Influence of Circadian Rhythm on Enamel and Other Oral Tissues- A Narrative Review
Pharmaceutical Science-Dentistry
DOI:
https://doi.org/10.22376/ijlpr.2023.13.3.P57-P61Keywords:
Circadian rhythm, Clock genes, Enamel, Retzius periodicity, Cross striationsAbstract
Molecular mechanisms in regulating physiologic interactions in the human body are under the control of circadian rhythmicity. The modern lifestyle and adjusting to the globalized world have led to various imbalances and diseases. Adaptation of certain body functions according to age or environment keeps altering. Late hours, frequent travel, or some medications can confuse these primary clock genes and cause hormonal imbalance. The importance of clock genes adjustment to triggering factors of night and day time zones has a crucial role in the proper functioning of our body. Similar to the bone formation pattern, the circadian rhythm directly influences the hardest substance, the tooth enamel. Various transcription factors conduct these circadian rhythmicities through clock genes. Identifying new clock genes is in progress, and intraspecific gene variations regulate the clock proteins. Lag in the feedback system is possible if there is a possibility of alterations among the clock genes. If there is a disruption in these gene expressions, it can lead to several diseases. Aging and neurodegeneration-related diseases are also crucial in understanding circadian rhythm disturbances. Even the enamel or dentin-related disharmony related to circadian rhythms in clues of the molecular signals receiving day and night variability is possible. Specific geographical studies on the population may help understand the circadian rhythm and its effects on patterns of mineral deposition in teeth. These prove to help anthropologists though they could be more accurate greatly. This review focuses on the effects of circadian rhythm in enamel and its usage with various clock genes in other oral tissue functioning.
References
Papagerakis S, Zheng L, Schnell S, Sartor MA, Somers E, Marder W et al. The circadian clock in oral health and diseases. J Dent Res. 2014 Jan;93(1):27-35. doi: 10.1177/0022034513505768, PMID 24065634.
Vitaterna MH, Takahashi JS, Turek FW. Overview of circadian rhythms. Alcohol Res Health. 2001;25(2):85-93. PMID 11584554.
Ebisawa T. Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes. J Pharmacol Sci. 2007;103(2):150-4. doi: 10.1254/jphs.fmj06003x5, PMID 17299246.
Kyriacou CP, Peixoto AA, Sandrelli F, Costa R, Tauber E. Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet. 2008 Mar 1;24(3):124-32. doi: 10.1016/j.tig.2007.12.003, PMID 18243399.
Antoine D, Hillson S, Dean MC. The developmental clock of dental enamel: a test for the periodicity of prism cross‐striations in modern humans and an evaluation of the most likely sources of error in histological studies. J Anat. 2009 Jan;214(1):45-55. doi: 10.1111/j.1469-7580.2008.01010.x, PMID 19166472.
Mahoney P. Incremental enamel development in modern human deciduous anterior teeth. Am J Phys Anthropol. 2012 Apr;147(4):637-51. doi: 10.1002/ajpa.22029, PMID 22331636.
Lacruz RS, Hacia JG, Bromage TG, Boyde A, Lei Y, Xu Y et al. The circadian clock modulates enamel development. J Biol Rhythms. 2012 Jun;27(3):237-45. doi: 10.1177/0748730412442830, PMID 22653892.
Stavrianos C, Papadopoul C, Vasiliadis L, Dagkalis P, Stavrianou I, Petalotis N. Enamel structure, and forensic use. Res J Biol Sci. 2010;5(10):650-5. doi: 10.3923/rjbsci.2010.650.655.
Bromage TG, Lacruz RS, Hogg R, Goldman HM, McFarlin SC, Warshaw J, et al. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcif Tissue Int. 2009 May 1;84(5):388-404. doi: 10.1007/s00223-009-9221-2, PMID 19234658.
Tan SHX, Sim YF, Hsu CS. The difference in striae periodicity of Heilongjiang and Singaporean Chinese teeth. Front Physiol. 2017 Jun 29;8:442. doi: 10.3389/fphys.2017.00442, PMID 28706489.
Mahoney P, Miszkiewicz JJ, Pitfield R, Schlecht SH, Deter C, Guatelli‐Steinberg D. Biorhythms, deciduous enamel thickness, and primary bone growth: a test of the Havers‐Halberg Oscillation hypothesis. J Anat. 2016 Jun;228(6):919-28. doi: 10.1111/joa.12450, PMID 26914945.
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res. 2017 Aug 1;14(3):299-304. doi: 10.2174/1567202614666170718092010, PMID 28721811.
Smith TM. Experimental determination of the periodicity of incremental features in enamel. J Anat. 2006 Jan;208(1):99-113. doi: 10.1111/j.1469-7580.2006.00499.x, PMID 16420383.
Reid DJ, Dean MC. Variation in modern human enamel formation times. J Hum Evol. 2006 Mar 1;50(3):329-46. doi: 10.1016/j.jhevol.2005.09.003, PMID 16300817.
Athanassiou‐Papaefthymiou M, Kim D, Harbron L, Papagerakis S, Schnell S, Harada H, et al. Molecular and circadian controls of ameloblasts. Eur J Oral Sci. 2011 Dec;119(Suppl 1); Suppl 1:35-40. doi: 10.1111/j.1600-0722.2011.00918.x, PMID 22243224.
Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, et al. Regulation of dental enamel shape and hardness. J Dent Res. 2010 Oct;89(10):1024-38. doi: 10.1177/0022034510375829, PMID 20675598.
Zheng L, Seon YJ, Mourão MA, Schnell S, Kim D, Harada H, et al. Circadian rhythms regulate amelogenesis. Bone. 2013 Jul 1;55(1):158-65. doi: 10.1016/j.bone.2013.02.011, PMID 23486183.
McFarlane G, Guatelli‐Steinberg D, Loch C, White S, Bayle P, Floyd B, et al. An inconstant biorhythm: the changing pace of Retzius periodicity in permanent human teeth. Am J Phys Anthropol. 2021 May;175(1):172-86. doi: 10.1002/ajpa.24206, PMID 33368148.
Nakahata Y, Yoshida M, Takano A, Soma H, Yamamoto T, Yasuda A et al. A direct repeat of E-box-like elements is required for the cell-autonomous circadian rhythm of clock genes. BMC Mol Biol. 2008 Dec;9(1):1-. doi: 10.1186/1471-2199-9-1, PMID 18177499.
Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J. Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase-activating polypeptide type 1 receptor. J Neurosci. 2001 Jul 1;21(13):4883-90. doi: 10.1523/JNEUROSCI.21-13-04883.2001, PMID 11425915.
Ray S, Valekunja UK, Stangherlin A, Howell SA, Snijders AP, Damodaran G, et al. Circadian rhythms without the clock gene Bmal1. Science. 2020 Feb 14;367(6479):800-6. doi: 10.1126/science.aaw7365, PMID 32054765.
Egan KJ, Knutson KL, Pereira AC, von Schantz M. The role of race and ethnicity in sleep, circadian rhythms and cardiovascular health. Sleep Med Rev. 2017 Jun 1;33:70-8. doi: 10.1016/j.smrv.2016.05.004, PMID 27908540.
Antoine D, FitzGerald CM, Rose JC. Incremental structures in teeth: keys to unlocking and understanding dental growth and development. Biol Anthropol Hum Skeleton. 2018 Sep 11:225-56.
Zheng L, Seon YJ, McHugh J, Papagerakis S, Papagerakis P. Clock genes show circadian rhythms in salivary glands. J Dent Res. 2012 Aug;91(8):783-8. doi: 10.1177/0022034512451450, PMID 22699207.
Adeola HA, Papagerakis S, Papagerakis P. Systems biology approaches and precision oral health: a circadian clock perspective. Front Physiol. 2019 Apr 16;10:399. doi: 10.3389/fphys.2019.00399, PMID 31040792.
Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG. Deregulated PER1, PER2, and PER3 gene expression in breast cancers. Carcinogenesis. 2005;26(7):1241-6. doi: 10.1093/carcin/bgi075, PMID 15790588.
Stevens RG, Hansen J, Costa G, Haus E, Kauppinen T, Aronson KJ, et al. Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report [IARC Working Group report]. Occup Environ Med. 2011;68(2):154-62. doi: 10.1136/oem.2009.053512, PMID 20962033.
Hsu CM, Lin SF, Lu CT, Lin PM, Yang MY. Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol. 2012;33(1):149-55. doi: 10.1007/s13277-011-0258-2, PMID 22081375.
Oh EY, Yang X, Friedman A, Ansell CM, Du-Quiton J, Quiton DF, et al. Circadian transcription profile of mouse breast cancer under light-dark and dark-dark conditions. Cancer Genomics Proteomics. 2010;7(6):311-22. PMID 21156964.
Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLOS ONE. 2010 Jun 7;5(6):e10995. doi: 10.1371/journal.pone.0010995, PMID 20539819.
Relles D, Sendecki J, Chipitsyna G, Hyslop T, Yeo CJ, Arafat HA. Circadian gene expression and clinicopathologic correlates in pancreatic cancer. J Gastrointest Surg. 2013 Mar;17(3):443-50. doi: 10.1007/s11605-012-2112-2, PMID 23254314.
Zeng ZL, Luo HY, Yang J, Wu WJ, Chen DL, Huang P, et al. Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal CancerBmal1. Clin Cancer Res. 2014 Feb 15;20(4):1042-52. doi: 10.1158/1078-0432.CCR-13-0171, PMID 24277452.
Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 2016 Feb 28;371(2):314-25. doi: 10.1016/j.canlet.2015.12.002, PMID 26683776.
Mao Y, Fu A, Hoffman AE, Jacobs DI, Jin M, Chen K, et al. The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications. Tumour Biol. 2015 May;36(5):3533-9. doi: 10.1007/s13277-014-2989-3, PMID 25740058.
Markt SC, Valdimarsdottir UA, Shui IM, Sigurdardottir LG, Rider JR, Tamimi RM, et al. Circadian clock genes and risk of fatal prostate cancer. Cancer Causes Control. 2015 Jan;26(1):25-33. doi: 10.1007/s10552-014-0478-z, PMID 25388799.
Chen R, Yang K, Zhao NB, Zhao D, Chen D, Zhao CR, et al. Abnormal expression of PER1 circadian-clock gene in oral squamous cell carcinoma. Onco Targets Ther. 2012;5:403-7. doi: 10.2147/OTT.S38508, PMID 23226027.
Zhao Q, Zheng G, Yang K, Ao YR, Su XL, Li Y et al. The clock gene PER1 regulates the clock gene network in human oral squamous cell carcinoma cells. Oncotarget. 2016 Oct 25;7(43):70290-302. doi: 10.18632/oncotarget.11844, PMID 27602964.
Li HX, Fu XJ, Yang K, Chen D, Tang H, Zhao Q. The clock gene PER1 suppresses the expression of tumor-related genes in human oral squamous cell carcinoma. Oncotarget. 2016 Apr 4;7(15):20574-83. doi: 10.18632/oncotarget.7827, PMID 26943040.
Wang Q, Ao Y, Yang K, Tang H, Chen D. Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis, and cell cycle progression in human oral squamous cell carcinoma. Oncol Rep. 2016 Jun 1;35(6):3387-94. doi: 10.3892/or.2016.4724, PMID 27035749.
Nirvani M, Khuu C, Utheim TP, Sand LP, Sehic A. Circadian clock and oral cancer. Mol Clin Oncol. 2018 Feb 1;8(2):219-26. doi: 10.3892/mco.2017.1518, PMID 29435282.
Shellis RP. Utilization of periodic markings in enamel to obtain information on tooth growth. J Hum Evol. 1998 Oct 1;35(4-5):387-400. doi: 10.1006/jhev.1998.0260, PMID 9774501.
Kierdorf H, Kierdorf U, Frölich K, Witzel C. Lines of evidence–incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLOS ONE. 2013 Sep 6;8(9):e74597. doi: 10.1371/journal.pone.0074597, PMID 24040293.
Christopher Dean M. Tooth microstructure tracks the pace of human life-history evolution. Proc Biol Sci. 2006 Nov 22;273(1603):2799-808. doi: 10.1098/rspb.2006.3583, PMID 17015331.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Reshma Amin, Vinisha S Pousya, Krishna Prasanth Baalann

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

