Zinc Oxide Nanoparticles as The Anti-Bacterial Tool: In Vitro Study
Life Sciences-Nanotechnology
DOI:
https://doi.org/10.22376/ijlpr.2023.13.3.L94-L102Keywords:
Zinc oxide, Antimicrobial activity, Escherichia coli, DNA extractionAbstract
A new class of metal oxide nanoparticles has recently been found to be widely used in various health-related research. In particular, Zinc Oxide (ZnO) nanoparticles have occupied a prominent status due to their unique chemical and electrical properties. In our study, we aim to reveal the anti-bacterial effect of these nanoparticles. The antibacterial activity of zinc oxide (ZnO) nanoparticles against isolated pathogenic Escherichia coli (strain MTCC 723) was determined from our study. The antimicrobial properties of ZnO were also determined by adjusting the concentration of ZnO nanoparticles. By sonicating ZnO nanoparticles in water, a homogenized suspension was created, and the infusion was made at 50 – 150g/ml concentrations. Anaerobic conditions were used to culture the pathogenic strain of microbial species, and DNA was extracted using an extraction kit. For testing, equalized standard dilutions of cultivated bacteria were utilized. The anti-bacterial capabilities of zinc oxide (ZnO) nanoparticles against bacteria were measured using spectroscopic and diffusion experiments. ZnO nanoparticles with a diameter of 50 nm and a concentration of 150 g/ml lysed Escherichia coli DNA and cells. According to the findings, ZnO nanoparticles with a concentration of 150 g/ml had significantly more vigorous activity against Escherichia coli. The agar diffusion method was used to quantify the anti-bacterial activity of zinc oxide (ZnO) and the quality and amount of DNA extraction in the presence of ZnO nanoparticles (ZnO). The pathogenic Escherichia coli cells and the gene DNA are killed at the optimal dose. This study aims to know the anti-bacterial properties of ZnO nanoparticles against pathogenic Escherichia coli cells. The optimization of ZnO nanoparticles concentration against its effect on Escherichia coli cells is the next aim of this study.
References
Goldberg M, Langer R, XinqiaoJia. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18:241-68.
Busseron E, Ruff Y, Moulin E, Giuseppe N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5(16):7098-140. doi: 10.1039/c3nr02176a, PMID 23832165.
Rizzello L, Cingolani R, Pompa PP. Nanotechnology tools for anti-bacterial materials. Nanomedicine (Lond). 2013;8(5):807-21. doi: 10.2217/nnm.13.63, PMID 23656266.
KhandmaaDashnyam JHL, NandinMandakhbayar G-ZJ, Lee H-H, Kim HW. Intra-articular biomaterials-assisted delivery to treat temporomandibular joint disorders. J Tissue Eng. 2018;9:1-12.
Paladini F, Pollini M, Sannino A, LuigiAmbrosio. Metal-based anti-bacterial substrates for biomedical applications. J Biol Macromol. 2015;16:1873-85.
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103-10. doi: 10.1016/j.ijantimicag.2009.01.017, PMID 19339161.
Secinti KD, Özalp H, Attar A, Sargon MF. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci. 2011;18(3):391-95. doi: 10.1016/j.jocn.2010.06.022, PMID 21256031.
Chen GJ, Wang ZG, Qiao X, Xu JY, Tian JL, Yan SP. Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity studies of a family of heavy rare earth complexes. J Inorg Biochem. 2013;127:39-45. doi: 10.1016/j.jinorgbio.2013.06.002, PMID 23850667.
Coughlan A, Scanlon K, Mahon BP, Towler MR. Zinc and silver glass polyalkenoate cement: an evaluation of their anti-bacterial nature. Bio Med Mater Eng. 2010;20(2):99-106. doi: 10.3233/BME-2010-0620, PMID 20592447.
Mahavir J, Sneh L, Preeti K, Tulika M. Application of nanostructures in Antimicrobial Therapy. Int J App Pharm. 2018;10(4):11-25. doi: 10.22159/ijap.2018v10i4.25803.
QianYu ZW, Che H. Dual-function anti-bacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1-13.
Muntaha R. Al-jamboree, Majid H. Al-Jailawi, Ayad M. Al-Obaedi, and Shaymaa R. Al-Jeboory. Int’. Pharm Food Sci conference on Medical Genetics, Cellular & Molecular Biology. Vol. l; 2015.
Jacob V, P R. In vitro analysis: the antimicrobial and antioxidant activity of zinc oxide nanoparticles from Curcuma longa. Asian J Pharm Clin Res. 2019;12(1):200-4. doi: 10.22159/ajpcr.2018.v12i1.28808.
Singh G, Joyce EM, Beddow J, Mason TJ. Evaluation of the anti-bacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. World J Microbiol Biotechnol. 2012;2:106-20.
Mahalanabis M, Al-Muayad H, Kulinski MD, Altman D, Klapperich CM. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. Lab Chip. 2009;9(19):2811-17. doi: 10.1039/b905065p, PMID 19967118.
PrasunPatra SR, SampadSarkar SM, SaheliPradhan ND, ArunavaGoswami. Damage of lipopolysaccharides in the outer cell membrane and production of ROS-mediated stress within bacteria makes Nano zinc oxide a bactericidal agent. Appl Nanosci. 2015;5:857-66.
NagarajanPadmavathy RV. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2008;9:1-7.
SeyedehAtefeAleaghil EF, BasirehBaei MS, HaniehBagheri NJ, Ghaemi EA. Anti-bacterial activity of zinc oxide nanoparticles on Staphylococcus aureus. Int J Adv Biotechnol Res. 2016;7:1569-75.
Xie Y, He Y, Irwin PL, Jin T, Shi X. Anti-bacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325-31. doi: 10.1128/AEM.02149-10, PMID 21296935.
Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM et al. Review on zinc oxide nanoparticles: anti-bacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7(3):219-42. doi: 10.1007/s40820-015-0040-x, PMID 30464967.
ZarrindokhtEmami-Karvani, PegahChehrazi. Anti-bacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res. 2011;5:1368-73.
Narayanan PM, Wilson WijoS, Abraham AT, Sevanan M. Synthesis, antimicrobial characterization activity of zinc oxide nanoparticles against human pathogens. BioNanoSci. 2012;2(4):329-35. doi: 10.1007/s12668-012-0061-6.
Reddy LS, Nisha MM, Joice M, Shilpa PN. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol. 2014;52(11):1388-97. doi: 10.3109/13880209.2014.893001, PMID 25026353.
Azam A, Ahmed AS, Oves M, Khan MS, Habib SamiS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine. 2012;7:6003-9. doi: 10.2147/IJN.S35347, PMID 23233805.
Mostafa AA. Anti-bacterial activity of zinc oxide nanoparticles against toxigenic Bacillus cereus and Staphylococcus aureus isolated from some Egyptian food. Int J Microbiol Res. 2015;6:145-54.
Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interface Sci. 2017;249:37-52. doi: 10.1016/j.cis.2017.07.033, PMID 28923702.
Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Anti-bacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009;107(4):1193-201. doi: 10.1111/j.1365-2672.2009.04303.x, PMID 19486396.
Silalahi J, Situmorang P, Patilaya P, Ce Silalahi Y. Anti-bacterial activity of chitosan and hydrolyzed coconut oil and their combination against Bacillus Cerus and Escherichia coli. Asian J Pharm Clin Res. 2016;9(5):69-73. doi: 10.22159/ajpcr.2016.v9i5.11768.
UrRahman A. Tajuddin and AzamalHusen, KhwajaSalahuddinSiddiqi. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13:1.
Jones N, Ray B, Ranjit KT, Manna AC. Anti-bacterial activity of ZnO nanoparticles suspensions abroad spectrum of microorganisms. FEMSmicrobiol [lett]. 2008;279:71-6.
V. Lakshmi Prasanna and RajagopalanVijayaraghavan. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir. 2015;9:155-62.
Li Y, Niu J, Shang E, Crittenden JC. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Res. 2016;98:9-18. doi: 10.1016/j.watres.2016.03.050, PMID 27064207.
Kumar A, Pandey AK, Singh SS, Dhawa RSA. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med. 1881;51:872 2011.
SolmazMalekiDizaja FL, Barzegar-Jalalia M, HosseinZarrintan M, KhosroAdibkia. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Scieng C Mater Biolappl. 2014;44:278-84.
WesamSalem, Deborah R. Leitnera,Franz G. Zing,GebhartSchratter ,Ruth Prassl,WalterGoessler,Joachim Reidl, Stefan Schild.Anti-bacterial activity of silver and zinc nanoparticles against Vibrio cholera and enterotoxicEscherichia coli. Int J Med Microbiol. 2015;305:85-95.
Pasquet J, Chevalier Y, Couval E, Bouvier D, Noizet G, Morlière C et al. Antimicrobial activity of zinc oxide particles on five microorganisms of the Challenge Tests related to their physicochemical properties. Int J Pharm. 2014;460(1-2):92-100. doi: 10.1016/j.ijpharm.2013.10.031, PMID 24211859.
Cloutier M, Mantovani D, Rosei F. Anti-bacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33(11):637-52. doi: 10.1016/j.tibtech.2015.09.002, PMID 26463723.
Annamalai P, Balashanmugam P, Kalaichelvan PT. Biogenic Synthesis Silver Nanoparticles Using PeltophorumPetrocarpum Leaf Extracts and its antimicrobial Efficacy against selective pathogens. Int J Appl Pharm. 2018;10:112-18.
AnkicaSaric ID, GoranStefanic, GoranDrazic. The influence of ethanolamines on the solvothermal synthesis of zinc oxide: A combined experimental and theoretical study. Chem Select. 2017;2:10038-49.
Saito N, Haneda H. Hierarchical structures of ZnO spherical particles synthesized solvothermal. Sci Technol Adv Mater. 2011;12(6):064707. doi: 10.1088/1468-6996/12/6/064707, PMID 27877457.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Gargibala Satpathy, Jayanti Rebecca, Umabati Sahu, Ipsita Das, E. Manikandan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

