Isolation and Characterization of Chemical Compounds from Achyranthes Bidentata for Evaluation of Anti-Parkinson’s Activity Through In-Silico Approach

Pharmaceutical Science-Pharmaceutics

Authors

  • Rahul Thapa Research Scholar, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.
  • Shikha Research Scholar, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.
  • Girish Chandra Arya Assistant Professor, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.
  • Saahil Arora Director, University Institute of Pharmaceutical Sciences, Chandigarh University, Punjab.

DOI:

https://doi.org/10.22376/ijlpr.2023.13.4.P105-P127

Keywords:

Achyranthes bidentata, A.bidentata, Parkinson’s disease, in-silico studies.

Abstract

Achyranthes bidentata has been used to treat asthenia of lower limbs, painful backs & knees, atherosclerosis & many other ailments for a very long time. It is found that A. bidentata has many pharmacological activities such as anticancer & immunomodulatory activities, antiosteoporosis, neurotrophic & neuroprotective effects. In Chinese medicine system it is used for abortion. The main chemical components of A.bidentata are sterones & saponins which are recognized as main active compounds. The aim of this investigation is to isolate and characterize the chemical compounds from the aerial part of A.bidentata for assessing the Anti-Parkinson’s activity through in-silico studies of isolated phytoconstituents. In this present work, aerial parts of A.bidentata were used for the potential of anti-parkinson’s activity. The phytochemical investigation revealed that it is rich in alkaloids, terpenoids and saponins. The crude ethanol extract of A.bidentata was partitioned with n-hexane, ethyl acetate, n-butanol, and water. Ethyl acetate fraction much revealed the presence of phytoconstituents carried out with isolation. Compounds identified by NMR, MS and UPLC analysis were oleanolic acid and 5-hydroxymethyl furfural. Molecular docking studies of designed compounds have been performed to investigate interaction with Dj-1/RS associated with PD. This research will be helpful in completing information on the identification and authentication of A. bidentata, and the use of aerial parts of A.bidentata for testing their anti-Parkinson's activity, which will aid in the development of an alternative treatment to allopathic drugs, which have serious side effects. The extraction methods for A.bidentata can be improved with the help of this study. Keywords: , , ,

References

Al-Snafi AE. Medicinal plants possessed anti-parkinsonian effects with emphasis on their mechanisms of action. GSC Biol Pharm Sci. 2021;17(1):232-7. doi: 10.30574/gscbps.2021.17.1.0320.

Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant extracts & phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front Pharmacol. 2018;9:1555. doi: 10.3389/fphar.2018.01555, PMID 30941047.

Amro MS, Teoh SL, Norzana AG, Srijit D. The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter. 2018;169(1):e23-33. doi: 10.7417/T.2018.2050, PMID 29446788.

Morgan LA, Grundmann O. Preclinical & potential applications of common western herbal supplements as complementary treatment in Parkinson’s disease. J Diet Suppl. 2017;14(4):453-66. doi: 10.1080/19390211.2016.1263710, PMID 28095073.

Pandey MM, Rastogi S, Rawat AK. Indian herbal drug for general healthcare: an overview. Internet J Altern Med. 2008 Jan;6(1):3. doi: 10.5580/1c51.

Available from: https://en.wikipedia.org/wiki/Achyranthes_bidentata. Wikipedia [cited 7/6/2023].

Achyranthes bidentata – blume: Niu Xi. Plants for A future.

Nishita M, Park SY, Nishio T, Kamizaki K, Wang Z, Tamada K et al. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep. 2017;7(1):1. doi: 10.1038/s41598-016-0028-x. PMID 28127051.

Available from: https://biodiversity.bt/species/show/6677 [cited 7/6/2023].

Available from: https://dineshvalke.blogspot.com/2020/09/achyranthes-bidentata-blume.html [cited 7/6/2023].

Zhang M, Zhou ZY, Wang J, Cao Y, Chen XX, Zhang WM et al. Phytoecdysteroids from the roots of Achyranthes bidentata Blume. Molecules. 2012;17(3):3324-32. doi: 10.3390/molecules17033324, PMID 22418932.

Hoshino T, Narukawa Y, Haishima Y, Goda Y, Kiuchi F. Two new sulfated oleanan saponins from Achyranthes root. Prod. Plant Resour.. J Nat Med. 2013;67(2):386-9. doi: 10.1007/s11418-012-0684-5, PMID 22772656.

Tie R, Ji L, Nan Y, Wang W, Liang X, Tian F et al. Achyranthes bidentata polypeptides reduces oxidative stress and exerts protective effects against myocardial ischemic/reperfusion injury in rats. Int J Mol Sci. 2013;14(10):19792-804. doi: 10.3390/ijms141019792, PMID 24084726.

Shen H, Wu X, Zhu Y, Sun H. Intravenous administration of Achyranthes bidentata polypeptides supports recovery from experimental ischemic stroke in vivo. PLOS ONE. 2013;8(2):e57055. doi: 10.1371/journal.pone.0057055, PMID 23468912.

Xiang DB, Li XY. Antitumor activity & immuno-potentiating actions of Achyranthes bidentata polysaccharides. Zhongguo Yao Li Xue Bao. 1993;14(6):556-61. PMID 8010059.

Chen Q, Liu Z, He JH. Achyranthes bidentata polysaccharide enhances immune response in weaned piglets. Immunopharmacol Immunotoxicol. 2009;31(2):253-60. doi: 10.1080/08923970802439795, PMID 19514996.

Srivastav S, Singh P, Mishra G, Jha K, Khosa R. Achyranthes aspera-An important medicinal plant: A review. J Nat. Prod. Plant Resour 1, 1-14 2011.

Jiang Y, Zhang Y, Chen W, Liu C, Li X, Sun D et al.. Achyranthes bidentata extract exerts osteoprotective effects on steroid-induced osteonecrosis of the femoral head in rats by regulating RANKL/RANK/OPG signaling. J Transl Med. 2014;12:334. doi: 10.1186/s12967-014-0334-7. PMID 25471933.

He G, Guo W, Lou Z, Zhang H. Achyranthes bidentata saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK MAPK signaling pathway. Cell Biochem Biophys. 2014;70(1):467-73. doi: 10.1007/s12013-014-9942-3, PMID 24728946.

Cheng Q, Yuan Y, Sun C, Gu X, Cao Z, Ding F. Neurotrophic & neuroprotective actions of Achyranthes bidentata polypeptides on cultured dorsal root ganglia of rats & on crushed common peroneal nerve of rabbits. Neurosci Lett. 2014;562:7-12. doi: 10.1016/j.neulet.2013.12.015, PMID 24361134.

Available from: https://biosig.lab.uq.edu.au/pkcsm/prediction_single/adme_1682279566.42 [cited 7/6/2023].

Available from: https://biosig.lab.uq.edu.au/pkcsm/prediction_single/adme_1682279645.63 [cited 7/6/2023].

He X, Wang X, Fang J, Chang Y, Ning N, Guo H et al. The genus Achyranthes: a review on traditional uses, phytochemistry, & pharmacological activities. J Ethnopharmacol. 2017 May 5;203:260-78. doi: 10.1016/j.jep.2017.03.035. PMID 28347832.

Mroczek A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem Rev. 2015 Aug;14(4):577-605. doi: 10.1007/s11101-015-9394-4.

Rukachaisirikul T, Siriwattanakit P, Sukcharoenphol K, Wongvein C, Ruttanaweang P, Wongwattanavuch P et al. Chemical constituents and bioactivity of Piper sarmentosum. J Ethnopharmacol. 2004 Aug 1;93(2-3):173-6. doi: 10.1016/j.jep.2004.01.022, PMID 15234750.

Villaseñor IM, Sanchez AC. Menthalactone, a new analgesic from Mentha cordifolia Opiz. leaves. Z Naturforsch C J Biosci. 2009 Dec 1;64(11-12):809-12. doi: 10.1515/znc-2009-11-1209, PMID 20158150.

Prakash OM, Kumar A, Kumar P, Ajeet A. Anticancer potential of plants and natural products: a Review. Am J Pharmacol Sci. 2013;1(6):104-15. doi: 10.12691/ajps-1-6-1.

Kawabata T, Cui MY, Hasegawa T, Takano F, Ohta T. Anti-inflammatory and anti-melanogenic steroidal saponin glycosides from Fenugreek (Trigonella foenum-Graecum L.) seeds. Planta Med. 2011 May;77(7):705-10. doi: 10.1055/s-0030-1250477, PMID 20979021.

Bernays EA, Chapman RF, hosts-plant selection by phytophagous insects. Springer Science+Business Media; 2007 Aug 19.

Muller RN. The phenology, growth and ecosystem dynamics of Erythronium americanum in the northern hardwood forest. Ecol Monogr. 1978 Dec;48(1):1-20. doi: 10.2307/2937357.

Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM et al. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology. 2018 Jun 1;18(6):663-708. doi: 10.1089/ast.2017.1729, PMID 29727196.

Khreit OI, Irving C, Schmidt E, Parkinson JA, Nic Daeid NN, Sutcliffe OB. Synthesis, full chemical characterisation and development of validated methods for the quantification of the components found in the evolved ”legal high” NRG-2. J Pharm Biomed Anal. 2012 Mar 5;61:122-35. doi: 10.1016/j.jpba.2011.11.004, PMID 22169465.

Zuway KY, Smith JP, Foster CW, Kapur N, Banks CE, Sutcliffe OB. Detection and quantification of new psychoactive substances (NPSs) within the evolved ”legal high” product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD). Analyst. 2015;140(18):6283-94. doi: 10.1039/c5an01106j, PMID 26244169.

Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN et al. NMR spectroscopy for metabolomics research. Metabolites. 2019 Jun 27;9(7):123. doi: 10.3390/metabo9070123, PMID 31252628.

Bindhu MR, Umadevi M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jan 15;101:184-90. doi: 10.1016/j.saa.2012.09.031, PMID 23103459.

Ducrot L. Identification and modification of amine dehydrogenases by genomic and structural approaches for biocatalytic amine synthesis ([doctoral dissertation]. Université Paris-Saclay).

Otto R, Penzis R, Gaube F, Winckler T, Appenroth D, Fleck C et al. Beta and gamma carboline derivatives as potential anti-Alzheimer agents: A comparison. Eur J Med Chem. 2014 Nov 24;87:63-70. doi: 10.1016/j.ejmech.2014.09.048, PMID 25240096.

Saeidnia S, Manayi A, Abdollahi M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr Drug Discov Technol. 2015 Dec 1;12(4):218-24. doi: 10.2174/1570163813666160114093140, PMID 26778084.

Ramsden N, Perrin J, Ren Z, Lee BD, Zinn N, Dawson VL et al. Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chem Biol. 2011 Oct 21;6(10):1021-8. doi: 10.1021/cb2002413, PMID 21812418.

Sharma N, Singh B, Bhatia A, Wani MS, Gupta RC. Intra-specific variability in anti-diabetic activity and UPLC quantification of oleanolic acid from two morphotypes and three cytotypes of Achyranthes aspera. J Biol Act Prod Nat. 2022 Mar 4;12(2):111-24. doi: 10.1080/22311866.2022.2052963.

Amanpour A, Kelebek H, Selli S. Aroma constituents of shade-dried aerial parts of Iranian dill (Anethum graveolens L.) and savory (Satureja sahendica Bornm.) by solvent-assisted flavor evaporation technique. Food Measure. 2017 Sep;11(3):1430-9. doi: 10.1007/s11694-017-9522-5.

Nakamura M, Ra JH, Jee Y, Kim JS. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J Food Drug Anal. 2017 Apr 1;25(2):316-26. doi: 10.1016/j.jfda.2016.08.006, PMID 28911673.

Trease GE, Evans WC. Pharmacognosy.

Haida S, Kribii A, Kribii A. Chemical composition, phenolic content and antioxidant capacity of Haloxylon scoparium extracts. S Afr J Bot. 2020;131:151-60. doi: 10.1016/j.sajb.2020.01.037.

Anuradha RNR. Isolation and HPLC quantitative analysis of flavonoids from flower extract of Punica granatum L. Asian J Pharm Pharmacol. 2017;3(4):139-44.

Ayoola GA, Coker HA, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res. 2008 Sep 11;7(3):1019-24.

Mattocks AR, Jukes R. Improved field tests for toxic pyrrolizidine alkaloids. J Nat Prod. 1987 Mar;50(2):161-6. doi: 10.1021/np50050a005, PMID 3655792.

Ju Y, Liang H, Du K, Guo Z, Meng D. Isolation of triterpenoids and phytosterones from Achyranthes bidentata Bl. to treat breast cancer based on network pharmacology. Nat Prod Res. 2021 Dec 17;35(24):5939-42. doi: 10.1080/14786419.2020.1805603, PMID 32772566.

Renger B, Végh Z, Ferenczi-Fodor K. Validation of thin layer and high performance thin layer chromatographic methods. J Chromatogr A. 2011 May 13;1218(19):2712-21. doi: 10.1016/j.chroma.2011.01.059, PMID 21329932.

Xu QA. Ultrahigh performance liquid chromatography and its applications. John Wiley & Sons; 2013 Apr 1.

Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006 Apr 14;312(5771):212-7. doi: 10.1126/science.1124619, PMID 16614208.

Gerothanassis IP, Troganis A, Exarchou V, Barbarossou K. Nuclear magnetic resonance (NMR) spectroscopy: basic principles and phenomena, and their applications to chemistry, biology and medicine. Chem Educ Res Pract. 2002;3(2):229-52. doi: 10.1039/B2RP90018A.

Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov. 2015 Apr 3;10(4):321-9. doi: 10.1517/17460441.2015.1016497, PMID 25693813.

Martínez-Rosell G, Giorgino T, De Fabritiis G. PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. J Chem Inf Model. 2017 Jul 24;57(7):1511-6. doi: 10.1021/acs.jcim.7b00190, PMID 28594549.

Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des. 2013 Mar;27(3):221-34. doi: 10.1007/s10822-013-9644-8, PMID 23579614.

Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit. 2015 Oct;28(10):581-604. doi: 10.1002/jmr.2471, PMID 25808539.

Ding F, Bai Y, Cheng Q, Yu S, Cheng M, Wu Y et al. Bidentatide, a Novel Plant Peptide Derived from Achyranthes bidentata Blume: isolation, Characterization, and Neuroprotection through Inhibition of NR2B-Containing NMDA Receptors. Int J Mol Sci. 2021;22(15):7977. doi: 10.3390/ijms22157977, PMID 34360755.

Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X et al. Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson’s disease models both in vitro and in vivo. Br J Pharmacol. 2018 Feb;175(4):631-43. doi: 10.1111/bph.14110. PMID 29181847, PMCID PMC5786457.

Cheng Q, Jiang C, Wang C, Yu S, Zhang Q, Gu X et al. The Achyranthes bidentata polypeptide k fraction enhances neuronal growth in vitro and promotes peripheral nerve regeneration after crush injury in vivo. Neural Regen Res. 2014;9(24):2142-50. doi: 10.4103/1673-5374.147948, PMID 25657735.

Published

2023-06-10

How to Cite

Thapa, R. ., Shikha, Arya, G. C., & Arora, S. . (2023). Isolation and Characterization of Chemical Compounds from Achyranthes Bidentata for Evaluation of Anti-Parkinson’s Activity Through In-Silico Approach: Pharmaceutical Science-Pharmaceutics. International Journal of Life Science and Pharma Research, 13(4), P105-P127. https://doi.org/10.22376/ijlpr.2023.13.4.P105-P127

Issue

Section

Research Articles