An Investigation of Zoonotic Bacterial Pathogens Associated with Rodents in Rural Areas of Nellore, India

Life Sciences -Biotechnology

Authors

  • Manohar B. Vadela MBIG Research Laboratory, Department of Biotechnology, Vikrama Simhapuri University, Nellore – 524 324, Andhra Pradesh, India.
  • Satyanagalakshmi Karri MBIG Research Laboratory, Department of Biotechnology, Vikrama Simhapuri University, Nellore – 524 324, Andhra Pradesh, India.,R & D Center, Sahasra Crop Science Pvt. Ltd., Hyderabad – 501 510, Telangana, India.
  • Daveedu Thathapudi MBIG Research Laboratory, Department of Biotechnology, Vikrama Simhapuri University, Nellore – 524 324, Andhra Pradesh, India.
  • Devi Bogireddy MBIG Research Laboratory, Department of Biotechnology, Vikrama Simhapuri University, Nellore – 524 324, Andhra Pradesh, India.
  • Vijay A.K.B. Gundi MBIG Research Laboratory, Department of Biotechnology, Vikrama Simhapuri University, Nellore – 524 324, Andhra Pradesh, India.

DOI:

https://doi.org/10.22376/ijlpr.2023.13.5.L339-L407

Keywords:

Rodent-borne zoonosis, Bacterial pathogens, Zoonotic diseases, Rattus rats, Bacterial prevalence

Abstract

Rodent species are known to harbour and host various zoonotic pathogens, including bacterial, viral, fungal, and protozoal species. Several investigations proved that commensal rats (Rattus spp.) are potential to transmit drug-resistant and hyper-virulent bacterial pathogens to humans. India's rapid urbanization and developmental activities facilitated rats to live near the human population. However, few information was known about bacterial species associated with rodents and their role in zoonotic risk to humans in India. The present study aimed to (i) investigate the presence of bacterial pathogens associated with rodents and (ii) infer the prevalence and diversity of potential bacterial pathogens in Nellore district, India. Bacterial prevalence was determined by isolation and identification techniques. The isolated bacterial cultures were submitted for phenotypic observation, biochemical identification using the VITEK 2 compact automated system, and molecular detection by DNA extraction and amplification of the 16S rRNA gene. A diversified bacterial community belonging to 14 species was detected from all collected animals. Bacterial species' prevalence was comparatively higher in black rats (n=66) than brown rats (n=27). 46 rats out of 93 were found to be positive (49.4%) for bacterial presence. A significant variation was found in the prevalence of bacterial species between both rodent species. The highest bacterial prevalence was recorded for Bacillus spp. (36%) followed by E. coli (29%). The prevalence of Klebsiella pneumoniae was found as 17%, of which 18% in black rats and 14% in brown rats. Listeria spp.'s prevalence was 23.6%, but a higher prevalence was observed in black rats (25.7%). Surprisingly, an uncommon pathogen, Sphingomonas paucimobilis, was detected in both rodent species. These results suggest that Rattus rats in Nellore were suspected to be potential carriers of transmitting zoonotic bacterial species to humans.

References

Who/Searo/Wpro. Asia pacific strategy for emerging diseases 2010. Geneva: WHO Regional Office for South-East Asia; 2011.

Firth C, Bhat M, Firth MA, Williams SH, Frye MJ, Simmonds P, et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. mBio. 2014;5(5):e01933-14. doi: 10.1128/mBio.01933-14, PMID 25316698.

Tadin A, Tokarz R, Markotić A, Margaletić J, Turk N, Habuš J, et al. Molecular survey of zoonotic agents in rodents and other small mammals in Croatia. Am J Trop Med Hyg. 2016;94(2):466-73. doi: 10.4269/ajtmh.15-0517, PMID 26711522.

Badger-Emeka L, Al-Mulhim Y, Al-Muyidi F, Busuhail M, Alkhalifah S, AlEid N. An investigation of potential health risks from zoonotic bacterial pathogens associated with farm rats. Environ Health Insights. 2020;14:1178630220942240. doi: 10.1177/1178630220942240, PMID 32874093.

Kumar S, Swain S, G S P, Singh BS, Aggarwal D. Zoonotic Diseases in India. Indian J Community Med. 2020;45;Suppl 1:S1-2. doi: 10.4103/ijcm.IJCM_360_19. PMID 32476730.

Goel S, Kaur H, Gupta AK, Chauhan U, Singh A. Socio-epidemiological determinants of 2002 plague outbreak in Himachal Pradesh, India: a qualitative study. BMC Public Health. 2014;14:325. doi: 10.1186/1471-2458-14-325, PMID 24708892.

Kaur H, Goel S, Sharma Y, Kessar RR. Socioenvironmental etiology of plague outbreak in Himachal Pradesh: A retrospective enquiry. Journal of Postgraduate Medicine, Education and Research. 2013;47(2):112-6. doi: 10.5005/jp-journals-10028-1067.

Patil D, Dahake R, Roy S, Mukherjee S, Chowdhary A, Deshmukh R. Prevalence of leptospirosis among dogs and rodents and their possible role in human leptospirosis from Mumbai, India. Indian J Med Microbiol. 2014;32(1):64-7. doi: 10.4103/0255-0857.124319, PMID 24399392.

Thomas M, Samuel K A, Kurian P. Rodentborne fungal pathogens in wetland agroecosystem. Braz J Microbiol. 2012;43(1):247-52. doi: 10.1590/S1517-83822012000100028.

Struck MB, Andrutis KA, Ramirez HE, Battles AH. Effect of a short-term fast on ketamine-xylazine anesthesia in rats. J Am Assoc Lab Anim Sci. 2011;50(3):344-8. PMID 21640029.

Goldberg S. Mechanical/physical methods of cell disruption and tissue homogenization. In: Posch A, editor. 2D PAGE: sample preparation and fractionation. Totowa, NJ: Humana Press; 2008. p. 3-22. doi: 10.1007/978-1-60327-064-9_1, PMID 18369848.

Islam MM, Farag E, Hassan MM, Enan KA, Mohammad Sabeel KV, Alhaddad MM et al. Diversity of bacterial pathogens and their antimicrobial resistance profile among commensal rodents in Qatar. Vet Res Commun. 2022;46(2):487-98. doi: 10.1007/s11259-021-09876-2, PMID 35083655.

Nimer NA, Al-Saa’da RJ, Abuelaish O. Accuracy of the VITEK® 2 system for a rapid and direct identification and susceptibility testing of Gramnegative rods and Gram-positive cocci in blood samples. East Mediterr Health J. 2016;22(3):193-200. doi: 10.26719/2016.22.3.193, PMID 27334076.

Himsworth CG, Zabek E, Tang P, Parsons KL, Koehn M, Jardine CM, et al. Bacteria isolated from conspecific bite wounds in Norway and black rats: implications for rat bite-associated infections in people. Vector Borne Zoonotic Dis. 2014;14(2):94-100. doi: 10.1089/vbz.2013.1417, PMID 24528094.

Heller R, Artois M, Xemar V, De Briel D, Gehin H, Jaulhac B, et al. Prevalence of Bartonella henselae and Bartonella clarridgeiae in stray cats. J Clin Microbiol. 1997;35(6):1327-31. doi: 10.1128/jcm.35.6.1327-1331.1997, PMID 9163438.

Su Q, Chen Y, Wang B, Huang C, Han S, Yuan G, et al. Epidemiology and genetic diversity of zoonotic pathogens in urban rats (Rattus spp.) from a subtropical city, Guangzhou, southern China. Zoonoses Public Health. 2020;67(5):534-45. doi: 10.1111/zph.12717, PMID 32452163.

McFarlane R, Sleigh A, McMichael T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian–Australasian region. EcoHealth. 2012;9(1):24-35. doi: 10.1007/s10393-012-0763-9, PMID 22526750.

Karmali MA, Gannon V, Sargeant JM. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol. 2010;140(3-4):360-70. doi: 10.1016/j.vetmic.2009.04.011, PMID 19410388.

Le Moine V, Vannier P, Jestin A. Microbiological studies of wild rodents in farms as carriers of pig infectious agents. Prev Vet Med. 1987;4(5-6):399-408. doi: 10.1016/0167-5877(87)90026-2.

Wang Z, Lu Q, Mao X, Li L, Dou J, He Q, et al. Prevalence of extended-spectrum β-lactamase-resistant genes in Escherichia coli isolates from central China during 2016-2019. Animals (Basel). 2022;12(22). doi: 10.3390/ani12223191, PMID 36428418.

Tietgen M, Sedlaczek L, Higgins PG, Kaspar H, Ewers C, Göttig S. Colistin resistance mechanisms in human and veterinary Klebsiella pneumoniae isolates. Antibiotics (Basel). 2022;11(11). doi: 10.3390/antibiotics11111672, PMID 36421315.

Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589-603. doi: 10.1128/CMR.11.4.589, PMID 9767057.

Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873-84. doi: 10.1128/AAC.01019-15, PMID 26169401.

Zhong XS, Li YZ, Ge J, Xiao G, Mo Y, Wen YQ, et al. Comparisons of microbiological characteristics and antibiotic resistance of Klebsiella pneumoniae isolates from urban rodents, shrews, and healthy people. BMC Microbiol. 2020;20(1):12. doi: 10.1186/s12866-020-1702-5, PMID 31937244.

Shariati A, Azimi T, Ardebili A, Chirani AS, Bahramian A, Pormohammad A, et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2018;21:75-80. doi: 10.1016/j.nmni.2017.10.013, PMID 29234497.

Bahramian A, Khoshnood S, Shariati A, Doustdar F, Chirani AS, Heidary M. Molecular characterization of the pilS2 gene and its association with the frequency of Pseudomonas aeruginosa plasmid pKLC102 and PAPI-1 pathogenicity island. Infect Drug Resist. 2019;12:221-7. doi: 10.2147/IDR.S188527, PMID 30666137.

Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med. 2007;33(7):1155-61. doi: 10.1007/s00134-007-0671-6, PMID 17503016.

Lee JR, Bang H, Dadhania D, Hartono C, Aull MJ, Satlin M, et al. Independent risk factors for urinary tract infection and subsequent bacteremia or acute cellular rejection: a single-center report of 1166 kidney allograft recipients. Transplantation. 2013;96(8):732-8. doi: 10.1097/TP.0b013e3182a04997, PMID 23917724.

Toval F, Guzmán-Marte A, Madriz V, Somogyi T, Rodríguez C, García F. Predominance of carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-β-lactamases in a major hospital in Costa Rica. J Med Microbiol. 2015;64(1):37-43. doi: 10.1099/jmm.0.081802-0, PMID 25355933.

Zhong XS, Ge J, Chen SW, Xiong YQ, Zheng XY, Qiu M, et al. [Investigation of antimicrobial resistance of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates from rat-like animals around a hospital in Guangzhou]. Nan Fang Yi Ke Da Xue Xue Bao. 2016;36(5):688-92. PMID 27222186.

Panagopoulos GN, Megaloikonomos PD, Liontos M, Giannitsioti E, Drogari-Apiranthitou M, Mavrogenis AF, et al. Pseudomonas oryzihabitans infected total hip arthroplasty. J Bone Jt Infect. 2016;1:54-8. doi: 10.7150/jbji.16967, PMID 28529854.

Woo KS, Choi JL, Kim BR, Kim JE, Kim KH, Kim JM, et al. Outbreak of pseudomonas oryzihabitans pseudobacteremia related to contaminated equipment in an emergency room of a tertiary hospital in Korea. Infect Chemother. 2014;46(1):42-4. doi: 10.3947/ic.2014.46.1.42, PMID 24693469.

Moller AG, Lindsay JA, Read TD. Determinants of phage Host Range in Staphylococcus Species. Appl Environ Microbiol. 2019;85(11). doi: 10.1128/AEM.00209-19, PMID 30902858.

Aklilu E, Zunita Z, Hassan L, Chen HC. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolated from dogs and cats at University Veterinary Hospital, Universiti Putra Malaysia. Trop Biomed. 2010;27(3):483-92. PMID 21399590.

Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10(3):505-20. doi: 10.1128/CMR.10.3.505, PMID 9227864.

Dryden MS. Skin and soft tissue infection: microbiology and epidemiology. Int J Antimicrob Agents. 2009;34;Suppl 1:S2-7. doi: 10.1016/S0924-8579(09)70541-2, PMID 19560670.

Asgeirsson H, Thalme A, Weiland O. Staphylococcus aureus bacteraemia and endocarditis - epidemiology and outcome: a review. Infect Dis (Lond). 2018;50(3):175-92. doi: 10.1080/23744235.2017.1392039, PMID 29105519.

Raafat D, Mrochen DM, Al'Sholui F, Heuser E, Ryll R, Pritchett-Corning KR, et al. Molecular Epidemiology of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus in Wild, Captive and Laboratory Rats: Effect of Habitat on the Nasal S. aureus Population. Toxins. 2020;12(2).

Rothenburger JL, Himsworth CG, Nemeth NM, Pearl DL, Jardine CM. Environmental factors associated with the carriage of bacterial pathogens in Norway rats. EcoHealth. 2018;15(1):82-95. doi: 10.1007/s10393-018-1313-x, PMID 29427247.

Rothenburger JL, Himsworth CG, La Perle KMD, Leighton FA, Nemeth NM, Treuting PM et al. Pathology of wild Norway rats in Vancouver, Canada. J Vet Diagn Invest. 2019;31(2):184-99. doi: 10.1177/1040638719833436, PMID 30852980.

Himsworth CG, Miller RR, Montoya V, Hoang L, Romney MG, Al-Rawahi GN, et al. Carriage of methicillin-resistant Staphylococcus aureus by wild urban Norway rats (Rattus norvegicus). PLOS ONE. 2014;9(2):e87983. doi: 10.1371/journal.pone.0087983, PMID 24498421.

Andreis SN, Perreten V. Novel β-lactamase bla(ARL) in Staphylococcus arlettae. Vol. 2(3); 2017.

Rohilla R, Raina D, Singh M, Pandita AK, Patwal S. Evaluation of Sphingomonas paucimobilis as an emerging nosocomial pathogen in a teaching hospital in Uttarakhand. Iran J Microbiol. 2021;13(5):617-23. doi: 10.18502/ijm.v13i5.7425, PMID 34900159.

Göker T, Aşık RZ, Yılmaz MB, Çelik İ, Tekiner A. Sphingomonas paucimobilis: A Rare Infectious Agent Found in Cerebrospinal Fluid. J Korean Neurosurg Soc. 2017;60(4):481-3. doi: 10.3340/jkns.2014.0102.004, PMID 28689399.

Lin JN, Lai CH, Chen YH, Lin HL, Huang CK, Chen WF, et al. Sphingomonas paucimobilis bacteremia in humans: 16 case reports and a literature review. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi. 2010;43(1):35-42. doi: 10.1016/S1684-1182(10)60005-9, PMID 20434121.

Published

2023-09-01

How to Cite

B. Vadela, M., Karri, S. ., Thathapudi, D. ., Bogireddy, D., & Gundi, V. A. . (2023). An Investigation of Zoonotic Bacterial Pathogens Associated with Rodents in Rural Areas of Nellore, India: Life Sciences -Biotechnology. International Journal of Life Science and Pharma Research, 13(5), L339-L407. https://doi.org/10.22376/ijlpr.2023.13.5.L339-L407

Issue

Section

Research Articles