Analysis of Multiple PCR Bands in Drimia Species Obtained by R-Gene Specific Degenerate Primers
Life Sciences-Botany
DOI:
https://doi.org/10.22376/ijlpr.2023.13.6.L115-L121Keywords:
Conserved domain markers (CDMs), Degenerate PCR, NBS-LRR Type R-genes, Functional marker, Sanger sequencing, MSA, CLUSTALWAbstract
Many studies confirmed that degenerate primers LM638 and LM637 amplify NBS-LRR Type R gene encoding sequences in both monocots and dicots. In addition, these primers also amplify nonspecific multiple bands along with specific amplification. The current study aims to explore the structure, role and reason for nonspecific bands in the amplification. The genomic DNA-degenerate PCR method was used to isolate the NBS-LRR type R-genes in Drimia species (synonym Urginea). Agarose gel electrophoresis was carried out for separation and visualization of amplified bands. The kit-based gel extraction method was followed to purify the PCR bands. Purified PCR bands were subjected to TA cloning. The plasmids which contain desired PCR bands were sequenced using the Sanger sequencing method. Multiple sequence alignment tool CLUSTALW was used to align sequences and MISA-Web tool was used to identify simple sequence repeats (SSR). The results of the study revealed that multiple sequence analysis of PCR bands of 600bp/500bp showed random deletions, presence of indels and frameshift mutations in the alignment. The sequence alignment also showed monomorphic sites between two sequences. Both 600 and 500bp were devoid of simple sequence repeats and the ORF finder confirmed the presence of irregular stop codons in the 600 bp sequences. The multiple sequence alignment tool was used in disclosing the structure and ancestor relationship between aligned Drimia sequences. The current study would help to explore pseudo genes in the genome of Drimia and to differentiate the orthologous and paralogous relationships in the sequences.
References
Lamalakshmi Devi E, Kumar S, Basanta Singh T, Sharma SK, Beemrote A, Devi CP et al. Adaptation strategies and defence mechanisms of plants during environmental stress. Med Plants Environ Chall. 2017:359-413.
Wani SH, Kumar V. Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics. 2015;3(2):1000113.
Kissoudis C, van de Wiel C, Visser RG, van der Linden G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci. 2014;5(5):207. doi: 10.3389/fpls.2014.00207, PMID 24904607.
Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F et al. Resistance to Botrytis cinerea in s itiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007;144(4):1863-77. doi: 10.1104/pp.107.099226, PMID 17573540.
McHale L, Tan X, Koehl P, Michelmore RW. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006;7(4):212. doi: 10.1186/gb-2006-7-4-212, PMID 16677430.
Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS–LRR proteins and their partners. Curr Opin Plant Biol. 2004;7(4):391-9. doi: 10.1016/j.pbi.2004.05.009, PMID 15231261.
Hammond-Kosack KE, Parker JE. Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol. 2003;14(2):177-93. doi: 10.1016/s0958-1669(03)00035-1, PMID 12732319.
Nimchuk Z, Eulgem T, Holt Iii BF, Dangl JL. Recognition and response in the plant immune system. Annu Rev Genet. 2003;37(1):579-609. doi: 10.1146/annurev.genet.37.110801.142628, PMID 14616074.
Pedley KF, Martin GB. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol. 2005;8(5):541-7. doi: 10.1016/j.pbi.2005.07.006, PMID 16043387.
Aswal S, Kumar A, Semwal RB, Chauhan A, Kumar A, Lehmann J et al. Drimia indica: a plant used in traditional medicine and its potential for clinical uses. Medicina (Kaunas). 2019;55(6):255. doi: 10.3390/medicina55060255, PMID 31181697.
Yadav PB, Manning JC, Yadav SR, Lekhak MM. A cytotaxonomic revision of Drimia Jacq.(Hyacinthaceae: Urgineoideae) in India. S Afr J Bot. 2019;123:62-86. doi: 10.1016/j.sajb.2019.01.018.
Saha PS, Jha S. A molecular phylogeny of the genus Drimia (Asparagaceae: Scilloideae: Urgineeae) in India inferred from non-coding chloroplast and nuclear ribosomal DNA sequences. Sci Rep. 2019;9(1):7563. doi: 10.1038/s41598-019-43968-z, PMID 31101828.
Deepak AV, Thippeswamy G, Shivakameshwari MN, Salimath BP. Isolation and characterization of a 29-kDa glycoprotein with antifungal activity from bulbs of Urginea indica. Biochem Biophys Res Commun. 2003;311(3):735-42. doi: 10.1016/j.bbrc.2003.10.056, PMID 14623334.
Hanumantha Rao HM, Rajanna L. isolation and sequence analysis of NBS-LRR encoding gene analogs in two species of Drimia. J Cytol Genet. 2022;23:89-97.
Fidan HA, Çağlar BK, Baloğlu SA, Yılmaz MA. Urginea maritime (L.) is a new host of Allexivirus group on onion and garlic plants in Turkey. Acta Hortic Symposium on Flower Bulbs and Herbaceous Perennials 1002. 2013;(1002):(309-12). doi: 10.17660/ActaHortic.2013.1002.40.
Hanumantha rao hm. L rajannna & s prabhakara. Isolation and comparative analysis of NBS–LRR disease resistance gene analogs in medicinal plant Drimia wightii L. Int J Bot Stud. 2022;7:168-78.
Kim NH, Choi HI, Kim KH, Jang W, Yang TJ. Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tag–simple sequence repeat bands in panax ginseng Meyer. J Ginseng Res. 2014;38(2):130-5. doi: 10.1016/j.jgr.2013.12.005, PMID 24748837.
Kanazin V, Marek LF, Shoemaker RC. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A. 1996;93(21):11746-50. doi: 10.1073/pnas.93.21.11746, PMID 8876208.
Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583-5. doi: 10.1093/bioinformatics/btx198, PMID 28398459.
Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106(3):411-22. doi: 10.1007/s00122-002-1031-0, PMID 12589540.
Linhart C, Shamir R. The degenerate primer design problem: theory and applications. J Comput Biol. 2005;12(4):431-56. doi: 10.1089/cmb.2005.12.431, PMID 15882141.
Lane CE, Hulgan D, O’Quinn K, Benton MG. CEMAsuite: open source degenerate PCR primer design. Bioinformatics. 2015;31(22):3688-90. doi: 10.1093/bioinformatics/btv420, PMID 26198106.
Cordero C, Skinner Z. Isolation from alfalfa of resistance gene analogues containing nucleotide binding sites. Theor Appl Genet. 2002;104(8):1283-9. doi: 10.1007/s00122-001-0821-0, PMID 12582582.
Chang MM, DiGennaro P, Macula A. PCR cloning of partial nbs sequences from grape (Vitis aestivalis Michx). Biochem Mol Biol Educ. 2009;37(6):355-60. doi: 10.1002/bmb.20320, PMID 21567771.
Afanador-Kafuri L, Mejía JF, González A, Álvarez E. Identifying and analyzing the diversity of resistance gene analogs in Colombian Rubus genotypes. Plant Dis. 2015 Jul 2;99(7):994-1001. doi: 10.1094/PDIS-05-14-0475-RE, PMID 30690980.
Kastoori RR, Talluri KB, Subramonian S, Kodeboina VS, Pandravada SR, Ganta A et al. Isolation of resistance gene candidates in chilli and use of molecular markers for root knot nematode resistance. International Journal of Plant Breeding. 2012;6(1):47-52.
Fitch WM. Distinguishing homologous from analogous proteins. Syst Zool. 1970;19(2):99-113. doi: 10.2307/2412448, PMID 5449325.
Koonin EV. An apology for orthologs-or brave new memes. Genome Biol. 2001;2(4):COMMENT1005. doi: 10.1186/gb-2001-2-4-comment1005, PMID 11305932.
Fitch WM. Homology: a personal view on some of the problems. Trends Genet. 2000;16(5):227-31. doi: 10.1016/s0168-9525(00)02005-9, PMID 10782117.
Mirny LA, Gelfand MS. Using orthologous and paralogous proteins to identify specificity determining residues. Genome Biol. 2002;3(3):PREPRINT0002. doi: 10.1186/gb-2002-3-3-preprint0002, PMID 11897020.
Zhang R, Zheng F, Wei S, Zhang S, Li G, Cao P et al. Evolution of disease defense genes and their regulators in plants. Int J Mol Sci. 2019;20(2):335. doi: 10.3390/ijms20020335, PMID 30650550.
Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature. 2003;423(6935):74-7. doi: 10.1038/nature01588, PMID 12721627.
Taylor JS, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet. 2004;38:615-43. doi: 10.1146/annurev.genet.38.072902.092831, PMID 15568988.
Xiao J, Sekhwal MK, Li P, Ragupathy R, Cloutier S, Wang X et al. Pseudogenes and their genome-wide prediction in plants. Int J Mol Sci. 2016;17(12):1991. doi: 10.3390/ijms17121991, PMID 27916797.
Lakshman AB, Paramasivam G. Biosystematics studies on medicinal plant Urginea indica Kunth Liliaceae-A review. Int J Pharm Life Sci. 2012;3(1).
Wells R, Trick M, Fraser F, Soumpourou E, Clissold L, Morgan C et al. Sequencing-based variant detection in the polyploid crop oilseed rape. BMC Plant Biol. 2013;13:111. doi: 10.1186/1471-2229-13-111, PMID 23915099.
Kelman A, Shurtleff MC, Pelczar RM, Pelczar MJ. Plant disease; 2022, Nov 30. Encyclopaedia Britannica. Available from: https://www.britannica.com/science/plant-disease.
Okoń S, Ociepa T, Nucia A, Cieplak M, Kowalczyk K. Is every wild species a rich source of disease resistance? Avena fatua L.—potential donor of resistance to powdery mildew. Plants (Basel). 2021 Mar 16;10(3):560. doi: 10.3390/plants10030560, PMID 33809685.
Shi AN, Leath S, Murphy JP. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology. 1998 Feb;88(2):144-7. doi: 10.1094/PHYTO.1998.88.2.144, PMID 18944983.
Murphy DJ. Overview of applications of plant biotechnology. Handbook of Plant. Biotechnology. 2004;15.
Published
How to Cite
Issue
Section
Copyright (c) 2023 H. M. Hanumantha Rao , L. Rajanna

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.