Predicted Mechanism of Action of Venom Toxins On Testicular Toxicity: An In-Silico Approach
Life Sciences -Biochemistry
DOI:
https://doi.org/10.22376/ijlpr.2023.13.5.L58-L71Keywords:
Docking, Snake Bite, Viper, Claudin, Occludin, TGF-Β and Tubulin Α & ΒAbstract
Snake envenomation is considered as a neglected disease from world health organization. Recent survey states Indiahas the highest rate of around 1.2 million deaths. As a pathophysiological effect, snake bite is contributing for major toxicity onhuman organ systems. As a secondary outcome of snake bite, testicular toxicity on the later stages of envenomation gaining moreinterest in recent years. But till date none of the studies have explored the field with the major toxins of the viper venom. Basedon the review, our aim of the study was to predict the possible mechanism of action of the viper toxins against testicular toxicity.Hence to achieve the aim of the study, the objectives framed to perform the in-silico docking of major viper venom toxins namelyVRV-PL-V and VRV-PL-VIIIa against human testicular tight junction and extra cellular matrix proteins. Docking results of our datademonstrated the prominent interaction of VRV-Pl-VIIIa with claudin, occludin, TGF-β and Tubulin α/β with the strong hydrogenbonds where as VRV-PL-V exhibited very poor hydrophobic interactions. VRV-PL-V structure was available and hence thestructure was predicted and its stability was confirmed before docking. Occludin, TGF-β and Tubulin-α proteins shared multiplehydrogen bonds with the toxin VRV-PL-VIIIa whereas claudin and Tubulin-α had numerous hydrophobic interactions with theVRV-PL-VIIIa toxin. On discussion, our docking studies state the impressive binding intensity of VRV-PL-VIIIa over VRV-PL-Vwhere it showed binding ability only with Tubulin α and β that too with weak interactions. In conclusion, our overall studies justifythe previous reports of VRV-PL-VIIIa on testicular toxicity.
References
Suraweera W, Warrell D, Whitaker R, Menon G, Rodrigues R, Fu SH et al. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study. eLife. 2020 Jul 7;9:e54076. doi: 10.7554/eLife.54076, PMID 32633232.
Available from: https://indianexpress.com/article/india/at-1-2-million-india-has-highest-number-of-snakebites-in-the-world-heres-why-its-dangerous-7442747/.
World Health Organization (WHO). Snakebite envenoming. WHO Press. 2019a.
Longbottom J, Shearer FM, Devine M, Alcoba G, Chappuis F, Weiss DJ et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet. 2018 Aug 25;392(10148):673-84. doi: 10.1016/S0140-6736(18)31224-8, PMID 30017551.
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J et al. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front Ecol Evol. 2019 Jun 19;7:218. doi: 10.3389/fevo.2019.00218.
Gasanov SE, Dagda RK, Rael ED. Snake venom cytotoxins, phospholipase A2s, and Zn2+-dependent metalloproteinases: mechanisms of action and pharmacological relevance. J Clin Toxicol. 2014 Jan 25;4(1):1000181. doi: 10.4172/2161-0495.1000181, PMID 24949227.
Dhananjaya BL, Sudarshan S. Inhibition of secretary PLA₂–VRV-PL-VIIIa of Russell’s viper venom by standard aqueous stem bark extract of Mangifera indica L Trop Biomed. 2015 Mar 1;32(1):24-35. PMID 25801252.
Tonello F, Rigoni M. Cellular mechanisms of action of snake phospholipase A2 toxins. Snake Venoms. 2017:49-65.
Alberto-Silva C, Franzin CS, Gilio JM, Bonfim RS, Querobino SM. Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca snake venom on the structure and function of mouse seminiferous epithelium. J Venom Anim Toxins Incl Trop Dis. 2020 Jun 22;26:e20200007. doi: 10.1590/1678-9199-JVATITD-2020-0007, PMID 32636877.
Herrera C, Macêdo JK, Feoli A, Escalante T, Rucavado A, Gutiérrez JM et al. Muscle tissue damage induced by the venom of Bothrops asper: identification of early and late pathological events through proteomic analysis. PLOS Negl Trop Dis. 2016 Apr 1;10(4):e0004599. doi: 10.1371/journal.pntd.0004599, PMID 27035343.
Escoffier J, Couvet M, de Pomyers H, Ray PF, Sève M, Lambeau G et al. Snake venoms as a source of compounds modulating sperm physiology: secreted phospholipases A2 from Oxyuranus scutellatus scutellatus impact sperm motility, acrosome reaction and in vitro fertilization in mice. Biochimie. 2010 Jul;92(7):826-36. doi: 10.1016/j.biochi.2010.03.003, PMID 20226834.
Senthilkumaran S, Williams HF, Patel K, Trim SA, Thirumalaikolundusubramanian P, Vaiyapuri S. Priapism following a juvenile Russell’s viper bite: an unusual case report. PLoS Negl Trop Dis. 2021;15(3):e0009242. doi: 10.1371/journal.pntd.0009242, PMID 33764978.
Shetty S, Abi MS, Hickson R, David T, Rajaratnam S. Hypopituitarism and AutoimmuneThyroiditis following snake bite: an unusual clinical scenario. J Assoc Physicians India. 2014 Nov 1;62(11):55-7. PMID 26281485.
Saraiva RM, Caldas AS, Rodriguez TT, Casais-e-Silva LL. Influence of thyroid states on the local effects induced by Bothrops envenoming. Toxicon. 2015 Aug;102:25-31. doi: 10.1016/j.toxicon.2015.05.009, PMID 26003795.
Menon JC, Joseph JK, Jose MP, Dhananjaya BL, Oommen OV. Clinical profile and laboratory parameters in 1051 victims of snakebite from a single centre in Kerala, South India. J Assoc Physicians India. 2016 Aug 1;64(8):22-9. PMID 27762105.
Regeai SO, Abusrer SA, Shibani NS. Low semen quality and adverse histological changes in testes of adult male mice treated with bee venom (Apis mellifera). Open Vet J. 2021, Jan;11(1):70-9. doi: 10.4314/ovj.v11i1.11, PMID 33898286.
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 Jul;35(Web Server issue);Web Server Issue:W407-10. doi: 10.1093/nar/gkm290, PMID 17517781.
Heo L, Shin WH, Lee MS, Seok C. GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res. 2014 Jul;42(Web Server issue);Web Server Issue:W210-4. doi: 10.1093/nar/gku321, PMID 24753427.
Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics. 2014 Jun 15;30(12):1771-3. doi: 10.1093/bioinformatics/btu097, PMID 24532726.
Huang CC, Meng EC, Morris JH, Pettersen EF, Ferrin TE. Enhancing UCSF Chimera through web services. Nucleic Acids Res. 2014 Jul;42(Web Server issue);Web Server Issue:W478-84. doi: 10.1093/nar/gku377, PMID 24861624.
Mruk DD, Cheng CY. The mammalian blood-testis barrier: its biology and regulation. Endocr Rev. 2015 Oct 1;36(5):564-91. doi: 10.1210/er.2014-1101, PMID 26357922.
Chiquoine AD. Observations on the early events of cadmium necrosis of the testis. Anat Rec. 1964 May;149(1):23-35. doi: 10.1002/ar.1091490104, PMID 14158504.
Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012 Jan 1;64(1):16-64. doi: 10.1124/pr.110.002790, PMID 22039149.
Dym M. Basement membrane regulation of Sertoli cells. Endocr Rev. 1994 Feb 1;15(1):102-15. doi: 10.1210/edrv-15-1-102, PMID 8156935.
Setchell BP. Blood-testis barrier, junctional and transport proteins and spermatogenesis. Adv Exp Med Biol. 2008;636:212-33. doi: 10.1007/978-0-387-09597-4_12. PMID 19856170.
Siu MK, Cheng CY. Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol. 2008;636:74-91. doi: 10.1007/978-0-387-09597-4_5, PMID 19856163.
Sharpe RM. Environmental/lifestyle effects on spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010 May 27;365(1546):1697-712. doi: 10.1098/rstb.2009.0206, PMID 20403879.
Kumar KM, Aruldhas MM, Banu SL, Sadasivam B, Vengatesh G, Ganesh KM et al. Male reproductive toxicity of CrVI: in-utero exposure to CrVI at the critical window of testis differentiation represses the expression of Sertoli cell tight junction proteins and hormone receptors in adult F1 progeny rats. Reprod Toxicol. 2017 Apr 1;69:84-98. doi: 10.1016/j.reprotox.2017.02.007, PMID 28192182.
Zhang YH, Lin L, Liu ZW, Jiang XZ, Chen BH. Disruption effects of monophthalate exposures on inter‐Sertoli tight junction in a two‐compartment culture model. Environmental Toxicology: an [international journal]. 2008 Jun;23(3):302-8.
Cheng CY, Wong EW, Lie PP, Li MW, Su L, Siu ER et al. Environmental toxicants and male reproductive function. Spermatogenesis. 2011 Jan 1;1(1):2-13. doi: 10.4161/spmg.1.1.13971, PMID 21866273.
Wong EW, Cheng CY. Impacts of environmental toxicants on male reproductive dysfunction. Trends Pharmacol Sci. 2011 May 1;32(5):290-9. doi: 10.1016/j.tips.2011.01.001, PMID 21324536.
Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ et al. Blood-testis barrier and spermatogenesis: lessons from genetically modified mice. Asian J Androl. 2014 Jul;16(4):572-80. doi: 10.4103/1008-682X.125401, PMID 24713828.
Ali BR et al. Effect of antivenom of Echis carinatus snake on sex hormones, immunological and sperm parameters of male rats. Br J Med Health Res. 2016.
Kumar JR, Basavarajappa BS, Arancio O, Aranha I, Gangadhara NS, Yajurvedi HN et al. Isolation and characterization of ”Reprotoxin”, a novel protein complex from Daboia russelii snake venom. Biochimie. 2008 Oct 1;90(10):1545-59. doi: 10.1016/j.biochi.2008.05.018, PMID 18573307.
Mazaud-Guittot S, Meugnier E, Pesenti S, Wu X, Vidal H, Gow A et al. Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol Reprod. 2010 Jan 1;82(1):202-13. doi: 10.1095/biolreprod.109.078907, PMID 19741204.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Karthik N Awathade, Kumar J. R, Govindaraju Shruthi, Kavitha Raj Varadaraju, Kiran K. S

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.