2cec(OC)c(OC)c2)CClI -5.065 -28.783 -12.686 -41.469 20.733 -47.389 -1.384
SE-C-9 O=S5(=0)(Nclccc(cc O)C(=O)O)NI CCN(CCI)C(=O)cl cceccl -5.022 -30.610 -9.947 -40.557 5.814 -53.626 -1.554
SE-E-2 O=S5(=0)(NclccccclO)NICCN(CCI)C(=O)clccc(O)ccl -5.008 -33.921 -9.555 -43.477 6.803 -52.484 -1.890

Table | Docking score and other metrics by Glide (Schrodinger Suit) to success the binding affinity of the designed ligands with NMDA NR2B receptor.
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3.1  Drug Likeness Properties and Toxicity

All the designed derivatives satisfied their properties
according to Lipinski’s rule of 5 (Table No.2). Lipinski rule is
considered one of the essential criteria to predict the oral
drug-likeness of a drug. None of the derivatives have violated
the Lipinski rule. To enhance the predictions of drug-likeness,
Ghose, Veber, Egan, and Muegge filters have been used in the
study. All the designs obeyed Lipinski, Veber, Egan, and
Muegge, whereas compounds SE — B -7, SE - B -8, SE — B -

Pharmaceutical chemistry

I'l, and SE — F 8 did not satisfy Gosh filters. Out of all the
designed derivatives, SE - E— 2, SE-E - 13, SE- C - |3, SE -
D — 2, and SE - B - I5 showed good oral absorption, while SE
-D-11,SE-G-2,SE-B-2,SE-B—-12,SE-B - 13, SE -
C -9 SE-B - 3, and SE - B - 14 had moderate oral
absorptionand SE-F-8,SE-B—-1I,SE-D -8, SE-A -8,
SE - B — 7, and SE - B - 8 exhibited poor oral absorption.
Whereas all the compounds were shown to cross the blood-
brain barrier.?*?’

Table. No: 2 — Draggability of the designed ligands.

S.No Ligand Lipinski (No. of Violations) Ghose Egan Verber Muegge Bioavailability
| SE-A-8 Yes (0) Yes Yes Yes Yes 0.55
2 SE-B-2 Yes (0) Yes Yes Yes Yes 0.55
3 SE-B-3 Yes (0) Yes Yes Yes Yes 0.55
4 SE-B-7 Yes (0) Yes No Yes Yes 0.55
5 SE-B-8 Yes (0) Yes No Yes Yes 0.55
6 SE-B- 11 Yes (0) Yes No Yes Yes 0.55
7 SE-B- 12 Yes (0) Yes Yes Yes Yes 0.55
8 SE-B- 13 Yes (0) Yes Yes Yes Yes 0.55
9 SE-B- 14 Yes (0) Yes Yes Yes Yes 0.55
10 SE-B-15 Yes (0) Yes Yes Yes Yes 0.55
I SE-C-9 Yes (0) Yes Yes Yes Yes 0.55
12 SE-C-13 Yes (0) Yes Yes Yes Yes 0.55
13 SE-D-2 Yes (0) Yes Yes Yes Yes 0.55
14 SE-D-8 Yes (0) Yes Yes Yes Yes 0.55
I5 SE-D-1I Yes (0) Yes Yes Yes Yes 0.55
16 SE-E-2 Yes (0) Yes Yes Yes Yes 0.55
17 SE-E-13 Yes (0) Yes Yes Yes Yes 0.55
18 SE-F-8 Yes (0) Yes No Yes Yes 0.55
19 SE-G-2 Yes (0) Yes Yes Yes Yes 0.55

Table 2 Various drug ability parameters such as Lipinski, Ghose, Egan, Verber, and Muegge were predicted, and all the finalized
ligands were found to have good draggability and good bioavailability scores.

Fig 6: The Pharmacophore generated by aligning the best 19 ligands selected from XP docking
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3.2 ADME Prediction

ADME of the selected drugs was done using QikProp in
Schrodinger suit and ADMET Lab, an online server. Blood-
Brain Barrier (BBB) penetration, HOA (Human Oral

Pharmaceutical chemistry

excretion were estimated. Currently, many approaches exist
to assess a compound drug-likeness based on topological
descriptors, fingerprints of molecular drug-likeness structure
keys, clogP and molecular weight. Based on the predicted

values, all the selected ligands can penetrate BBB, the
28-31

Absorption), solubility —parameters, metabolism, and expected site of action, and have good oral absorption.
Table. No: 3 - ADME properties of the selected ligands.
S.No Ligand Absorption Distribution Metabolism Excretion
Solubility % Human BBB Total
QPlogS Oral perm. Clearance
Absorption  QPlogBB (Log
mL/min/kg)
I SE-B-2 -1.931 74.553 -0.460 CYP3A4-inhibitor, CYP3A4-substrate, 1.039
CYP2Dé-inhibitor,
2 SE-A-8 -2.725 44.140 -0.987 CYP3A4-substrate, CYP2Dé-inhibitor, 0.348
3 SE-B-3 -2.014 70.378 -0.666 CYP3A4-inhibitor, CYP3A4-substrate, 1.094
CYP2Dé-inhibitor,
4 SE-B-7 -2.803 33.798 -1.597 CYP2Dé-inhibitor, 0.542
5 SE-B-8 -2.588 31.061 -1.593 CYP2Dé-inhibitor, 1.116
6 SE-B- 11 -3.065 52.085 -1.319 CYP3A4-inhibitor, CYP2C9-substrate, 1.172
CYP2Dé-inhibitor,
7 SE-B-12 -24I14 74.236 -0.534 CYP3A4-inhibitor, CYP2Dé-inhibitor, 1.555
8 SE-B-13 -1.843 73.710 -0.550 CYP3A4-inhibitor, CYP2Dé-inhibitor, 1.491
9 SE-B-14 -2282 61.158 -1.139 CYP3A4-inhibitor, CYP2Dé-inhibitor, 1.498
10 SE-G-2 -3.132 77.979 -1.187 CYP3A4-inhibitor, 1.216
Il SE-F-8 -3.246 58.501 -1.723 1.09
CYPIA2-substrate, CYP3A4-inhibitor, 1.41
12 SE-E-2 -2.497 89.415 -0.026 CYP3A4-substrate, CYP2C9-substrate,
CYP2C|9-substrate, CYP2Dé-inhibitor,
CYP2Dé6-substrate
CYPIA2-substrate, CYP3A4-inhibitor, 1.53
13 SE-E-I13 -2.34| 88.395 -0.131 CYP3A4-substrate, CYP2CI9-substrate,
CYP2Dé-inhibitor, CYP2Dé6-substrate
CYP3A4-inhibitor, CYP3A4-substrate, 1.17
14 SE-D-I1I -3.451 78.653 -0.787 CYP2C9-substrate, CYP2Dé6-inhibitor,
CYP2Dé6-substrate
15 SE-D-8 -2.890 44.449 -1.090 CYP3A4-substrate, CYP2CI9-substrate, 1.29
CYP2Dé-inhibitor, CYP2Dé6-substrate
CYPI|A2-substrate, CYP3A4-inhibitor, 1.553
16 SE-D-2 -2.253 87.992 0.040 CYP3A4-substrate, CYP2C9-substrate,
CYP2C19-substrate, CYP2Dé-inhibitor,
CYP2Dé6-substrate
CYP|A2-substrate, CYP3A4-inhibitor, 1.794
17 SE-C-13 -2.379 88.068 0.000 CYP3A4-substrate, CYP2CI9-inhibitor,
CYP2C|19-substrate, CYP2Dé-inhibitor,
18 SE-C-9 -3.490 73.019 -0.924 CYP3A4-inhibitor, CYP2C9-substrate, 1.286
CYP2Dé-inhibitor,
CYPIA2-substrate, CYP3A4-inhibitor, 1.604
19 SE-B-I5 -2576 81.115 -0.217 CYP3A4-substrate, CYP2C|9-substrate,

CYP2Dé-inhibitor,

Table 3 ADME parameters solubility, penetration, human oral absorption, blood-brain barrier, metabolism, and excretion were
predicted for the selected compounds, and all the ligands were found to cross BBB and have good oral absorption.

3.3 Toxicity Prediction

Structure-based design is now fairly routine, but many
potential drugs fail to reach the clinic because of ADME/Tox
liabilities. Toxicity risks (Hepatotoxicity, Carcinogenicity,
Immunotoxicity, Mutagenicity, and Cytotoxicity) of selected

compounds were calculated by the Protox Il web server, and
their results are shown in Table 4. The present study studied
drug-likeness properties and toxicity, revealing that ligands
SE-B-15 and SE-B-12 have carcinogenicity and SE-E-2 and SE-
E-13 have immunotoxicity. All other ligands were indicated
with no Toxicity risks.%
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Table. No: 4 - Predicted toxicity properties generated by Swiss ADME

S.No Ligand Predicted Predicted Hepato Carcino Immuno Muta Cyto
Toxicity LD 50 toxicity genicity  toxicity genicity toxicity
Class (mgl/kg)

| SE-A-8 4 1800 Inactive Inactive Inactive Inactive Inactive
2 SE-B-2 5 2300 Inactive Inactive Inactive Inactive Inactive
3 SE-B-3 5 2300 Inactive Inactive Inactive Inactive Inactive
4 SE-B-7 4 1000 Inactive Inactive Inactive Inactive Inactive
5 SE-B-8 4 1800 Inactive Inactive Inactive Inactive Inactive
6 SE — B-1 1 5 2500 Inactive Inactive Inactive Inactive Inactive
7 SE-B-12 3 245 Inactive Active Inactive Inactive Inactive
8 SE-B-13 4 1000 Inactive Inactive Inactive Inactive Inactive
9 SE-B- 14 4 1200 Inactive Inactive Inactive Inactive Inactive
10 SE-B-15 4 330 Inactive Active Inactive Inactive Inactive
| SE-C-9 4 2000 Inactive Inactive Inactive Inactive Inactive
12 SE-C-13 4 1000 Inactive Inactive Inactive Inactive Inactive
13 SE-D-2 4 750 Inactive Inactive Inactive Inactive Inactive
14 SE-D-8 4 1000 Inactive Inactive Inactive Inactive Inactive
15 SE-D- 11 4 800 Inactive Inactive Inactive Inactive Inactive
16 SE-E-2 4 310 Inactive Inactive Active Inactive Inactive
17 SE-E- I3 4 740 Inactive Inactive Active Inactive Inactive
18 SE-F-8 4 1800 Inactive Inactive Inactive Inactive Inactive
19 SE-G-2 4 1800 Inactive Inactive Inactive Inactive Inactive

. Class I: fatal if swallowed (LD50 < 5)

. Class II: fatal if swallowed (5 < LD50 < 50)

. Class lll: toxic if swallowed (50 < LD50 < 300)

. Class IV: harmful if swallowed (300 < LD50 < 2000)

. Class V: may be harmful if swallowed (2000 < LD50 < 5000)

. Class VI: non-toxic (LD50 > 5000)
4. CONCLUSION

Today treating Alzheimer's is an excellent task for physicians,
leading to research on developing lead molecules and
precursors. The present research aimed to discover
piperazine sulfonyl amine-containing compounds that could
potentially treat Alzheimer's by acting through NMDA
receptor subunit NR2B (PDB Id: 3JPW). One hundred fifty
compounds were designed and subjected to virtual screening
using three phases to take 19 potent compounds. First, the
active site of the DNA gyrase was determined using the Site
Map. Then, molecular docking was done using Glide, and the
interactions between the ligands and protein were predicted.
Ligands SE — C — 13 and SE — B — 2 with -8.145 and -7.523 as
docking scores were very effective. Pharmacokinetics and
toxicity properties of designed compounds were studied and
reported. On the whole, ligands SE— C — 13 and SE-B -2
of the designed pyrazole derivatives were very potent against
NMDA receptors and showed better drug-likeness and
pharmacokinetic properties. Hence one could prevent
infections using these. Furthermore, this research could act
as a road map for discovering compounds for Alzheimer's.
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