Molecular docking studies of methanol seed fractions of buchholzia coriacea gc-ms identified compounds via experimental and computational models

Authors

  • Okere Osheke Shekins Department of Biochemistry, Bingham University, Karu, Nasarawa, Nigeria.
  • Ameh Danladi Amodu Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna, Nigeria
  • Nzelibe Humphrey Chukwuemeka Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna, Nigeria
  • Bala M Shuaibu Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna, Nigeria
  • Tarfa D. Florence Department of Medicinal Plant & Quality Control, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria.

DOI:

https://doi.org/10.22376/ijlpr.v15i3.2010

Keywords:

Experimental model, Computational model, Molecular Docking, Buchholzia coriacea, GC-MS

Abstract

This study aimed to examine the molecular docking studies of methanol seed fractions of Buchholzia coriacea GCMS identified compounds against target compound protein structure via experimental and computational models. This study identified the active sites, as well as the functional groups (Methane isocyanato, xylene) in the α-amylase and α-glucosidase enzymes which were competitively inhibited. The mode of inhibition of in vitro α-amylase and α-glucosidase activity on the carbohydrate metabolizing enzymes was established to be competitive inhibition. The result of the oxidative stress enzyme shows that, there was a significant decrease (p<0.05) in super oxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and a significant increase (p>0.05) in TBARS in diabetic rats when compared with normal and extract treated rats. A closer look at the results of the carbohydrate metabolizing enzymes shows that there was a significant increase (p>0.05) in Hexokinase, Phosphofructokinase (PFK), Glucose-6-phosphatase and Liver glycogen. When looking at the kidney function indices, the results reveal that there was a significant decrease (p<0.05) in Serum creatinine, Serum Urea and Serum Albumin, when compared with the diabetic control and extract treated Rats. Molecular docking of GC-MS-identified phyto-compounds from Buchholzia coriacea methanol seed fractions demonstrates strong binding potential to target proteins, supporting their therapeutic relevance. These findings, validated through experimental and computational models, highlight the plant’s promise for future drug development.

References

Prakash, B.; Kumar, A.; Singh, P.P.; Songachan, L.J.F. Antimicrobial and antioxidant properties of phytochemicals: Current status and future perspective. Funct. Preserv. Prop. Phytochem. 2020, 1–45. [CrossRef]

Ojo, O.A.; Oni, A.I.; Grant, S.; Amanze, J.; Ojo, A.B.; Taiwo, O.A.; Maimako, R.F.; Evbuomwan, I.O.; Iyobhebhe, M.; Nwonuma, C.O. Antidiabetic Activity of Elephant Grass (Cenchrus Purpureus (Schumach.) Morrone) via Activation of PI3K/AkT Signaling Pathway, Oxidative Stress Inhibition, and Apoptosis in Wistar Rats. Front. Pharmacol. 2022, 13, 845196. [CrossRef]

Obembe, O. O., Onasanwo, S. A., Raji, Y. (2012). Preliminary study on the effects of Buchholzia coriacea seed extract on male reproductive parameters in rats. Niger. J. Physiol. Sci. 2012; 27: 165–169.

Chinedu, F. A., Chibeze, I., Emma, E., Chukwuenweiwe, E. (2012) The phytochemical, antispasmodic and antidiarrhoea properties of the methanol extract of the leaves of Buchholzia coriacea family capparaceae. Int. Journal of Curr. Pharmaceutical Res. 2012; 4(3): 340-345. ISSN- 0975-7066

Ajaiyeoba, E. O., Onocha, P. A., Olanrewaju. O. T. (2011) In vitro anti-helminthic properties of Buchholzia coriacea and Gynandropsis gynandra. Pharm Biol. 2011; 39: 217-20.

Mbata, T. I., Duru, C. M., Onwumelu, H. A. (2009) Antibacterial activity of crude seed extracts of Buchholzia coriacea on some pathogenic bacteria. Journal of Dev. Biol and Tissue Eng. 2009; 1(1): 001-005.

Ezekiel, O. O., Onyeoziri, N. F. (2009) Preliminary studies on the antimicrobial properties of Buchholzia coriacea. Afr. Journal of Biotech. 8(3):472-474.

Adisa, R. A., Chouhary, M. I., Olorunsogo, O. O. (2011). Hypoglycemic activity of Buchholzia coriacea (Capparaceae) seeds in streptozocin induced diabetic rats and mice. Exp Toxicol Pathol. 2011; 63(7-8): 619-25.

Theophine, C. O., Peter, A. A., Chinenye, L., Adaobi, C. E., Collins, A. O. (2012). Anti-diabetic effects of methanol extract of the seeds of Buchholzia coriacea and its synergistic effects with metformin. Asian Journal of Biomed and Pharmaceutical Sci. 2012; 2(12):32-36.

Okoli, B. J., Okere, O. S., Adeyemo, S. O. (2010). The antiplasmodial activity of Buchholzia Coriacea. J. of Med. and Appl. Biosciences. 2010;2:21-29.

Ezeja, M. I., Ezeigbo, I. I., Madubuike, K. G. (2011). Analgesic activity of the methanolic seed extract of Buchholzia coriacea. Res J of Pharm, Biol and Chem Sci. 2011;2(1):187-193.

Savych, A.; Marchyshyn, S.; Kyryliv, M.; Bekus, I. Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity. Farmacia 2021, 69, 595–601. [CrossRef]

Global Burden of Disease. (2020). Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204–22.

Chan, J. C. N., Lim, L. L., Wareham, N. J., et al. (2021) The Lancet Commission on diabetes: using data to transform diabetes care and patient lives. Lancet 2021; 396: 2019–82.

International Diabetes Federation. (IDF) (2021). IDF Diabetes Atlas, 10th edition. Brussels: International Diabetes Federation, 2021.

Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract;183: 109119.

Institute for Health Metrics Evaluation, (2023). IHME news release for June 2023. https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050 (accessed Sep 30, 2024)

Mostashari-Rad, T., Arian, R., Mehridehnavi, A., Fassihi, A. & Ghasemi, F. (2019). "Study of CXCR4 chemokine receptor inhibitors using QSPR and molecular docking methodologies".Journal of Theoretical and Computational Chemistry. 178(4). doi:10.1142/S0219633619500184. S2CID 164985789

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) 'AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility', Journal of computational chemistry, 30(16), pp. 2785-2791.

Ibrahim, M. A. and Islam, M.S. (2014). Anti-diabetic effects of the acetone fraction of Senna singueana stem bark in a type 2 diabetes rat model. Journal of Ethnopharmacology, 153: 392–399.

O'Boyle, N. (2011) 'Banck M. James CA Morley C. Vandermeersch T. Hutchison GR Open Babel: An open chemical toolbox', J. Cheminf, 3(1), pp. 33.

Misra, H.P and Fridovich I. (1979).The role of superoxide anion in the antioxidant of epinephrine and simple assay for SOD. Journal of Biological Chemistry, 2457: 3170-3175.

Aebi, H. (1984). Catalase. In: Methods in Enzymology. Packer, L ed. Academic Press, Orlando.105: 121-126.

Ellman. G. L. (1959). Tissue sulfhydryl group. Archives of Biochemistry and Biophysics, 2: 70 – 77.

Okhawa, H, Ohishi, N and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95 (2): 351 – 358.

Easterby, J.S and Qadri, S.S. (1973). Hexokinase Type II from Rat Skeletal Muscle. In:

King, J. (1965). Practical Clinical Enzymology. London: Van Nostrand, (pp 85-234).

Fiske, C.H., and Subbarow, Y. J. (1925). The colourimetric determination of Phosphorus. Journal of Biological Chemistry 66, 375-400.

Kaplan, L.A., Saabo, L.L and Opherin, E. K. (1988). Clinical Chemistry Interpretation and Techniques. Lea and Faerbiger, Philadelphia, USA: 1118 – 1160.

Ochei and Kolhatkar. (2008): Textbook of Medical Laboratory Technology. 3rd Edition.

Trott, O. and Olson, A. J. (2010) 'AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading', Journal of computational chemistry, 31(2), pp. 455-461.

World Health Organization (2003). Traditional Medicine. Fact Sheet No. 134. WHO Geneva, Switzerland.

Imenez Silva, P. H., & Mohebbi, N. (2022). Kidney metabolism and acid-base control: back to the basics. Pflugers Archiv : European journal of physiology, 474(8), 919–934. https://doi.org/10.1007/s00424-022-02696-6

Sakhuja, A., Chalupsky, M., & Lerma, V. (2024, May 2). Novel Biomarkers of Kidney Function Introduction and Overview. Medscape. Retrieved January 8, 2025, from https://emedicine.medscape.com/article/1925619-overview?form=fpf

Akpotaire, P. A. & Seriki, S. A. (2023) Assessment and Correlation of Serum Urea and Creatinine Levels in Normal, Hypertensive, and Diabetic Persons in Auchi, Nigeria. Arch Pathol Clin Res, 2023; 7: 007-016. https://doi.org/10.29328/journal.apcr.1001035

Lapshak, J. L., Domkat, C. L. & Nansah, S. L. (2016) The Effect of Aqueous Extract of Buchholzia coriacea Seeds on Some Biochemical Parametersin Normal and Alloxan-induced Diabetic Rats. International Journal of Biochemistry Research & Review, 11(1): 1-10, Article no.IJBCRR.24495, ISSN: 2231-086X.

Cleveland Clinic (2025). Oxidative Stress. Cleveland clinic Articles. Retrieved May 23, 2025, from https://my.clevelandclinic.org/health/articles/oxidative-stress

Djordjevic, J., Ignjatovic, V., Vukomanovic, V., Vuleta, K., Ilic, N., Slovic, Z., Stanojevic-Pirkovic, M. & Mihaljevic, O. (2024). Laboratory puzzle of oxidative stress, parameters of hemostasis and inflammation in hospitalized patients with COVID-19. Biomedicines, 12(3), 636. https://doi.org/10.3390/biomedicines12030636

Rabbani, N., Xue, M., & Thornalley, P.J. (2022). Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis—Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. International Journal of Molecular Sciences, 23(4), 2165. https://doi.org/10.3390/ijms23042165

Mills, H., Acquah, R., Tang, N., Cheung, L., Klenk, S., Glassen, R., Pirson, M., Albert, A., Hoang, D. T., & Van, T. N. (2022). Type 2 Diabetes Mellitus (T2DM) and Carbohydrate Metabolism in Relation to T2DM from Endocrinology, Neurophysiology, Molecular Biology, and Biochemistry Perspectives. Evidence-based complementary and alternative medicine: eCAM, 2022, 1708769. https://doi.org/10.1155/2022/1708769

Boron, W. F. & Boulpaep, E. L., eds. (2017). Medical Physiology (3rd ed.). Philadelphia, PA: Elsevier. ISBN 978-1-4557-4377-3.

Natarajan, V., Harish, N., Chandan, S., & Shivaraj, K. (2023). GC-MS Analysis and Molecular Docking Studies of an Antinephrolithiatic Compounds Identified from Stem of Musa paradisiaca Plantain Juice. European Current Biology, 302.

Published

2025-10-30

How to Cite

Shekins, O. O., Amodu, A. D., Chukwuemeka, N. H., Shuaibu, B. M., & Florence, T. D. (2025). Molecular docking studies of methanol seed fractions of buchholzia coriacea gc-ms identified compounds via experimental and computational models. International Journal of Life Science and Pharma Research, 15(3), 44–57. https://doi.org/10.22376/ijlpr.v15i3.2010

Issue

Section

Research Articles