Bioinformatics Evolution of Gene Biomarkers in Multiple Sclerosis

Life Science-Neurology

Authors

DOI:

https://doi.org/10.22376/ijlpr.2023.13.6.L482-L488

Keywords:

Autoimmune Disease, Multiple Sclerosis, Gene Biomarkers, Central Nervous System

Abstract

Multiple sclerosis (MS) is an autoimmune disease in whsich a person’s immune system destroys the myelin around nerve cells in the central nervous system (CNS), yet the peripheral nervous system remains intact. The aim of this study is to investigate the bioinformatics of gene biomarkers in multiple sclerosis. In this study, after reviewing the texts and searching for the bioinformatics databases of NCBI, Gencards, Swiss-prot, Diseasome, etc. the genes involved in the disease based on at, least one of the methods in-vivo, in-vitro, and in-silico has been suggested to be extracted will be considered as candidate genes. In order to compare the results in case and control groups, the expression data obtained from each group was standardized compared to the control group. Then, the connection network of expression data of candidate genes in patients and healthy people was drawn separately with the help of MATLAB software (Version 9.1), and the correctness of these networks and determined biomarkers was checked using the rectome and diseasome database. All statistical calculations were done using R and Matlab software. In the present study, using 5 central criteria including: maximum neighborhood component, degree, closeness, radiality and betweeness, the set of essential genes of MS disease was identified. Based on the results of the central criteria method, TNF, CD40, IL2, IL2RA, IL 7 genes had the most repetitions. According to the identification of the most effective genes related to MS disease in the present study, it is suggested that further studies be designed at the in vitro and clinical levels on the identified effective genes as diagnostic biomarkers of MS disease.

References

Zamani F, Salami M, Soheili M. The effect of probiotic supplementation on motor skills, biochemical factors and histological evaluation in a multiple sclerosis model of mouse. Feyz. 2021;25(4):1031-9.

Goldenberg MM. Multiple sclerosis review. Pharm Ther. 2013;37(3):175-84. PMID 22605909.

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-73. doi: 10.1016/S1474-4422(17)30470-2, PMID 29275977.

Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78-88. doi: 10.1016/S1474-4422(22)00289-7, PMID 36410373.

Broglio SP, Kontos AP, Levin H, Schneider K, Wilde EA, Cantu RC et al. National Institute of Neurological Disorders and Stroke and department of defense sport-related concussion common data elements version 1.0 recommendations. J Neurotrauma. 2018;35(23):2776-83. doi: 10.1089/neu.2018.5643, PMID 29717643.

Fazia T, Baldrighi GN, Nova A, Bernardinelli L. A systematic Review of Mendelian randomization studies on multiple sclerosis. Eur J Neurosci. 2023;58(4):3172-94. doi: 10.1111/ejn.16088, PMID 37463755.

Cox GM, Kithcart AP, Pitt D, Guan Z, Alexander J, Williams JL et al. Macrophage migration inhibitory factor potentiates autoimmune-mediated neuroinflammation. J Immunol. 2013;191(3):1043-54. doi: 10.4049/jimmunol.1200485, PMID 23797673.

Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology. 2010;74(14):1127-35. doi: 10.1212/WNL.0b013e3181d865a1, PMID 20220124.

Islam T, Rahman MR, Karim MR, Huq F, Quinn JMW, Moni MA. Detection of multiple sclerosis using blood and brain cells transcript profiles: insights from comprehensive bioinformatics approach. Inform Med Unlocked. 2019;16:100201. doi: 10.1016/j.imu.2019.100201.

Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51-64. doi: 10.1038/s41579-022-00770-5, PMID 35931816.

Alizadeh Khatir A, Hojjati SMM, Ahmadi Ahangar A, Naghshineh H, Saadat P. Multiple sclerosis and its pathophysiology: A narrative review. Tabari Biomed Stu Res J. 2020;2(2):8-15. doi: 10.18502/TBSRJ.v2i2.3757.

James RE, Schalks R, Browne E, Eleftheriadou I, Munoz CP, Mazarakis ND et al. Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathol Commun. 2020;8(1):66. doi: 10.1186/s40478-020-00938-1, PMID 32398070.

Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology. 2010;74(14):1127-35. doi: 10.1212/WNL.0b013e3181d865a1, PMID 20220124.

McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765-79. doi: 10.1001/jama.2020.26858, PMID 33620411.

Rothwell PM, Charlton D. High incidence and prevalence of multiple sclerosis in south east Scotland: evidence of a genetic predisposition. J Neurol Neurosurg Psychiatry. 1998;64(6):730-5. doi: 10.1136/jnnp.64.6.730, PMID 9647300.

Gray OM, McDonnell GV, Hawkins SA. Factors in the rising prevalence of multiple sclerosis in the north-east of Ireland. Mult Scler. 2008;14(7):880-6. doi: 10.1177/1352458508090663, PMID 18573832.

Mirmosayyeb O, Shaygannejad V, Bagherieh S, Hosseinabadi AM, Ghajarzadeh M. Prevalence of multiple sclerosis (MS) in Iran: a systematic Review and meta-analysis. Neurol Sci. 2022;43(1):233-41. doi: 10.1007/s10072-021-05750-w, PMID 34787755.

Havasian MR, Panahi J, Khosravi A. Correlation between the lipid and cytokine profiles in patients with coronary heart disease (CHD)(Review article). Life Sci J. 2012;9(4):5772-77.

Cowen JB, Sjostrom BF, Doughty AS, Schiffer RB. Case-finding for MS prevalence studies in small communities requires a community-based approach. Neuroepidemiology. 2007;28(4):246-52. doi: 10.1159/000108599, PMID 17878739.

Elhorst JP. MATLAB software for spatial panels. Int Reg Sci Rev. 2014;37(3):389-405. doi: 10.1177/0160017612452429.

Romero-Pinel L, Bau L, Matas E, León I, Muñoz-Vendrell A, Arroyo P et al. The age at onset of relapsing-remitting multiple sclerosis has increased over the last five decades. Mult Scler Relat Disord. 2022;68(1):104103. doi: 10.1016/j.msard.2022.104103, PMID 36029708.

Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Curr Opin Neurol. 2018;31(6):752-9. doi: 10.1097/WCO.0000000000000622, PMID 30300239.

Van Wijmeersch B, Hartung HP, Vermersch P, Pugliatti M, Pozzilli C, Grigoriadis N et al. Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front Immunol. 2022;13(1):991291. doi: 10.3389/fimmu.2022.991291, PMID 36238285.

Kouchaki E, Akbari H, Mahmoudi F, Salehi M, Naimi E, Nikoueinejad H. Correlation of serum levels of interleukine-16, CCL27, tumor necrosis factor-related apoptosis-inducing ligand, and B-cell activating factor with multiple sclerosis severity. Iran J Allergy Asthma Immunol. 2022;21(1):27-34. doi: 10.18502/ijaai.v21i1.8610, PMID 35524375.

Marastoni D, Pisani AI, Schiavi G, Mazziotti V, Castellaro M, Tamanti A et al. CSF TNF and osteopontin levels correlate with the response to dimethyl fumarate in early multiple sclerosis. Ther Adv Neurol Disord. 2022;15(1):17562864221092124. doi: 10.1177/175628642210921.

Ribeiro CM, Oliveira SR, Alfieri DF, Flauzino T, Kaimen-Maciel DR, Simão ANC et al. Tumor necrosis factor alpha (TNF-α) and its soluble receptors are associated with disability, disability progression and clinical forms of multiple sclerosis. Inflamm Res. 2019;68(12):1049-59. doi: 10.1007/s00011-019-01286-0, PMID 31559449.

Titova MA, Alifirova VM, Musina NF, Nikolaeva TN. The role of TNF-α, TNFRSF1A, and CD40 gene polymorphisms in multiple sclerosis in the Tomsk region. Neurochem J. 2023;17(3):412-7. doi: 10.1134/S1819712423020150.

Pope BJ, Sharma V, Meador W, Reynolds R, Bridges SL, Raman C. Interleukin 2 enhances and sustains IFNy induced STAT1 activation in subpopulations of CD4+ and CD8+ T lymphocytes in untreated relapsing remitting multiple sclerosis (RRMS) patients. J Immunol. 2020;204(1_Supplement):221.9-. doi: 10.4049/jimmunol.204.Supp.221.9.

Buhelt S, Søndergaard HB, Oturai A, Ullum H, von Essen MR, Sellebjerg F. Relationship between multiple sclerosis-associated IL2RA risk allele variants and circulating T cell phenotypes in healthy genotype-selected controls. Cells. 2019;8(6):634. doi: 10.3390/cells8060634, PMID 31242590.

Tempest A, Veettil SK, Maharajan MK, Earl JC, Ngorsuraches S, Chaiyakunapruk N. Genetic biomarkers in multiple sclerosis: an umbrella Review of meta-analyses of observational studies. Mult Scler Relat Disord. 2022;63(1):103834. doi: 10.1016/j.msard.2022.103834, PMID 35526474.

Irene Bishai PD, Mostafa L, Farid RJ, Shehata HSM, Riad NM, Raouf FHA. Association of IL-7Rα gene polymorphisms and serum interleukin 7 levels with multiple sclerosis and neuromyelitis optica in Egyptian patients. Med J. 2023; 91(1):33-42.

Simsek H, Geckin H, Sensoz NP, List EO, Arman A. Association between IL7R promoter polymorphisms and multiple sclerosis in Turkish population. J Mol Neurosci. 2019;67(1):38-47. doi: 10.1007/s12031-018-1205-0, PMID 30443838.

Published

2023-11-01

How to Cite

Seidkhani, H., & Valizadeh, R. (2023). Bioinformatics Evolution of Gene Biomarkers in Multiple Sclerosis: Life Science-Neurology. International Journal of Life Science and Pharma Research, 13(6), L482-L488. https://doi.org/10.22376/ijlpr.2023.13.6.L482-L488

Issue

Section

Research Articles