An Early Molecular Biomarker Study in Pre-eclampsia
Life Sciences -Physiology
DOI:
https://doi.org/10.22376/ijlpr.2023.13.5.L293-L301Keywords:
microRNA, Biomarker, Next-generation Sequencing, Pre-eclampsia, RT-PCRAbstract
Preeclampsia (PE), a hypertension condition associated with pregnancy that manifests after 20 weeks of pregnancy,may be brought on by faulty placental development and poses a serious risk to both the mother and the fetus. The disease can bedetected only once the symptoms arise, there is a need for a biomarker, which makes early detection of the disease possible, andproper management of the disease can be done at an early stage of pregnancy. Even though many studies were done globallyregarding the role of microRNAs as molecular biomarkers in pre-eclampsia, no literature showed the effect of microRNA inpreeclampsia in the Indian population. The aim of the study was to find an early molecular marker that can detect the disease atan early stage, even before the symptoms arise. Placental MicroRNAs were studied using Next-generation Sequencing of 60Preeclamptic groups ( 30 Early Onset,30Late onset preeclampsia), and 30 control groups were selected; miRNA profiling wasdone by Illumina sequencing, and the quantifier did downstream analysis for identification, quantification, and expression profiling.pl, script, and miRDeep2.pl, script. Total RNAs were extracted from placental tissues and cells by TRIzol reagent and purified. Therelative expression of miR-483-5p in tissues or cells was determined: micro-RNA 483-5p was expressed in significant quantity inEarly Onset preeclamptic placental samples compared to Late Onset and normal samples. miR 483-5p was analyzed, and the genetargets were found using computational methods. From this study, it was found that microRNA 483-5p can be used as an earlybiomarker for the identification of preeclampsia.
References
Tabassum S, AlSada A, Bahzad N, Sulaibeekh N, Qureshi A, Dayoub N. Preeclampsia and its maternal and perinatal outcomes in pregnant women managed in Bahrain’s tertiary Care Hospital. Cureus. 2022 May 1;14(5):e24637. doi: 10.7759/cureus.24637, PMID 35663710.
Hogan MC, Foreman KJ, Naghavi M, Ahn SY, Wang M, Makela SM et al. Maternal mortality for 181 countries, 1980-2008: a systematic analysis of progress towards Millennium Development Goal 5. Lancet. 2010;375(9726):1609-23. doi: 10.1016/S0140-6736(10)60518-1, PMID 20382417-.
Wanderer JP, Leffert LR, Mhyre JM, Kuklina EV, Callaghan WM, Bateman BT. Epidemiology of obstetric-related ICU admissions in Maryland: 1999-2008*. Crit Care Med. 2013;41(8):1844-52. doi: 10.1097/CCM.0b013e31828a3e24. PMID 23648568.
Kuklina EV, Ayala C, Callaghan WM. Hypertensive disorders and severe obstetric morbidity in the United States. Obstet Gynecol. 2009;113(6):1299-306. doi: 10.1097/AOG.0b013e3181a45b25, PMID 19461426.
Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122-31. doi: 10.1097/01.AOG.0000437382.03963.88, PMID 24150027.
Hu J, Li Y, Zhang B, Zheng T, Li J, Peng Y, et al. Impact of the 2017 ACC/AHA Guideline for High Blood Pressure on Evaluating Gestational Hypertension-Associated Risks for Newborns and Mothers. Circ Res. 2019;125(2):184-94. doi: 10.1161/CIRCRESAHA.119.314682, PMID 31104583.
Wójtowicz A, Zembala-Szczerba M, Babczyk D, Kołodziejczyk-Pietruszka M, Lewaczyńska O, Huras H. Early- and late-onset preeclampsia: A comprehensive cohort study of laboratory and clinical findings according to the new ISHHP criteria. Int J Hypertens. 2019;2019:4108271. doi: 10.1155/2019/4108271, PMID 31637053.
Hella EC, Muijsers N, Olivier WH, Van Der Heijden Angela HEM. Consider preeclampsia as a first cardiovascular event. Women and heart disease (C Linde, section editor).08. Curr Cardiovasc Risk Rep. 2019;13.
Sircar M, Thadhani R, Karumanchi SA. Pathogenesis of preeclampsia. Curr Opin Nephrol Hypertens. 2015;24(2):131-8. doi: 10.1097/MNH.0000000000000105, PMID 25636145.
Roland CS, Hu J, Ren CE, Chen H, Li J, Varvoutis MS, et al. Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci. 2016;73(2):365-76. doi: 10.1007/s00018-015-2069-x, PMID 26496726.
Matsubara K, Higaki T, Matsubara Y, Nawa A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci. 2015;16(3):4600-14. doi: 10.3390/ijms16034600, PMID 25739077.
Wei J, Lin J. Relationship of polymorphism of adhesion molecules VCAM-1 and ICAM-1 with preeclampsia. Ann Clin Lab Sci. 2020;50(1):79-84. PMID 32161015.
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255-89. doi: 10.1146/annurev-cellbio-101512-122326, PMID 25288114.
Kalra H, Drummen GPC, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17(2):170. doi: 10.3390/ijms17020170, PMID 26861301.
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-83. doi: 10.1083/jcb.201211138, PMID 23420871.
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77-91. doi: 10.1016/j.devcel.2011.05.015, PMID 21763610.
Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, et al. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol Cell Biochem. 2022;477(2):479-91. doi: 10.1007/s11010-021-04294-z, PMID 34783962.
Andersen LB, Jørgensen JS, Herse F, Andersen MS, Christesen HT, Dechend R. The association between angiogenic markers and fetal sex: implications for preeclampsia research. J Reprod Immunol. 2016 September;117:24-9. doi: 10.1016/j.jri.2016.05.005, PMID 27359072.
Sahai K, Saraswathy S, Yadav TP, Arora D, Krishnan M. Pre-eclampsia: molecular events to biomarkers. Med J Armed Forces India. 2017;73(2):167-74. doi: 10.1016/j.mjafi.2016.09.001, PMID 28924318.
Hod T, Cerdeira AS, Karumanchi SA. Molecular mechanisms of preeclampsia. Cold Spring Harb Perspect Med. 2015;5(10):a023473. doi: 10.1101/cshperspect.a023473, PMID 26292986.
Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J Transl Med. 2016;14(1):143. doi: 10.1186/s12967-016-0893-x, PMID 27197967.
Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826-32. doi: 10.3892/etm.2019.7637, PMID 31281456.
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052-61. doi: 10.1002/jcp.27291, PMID 30256424.
Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placental microRNAs: responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep. 2020;7:1046-56. doi: 10.1016/j.toxrep.2020.08.002, PMID 32913718.
Trakunram K, Champoochana N, Chaniad P, Thongsuksai P, Raungrut P. MicroRNA Isolation by Trizol-Based Method and Its Stability in Stored Serum and cDNA Derivatives. Asian Pac J Cancer Prev. 2019;20(6):1641-7. doi: 10.31557/APJCP.2019.20.6.1641, PMID 31244282.
Brown RAM, Epis MR, Horsham JL, Kabir TD, Richardson KL, Leedman PJ. Total RNA extraction from tissues for microRNA and target gene expression analysis: not all kits are created equal. BMC Biotechnol. 2018;18(1):16. doi: 10.1186/s12896-018-0421-6, PMID 29548320.
Lv W, Ma W, Yin X, Chai Z, Li B, Situ B, et al. Optimization of the original Trizol-based technique improves the extraction of circulating microRNA from serum samples. Clin Lab. 2015;61(12):1953-60. doi: 10.7754/clin.lab.2015.150604, PMID 26882821.
Motameny S, Wolters S, Nürnberg P, Schumacher B. Next Generation Sequencing of miRNAs – Strategies, Resources and Methods. Genes (Basel). 2010;1(1):70-84. doi: 10.3390/genes1010070, PMID 24710011.
Ryan KY, Wong M, Macmahon JV, David A. A comparison of RNA extraction and sequencing protocols for detecting small RNAs in plasma Ryan K. BMC Genomics.
Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013;35(2):121-6. doi: 10.4103/0253-7176.116232.
Chen Z, Zhang W, Wu M, Huang H, Zou L, Luo Q. Pathogenic mechanisms of preeclampsia with severe features implied by the plasma exosomal miRNA profile. Bioengineered. 2021;12(2):9140-9. doi: 10.1080/21655979.2021.1993717, PMID 34696680.
Golden JP, DeMaro JA, Osborne PA, Milbrandt J, Johnson EM Jr. Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol. 1999;158(2):504-28. doi: 10.1006/exnr.1999.7127, PMID 10415156.
Chalazonitis A, Rothman TP, Chen J, Gershon MD. Age-dependent differences in the effects of GDNF and NT-3 on the development of neurons and Glia from neural crest-derived precursors immunoselected from the fetal rat gut: expression of GFRα-1in Vitro and in vivo. Dev Biol. 1998;204(2):385-406. doi: 10.1006/dbio.1998.9090, PMID 9882478.
Enomoto H. Regulation of neural development by glial cell line-derived neurotrophic factor family ligands. Anat Sci Int. 2005;80(1):42-52. doi: 10.1111/j.1447-073x.2005.00099.x, PMID 15794130.
Opferman JT, Kothari A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 2018;25(1):37-45. doi: 10.1038/cdd.2017.170, PMID 29099482.
Gokalp-Ozkorkmaz E, Asir F, Basaran SO, Agacayak E, Sahin F, Kaya S, et al. Examination of Bcl-2 and Bax protein levels for determining the apoptotic changes in placentas with gestational diabetes and preeclampsia. Vol. 2(25). p. 1548; 2018. Proceedings of the (MPDI) [internet]. doi: 10.3390/proceedings2251548.
Aouadi M, Binetruy B, Caron L, Le Marchand-Brustel Y, Bost F. Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie. 2006;88(9):1091-8. doi: 10.1016/j.biochi.2006.06.003, PMID 16854512.
Ma N, Wang X, Qiao Y, Li F, Hui Y, Zou C, et al. Coexpression of an intronic microRNA and its host gene reveals a potential role for miR-483-5p as an IGF2 partner. Mol Cell Endocrinol. 2011;333(1):96-101. doi: 10.1016/j.mce.2010.11.027, PMID 21146586.
Bidarimath M, Khalaj K, Wessels JM, Tayade C. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol. 2014;11(6):538-47. doi: 10.1038/cmi.2014.45, PMID 24954225.
Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196(3):261.e1-6. doi: 10.1016/j.ajog.2007.01.008, PMID 17346547.
Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 2009;81(4):717-29. doi: 10.1095/biolreprod.108.075481, PMID 19494253.
Friedländer MR, Lizano E, Houben AJS, Bezdan D, Báñez-Coronel M, Kudla G, et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 2014;15(4):R57. doi: 10.1186/gb-2014-15-4-r57, PMID 24708865.
Nikuei P, Davoodian N, Tahamtan I, Keshtkar AA. Predictive value of miR-210 as a novel biomarker for pre-eclampsia: a systematic review protocol. BMJ, (Open). 2016;6(9):e011920. doi: 10.1136/bmjopen-2016-011920, PMID 27683514: Table 1.
Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs. Int J Mol Sci. 2019;20(12):2972. doi: 10.3390/ijms20122972, PMID 31216670.
Saarma M, Sariola H. Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech. 1999;45(4-5):292-302. doi: 10.1002/(SICI)1097-0029(19990515/01)45:4/5<292::AID-JEMT13>3.0.CO;2-8, PMID 10383122<29246). Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors – Relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(B):80-9. doi: 10.1016/j.nbd.2016.01.021, PMID 26829643.
Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs. Int J Mol Sci. 2019;20(12):2972. doi: 10.3390/ijms20122972, PMID 31216670.
Liu L, Liu X, Ren X, Tian Y, Chen Z, Xu X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification. Sci Rep. 2016;6(1):21602. doi: 10.1038/srep21602, PMID 26905010.
Holtzhausen A, Golzio C, How T, Lee YH, Schiemann WP, Katsanis N, et al. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB J. 2014;28(3):1248-67. doi: 10.1096/fj.13-239178, PMID 24308972.
Daneshvar K, Pondick JV, Kim BM, Zhou C, York SR, Macklin JA, et al. DIGIT is a conserved long noncoding RNA that regulates GSC expression to control definitive endoderm differentiation of embryonic stem cells. Cell Rep. 2016;17(2):353-65. doi: 10.1016/j.celrep.2016.09.017, PMID 27705785.
Chen YF, Li Y-SJ, Chou CH, Chiew MY, Huang HD, Ho JH-C, et al. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv. 2020;6(6):eaay0264. doi: 10.1126/sciadv.aay0264, PMID 32076643.
Yang J, Jiang W. The role of SMAD2/3 in human embryonic stem cells. Front Cell Dev Biol. 2020;8:653. doi: 10.3389/fcell.2020.00653, PMID 32850796.
Shimizu H, Oh-I S, Okada S, Mori M. Leptin resistance and obesity. Endocr J. 2007;54(1):17-26. doi: 10.1507/endocrj.kr-85. PMID 17053294. Trengove MC, Ward AC. SOCS proteins in development and disease. Am J Clin Exp Immunol. 2013;2(1):1-29. PMID 23885323.
Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2):a008722-. doi: 10.1101/cshperspect.a008722, PMID 23378584.
Xu H, Yang Y, Zhao H, Yang X, Luo Y, Ren Y, et al. Serum miR-483-5p: a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumour Biol. 2016;37(1):447-53. doi: 10.1007/s13277-015-3514-z, PMID 26224475.
Fang C, Li Y. Prospective applications of microRNAs in oral cancer. Oncol Lett. 2019;18(4):3974-84. doi: 10.3892/ol.2019.10751, PMID 31579085.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Vinaya Vijayan, R. Kannan, B. Ram Reddy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.