Isolation and Characterization of Chemical Compounds from Terminalia Chebula for Anti-Diabetic Evaluation Through In-Silico Approach

Pharmaceutical sciences- Pharmaceutics

Authors

  • Shikha Research Scholar, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.
  • Rahul Thapa Research Scholar, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.
  • Girish Chandra Arya Assistant Professor, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.
  • Saahil Arora Director, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.

DOI:

https://doi.org/10.22376/ijlpr.2023.13.6.P318-P331

Keywords:

Diabetes mellitus, Molecular docking, blood glucose, Terminalia chebula, herb medicine, in silico

Abstract

Diabetes is a chronic metabolic disorder affecting millions of people and needs to be addressed. Alternativestrategies are required for better diabetes management, as evidenced by the high costs of modern medicines. The field of herbalmedicine research has been gaining significant importance in the last few decades, and the demand to use natural products in thetreatment of diabetes is increasing across the globe. Traditional plant medicines are used worldwide for a range of diabeticcomplications. Terminalia chebula is one of the widely used traditional medicine by diabetic patients. In this present work,Terminalia chebula fruits were used for the potential of anti-diabetic activity. The phytochemical investigation revealed that itsfruit contains high amounts of tannins, alkaloids, flavonoids, terpenoids, and glycosides. The percolation method was followed byusing T. chebula fruit for the extraction, further fractionating with different solvents, n-Hexane, Ethyl acetate, n- Butanol, andwater. When ethyl acetate extract of T. chebula was tested, it was found to have significant effects on blood glucose levels. Itsuggests that it can be used as an antidiabetic agent. Gallic acid and quercetin were compounds identified by NMR, MS, andUPLC analysis. Molecular docking studies of designed compounds were carried out through Auto Dock Vina [1.1.2] toinvestigate the interaction with PPAR-γ associated with diabetes, and pkCSM software was used for ADMET analysis. Thus, theresult of the study proved that the ethyl acetate extract of T. chebula had good potential as an antidiabetic, and this plant can beused to discover natural bioactive compounds that may serve for the advances of novel pharmaceutical development. Moreover,the compounds found in the extract could be used to develop new pharmaceuticals for diabetes treatment.

References

Prakashchandra G. Biological and pharmacological properties of Terminalia chebula Retz. (haritaki)- An overview. Int J Pharm Pharm Sci. 2012;2(4):2.

Rathinamoorthy R, Thilagavathi G. Termina-lia chebula – review on pharmacological and biochemical studies. Int J Pharm Tech Res. 2014;6(1):97-116.

Quisar N, Chaudhary BA, A. Dasti; et al. J Appl Pharm. 2009. Phytochemical study of aerial parts of plant Lantena camara for the pharmacologically active compounds;1:19-26.

Cock IE. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology. 2015;23(5):203-29. doi: 10.1007/s10787-015-0246-z, PMID 26226895.

Lee HS, Won NH, Kim KH, Lee H, Jun W, Lee KW. Antioxidant effects of aqueous extract of Terminalia chebula in vivo and in vitro. Biol Pharm Bull. 2005;28(9):1639-44. doi: 10.1248/bpb.28.1639, PMID 16141531.

Lee HS, Koo YC, Suh HJ, Kim KY, Lee KW. Preventive effects of chebulic acid isolated from Terminalia chebula on advanced glycation endproduct-induced endothelial cell dysfunction. J Ethnopharmacol. 2010;131(3):567-74. doi: 10.1016/j.jep.2010.07.039, PMID 20659546.

Kapoor LD. CRC handbook of ayurvedic medicinal plants. CRC Press, boca Ralon, pages. Vol. 332; 1990.

Kundu AP, Mahato SB. Triterpenoids and their glycosides from Terminalia Chebula. Phytochemistry. 1993;32(4):999-1002. doi: 10.1016/0031-9422(93)85243-K.

Jagetia GC, Baliga MS, Malagi KJ, Sethukumar Kamath M. The evaluation of the radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice ex- posed to γ-radiation. Phytomedicine. 2002;9(2):99-108. doi: 10.1078/0944-7113-00095, PMID 11995956.

Chattopadhyay RR, Bhattacharyya SK. Plant Review Terminalia chebula. Pharmacognos Rev. 2007;23:145-50.

Dev S. A selection of prime ayurvedic plant drugs. New Delhi: Anamaya Publishers; 2005. p. 410-6.

Ratha KK, Joshi GC. Haritaki (Chebulic myrobalan) and its varieties. Ayu. 2013;34(3):331-4. doi: 10.4103/0974-8520.123139, PMID 24501534.

Baliga MS. Triphala, Ayurvedic formulation for treating and preventing cancer: a review. J Altern Complement Med. 2010;16(12):1301-8. doi: 10.1089/acm.2009.0633, PMID 21138390.

Giovannucci E, Rimm E, Liu Y. A prospective study of tomato products, lycopene, and prostate cancer risk. J Nat Cancer Nat. 2002;94(5):391-8.

Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL et al. Ma´ rio Se´ rgio Palma , Francisco A. R. Neves, Munir S. Skaf, Paul Webb, Igor Polikarpov; Medium Chain Fatty Acids Are Selective Peroxisome Proliferator-Activated Receptor (PPAR) c Activators and Pan-PPAR Partial Agonists; plos one: 2012;7(5);e36297.

Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 17th ed , Nirali Prakashan. Vol. 99. Pune. 2009 p. p. 231, 185, 271, 445.

Soloway S, Wilen SH. Improved ferric chloride test for phenols. Anal Chem. 1952 Jun 1;24(6):979-83.

Malik SK. Qualitative and quantitative estimation of terpenoid contents in some important plants of Punjab, Pakistan. Pak J Sci. 2017;69(2). doi: 10.57041/pjs.v69i2.364.

UC R, NAIR VM. Phytochemical analysis of successive extracts of the leaves of Moringa oleifera Lam. Int J Pharm Pharm Sci. 2013;5:629-34.

Bhandary SK, Bhat VS, Sharmila KP, Bekal MP. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J Health Allied Sci Nu. 2012 Dec;2(04):34-8.

Du M, Huang S, Zhang J, Wang J, Hu L, Jiang J. Toxicolological test of saponins from Sapindus mukorossi Gaerth. Open J For. 2015;5(07):749-53.

Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai). 2007 Aug;39(8):549-59. doi: 10.1111/j.1745-7270.2007.00320.x, PMID 17687489.

Fliri AF, Loging WT, Thadeio PF, Volkmann RA. Biological spectra analysis: linking biological activity profiles to molecular structure. Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):261-6. doi: 10.1073/pnas.0407790101, PMID 15625110.

Pfundstein B, El Desouky SK, Hull WE, Haubner R, Erben G, Owen RW. Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization, quantitation and determination of antioxidant capacities. Phytochemistry. 2010 Jul 1;71(10):1132-48. doi: 10.1016/j.phytochem.2010.03.018, PMID 20451939.

Altınyay Ç, Süntar I, Altun L, Keleş H, Küpeli Akkol EK. Phytochemical and biological studies on Alnus glutinosa subsp. glutinosa, A. orientalis var. orientalis, and A. orientalis var. pubescens leaves. J Ethnopharmacol. 2016 Nov 4;192:148-60. doi: 10.1016/j.jep.2016.07.007, PMID 27381042.

Olech M, Komsta Ł, Nowak R, Cieśla Ł, Waksmundzka-Hajnos M. Investigation of antiradical activity of plant material by thin-layer chromatography with image processing. Food Chem. 2012 May 1;132(1):549-53. doi: 10.1016/j.foodchem.2011.10.067, PMID 26434330.

Miketova P, Schram KH, Whitney J, Li M, Huang R, Kerns E et al. Tandem mass spectrometry studies of green tea catechins. Identification of three minor components in the polyphenolic extract of green tea. J Mass Spectrom. 2000 Jul;35(7):860-9. doi: 10.1002/1096-9888(200007)35:7<860::AID-JMS10>3.0.CO;2-J, PMID 10934439.

Hodgson JM, Morton LW, Puddey IB, Beilin LJ, Croft KD. Gallic acid metabolites are markers of black tea intake in humans. J Agric Food Chem. 2000 Jun 19;48(6):2276-80. doi: 10.1021/jf000089s, PMID 10888536.

Kumar N, Bhandari P, Singh B, Bari SS. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii. Food Chem Toxicol. 2009 Feb 1;47(2):361-7. doi: 10.1016/j.fct.2008.11.036, PMID 19100811.

Srinivasan P, Vijayakumar S, Kothandaraman S, Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: in silico and in vivo approaches. J Pharm Anal. 2018 Apr 1;8(2):109-18. doi: 10.1016/j.jpha.2017.10.005, PMID 29736297.

Patel CN, Goswami D, Jaiswal DG, Parmar RM, Solanki HA, Pandya HA. Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. J Mol Graph Model. 2021 Jun 1;105:107874. doi: 10.1016/j.jmgm.2021.107874, PMID 33647752.

Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn. 2021 Nov 2;39(16):6306-16. doi: 10.1080/07391102.2020.1796811, PMID 32698689.

Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl) indol-4-ones: potential inhibitors of SARS CoV-2 main protease. Bioorg Chem. 2021 Jan 1;106:104497. doi: 10.1016/j.bioorg.2020.104497, PMID 33261847.

Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001 Apr 1;6(7):357-66. doi: 10.1016/s1359-6446(01)01712-3, PMID 11267922.

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). 2017 Sep 22;6(4):42. doi: 10.3390/plants6040042, PMID 28937585.

Cieśla L, Waksmundzka-Hajnos M. Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites. J Chromatogr A. 2009 Feb 13;1216(7):1035-52. doi: 10.1016/j.chroma.2008.12.057, PMID 19144342.

Selegato DM, Pilon AC, Carnevale Neto F. Plant Metabolomics using NMR spectroscopy. Methods Mol Biol. 2019;2037:345-62. doi: 10.1007/978-1-4939-9690-2_19, PMID 31463854.

Nahar L, Sarker SD. UPLC in phytochemical analysis. Trends in phytochemical research. 2019;3(1):1-2.

Raju KSR, Kadian N, Taneja I, Wahajuddin M. Phytochemical analysis of isoflavonoids using liquid chromatography coupled with tandem mass spectrometry. Phytochem Rev. 2015;14(3):469-98. doi: 10.1007/s11101-015-9400-x.

40, Shareef MM, Bhavya E. Screening in silico Antidepressant Activity of Aqueous Extract of Leaves of Rumex acetosa L. trends in Sciences. 2023 Jan 17;20(3):4664-.

41, Zadali R, Baghery M, Abbasi M, Yavari N, Miran M, Ebrahimi SN. Anticonvulsant activity of Iranian medicinal plants and molecular docking studies of isolated phytochemicals. S Afr J Bot. 2022 Sep 1;149:646-57.

42, Verpoorte R, Choi YH, Kim HK. NMR-based metabolomics at work in phytochemistry. Phytochem Rev. 2007 Apr;6(1):3-14. doi: 10.1007/s11101-006-9031-3.

43 Salentin S, Haupt VJ, Daminelli S, Schroeder M, Schroeder M. Polypharmacology rescored: protein–ligand interaction profiles for remote binding site similarity assessment. Prog Biophys Mol Biol. 2014 Nov 1;116(2-3):174-86. doi: 10.1016/j.pbiomolbio.2014.05.006, PMID 24923864.

44 Pal SM, Avneet G, Siddhraj SS. Gallic acid: Pharmacological promising lead molecule: a review. Int J Pharmacogn Phytochem Res. 2018;10(4):132-8.

45, Nayeem N, Asdaq SM, Salem H. AHEl-Alfqy S. Gallic acid: a promising lead molecule for drug development. J Appl Pharm. 2016;8(2):1-4.

46.Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X, Zhang Y, et al. Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother. 2021 Jan 1;133:110985. doi: 10.1016/j.biopha.2020.110985, PMID 33212373.

Li Y, Yang L. LDriving forces for drug loading in drug carriers. J Microencapsul. 2015 Apr 3;32(3):255-72. doi: 10.3109/02652048.2015.1010459, PMID 25731821.

48, Feng S, Reuss L, Wang Y. Potential of natural products in the inhibition of adipogenesis through regulation of PPARγ expression and/or its transcriptional activity. Molecules. 2016 Sep 23;21(10):1278. doi: 10.3390/molecules21101278.

49, Aguirre L, Arias N, Teresa Macarulla M, Gracia A, Portillo P M. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J. 2011 Nov 3;4(1).

Anticancer potential of quercetin: A comprehensive review. Phytother Res. 2018 Nov;32(11):2109-30. doi: 10.1002/ptr.6155, PMID 30039547.

Published

2023-11-01

How to Cite

Shikha, Thapa, R. ., Arya, G. C. ., & Arora, S. . (2023). Isolation and Characterization of Chemical Compounds from Terminalia Chebula for Anti-Diabetic Evaluation Through In-Silico Approach : Pharmaceutical sciences- Pharmaceutics. International Journal of Life Science and Pharma Research, 13(6), P318-P331. https://doi.org/10.22376/ijlpr.2023.13.6.P318-P331

Issue

Section

Research Articles