Insights of Lipid-Based Drug Delivery Systems with an Emphasis on Quality by Design

Pharmaceutical Science-Pharmaceutics

Authors

  • Venkatesh Battula Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu -515721, India.
  • Haranath Chinthaginjala Associate professor & Head, Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research Ananthapuramu -515721, India. https://orcid.org/0000-0001-8604-6306
  • Mousami Bhavasar Telkar Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu -515721, India.
  • Udit Narayan Singh Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu -515721, India.
  • Nagashubha Bobbarjang RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu -515721, India.
  • Bhargav Eranti RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu -515721, India.

DOI:

https://doi.org/10.22376/ijlpr.2023.13.2.P83-P98

Keywords:

Quality by design, Lipid-based drug delivery systems, Statistical design of experiments, risk assessment.

Abstract

Lipid-based drug delivery systems offer several advantages and have wide solubility, permeation, and bioavailability enhancement applications. This review provides detailed information on the fabrication, application and aspects of QbD of various lipid-based vesicles. Most of the review studies focused on lipid-based vesicles without the QbD aspect. This review article covers all the lipid-based systems in escalating on the method of QbD, which enhances the bioavailability of active pharmaceutical ingredients in different formulation approaches. Among all the different available approaches towards formulation development, lipid-based drug delivery systems (LBDDS) have continually maintained the limelight on themselves. One of the reasons for the popularity of LBDDS is their ability to solve problems with poorly water-soluble drugs and their bioavailability. Several drugs' efficacy was improved by utilizing this type of delivery system. Vesosomes, Phytosomes, Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs), and Archaeosomes are novel lipid-based systems with unique applications in drug delivery. Hence, the present perspective is to review the various LBDDS approaches utilized to enhance the formulations' performance while dissecting the studies systematically to get a clear outline of various LBDD subsystems, their applications, methods of preparation, and the mechanism of drug delivery. In addition to this, the review also focuses on overcoming the lacunas of the past literature by making an attempt to identify Quality target product profile (QTPP), Critical quality attributes (CQAs) and applying them for the statistical design of experiments and continuous strategy by QbD at the same time harnessing their potential in risk assessment. Applying QbD in developing lipid-based drug delivery systems reduces the number of trials and yields a product with in-built quality as it deliberates various critical variables, process parameters, risk assessment, and control strategy in formulation development.

References

Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B. 2013;3(6):361-726:361-72. doi: 10.1016/j.apsb.2013.10.001.

Lavik EB, Kuppermann BD, Humayun MS. Chapter 38. Drug delivery. In: Ryan SJ, Sadda SR, Hinton DR, Schachat AP, Sadda SR, Wilkinson CP, et al., editors. Retina. 5th ed. London: W B Saunders; 2013. p. 734-45.

Nayak K, Choudhari MV, Bagul S, Chavan TA, Misra M. Chapter 24. Ocular drug delivery systems. In: Chappel E, editor. Drug delivery devices and therapeutic systems. Academic Press; 2021. p. 515-66.

Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:71:7. doi: 10.1038/s41392-017-0004-3, PMID 29560283.

Ng LC, Gupta M. Transdermal drug delivery systems in diabetes management: a review. Asian J Pharm Sci. 20201:13-25;15(1):13-25. doi: 10.1016/j.ajps.2019.04.006, PMID 32175015.

CHAPTER AM. Pulmonary drug delivery. In: Kulkarni VS, editor. Handbook of non-invasive drug delivery systems. Vol. 9. Boston: William Andrew Publishing; 2010. p. 209-46.

Shende P, Basarkar V. Recent trends and advances in microbe-based drug delivery systems. Daru. 20192:799-809;27(2):799-809. doi: 10.1007/s40199-019-00291-2, PMID 31376116.

Naghizadeh Z, Karkhaneh A, Nokhbatolfoghahaei H, Farzad-Mohajeri S, Rezai-Rad M, Dehghan MM, et al. Cartilage regeneration with dual-drug-releasing injectable hydrogel/microparticle system: in vitro and in vivo study. J Cell Physiol. 20213:2194-204;236(3):2194-204. doi: 10.1002/jcp.30006, PMID 32776540.

Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019;146:209-39. doi: 10.1016/j.addr.2018.12.014, PMID 30605737.

Abd El Hadi SR, Zien El-Deen EE, Bahaa MM, Sadakah AA, Yassin HA. COVID-19: vaccine delivery system, drug repurposing and application of molecular modeling approach. Drug Des Devel Ther. 2021;15:3313-30. doi: 10.2147/DDDT.S320320, PMID 34366663.

Mukherjee S, Hettiarachchy N, Verghese M. Nutraceutical delivery system. In: Pal K, Banerjee I, Sarkar P, Bit A, Kim D, Anis A, et al., editors. Food, medical, and environmental applications of polysaccharides. Vol. 5. Elsevier; 2021. p. 135-59.

Zhang L, Mao S. Application of quality by design in the current drug development. Asian J Pharm Sci. 20171:1-8;12(1):1-8. doi: 10.1016/j.ajps.2016.07.006, PMID 32104308.

Chinthaginjala H, Ahad HA, Bhargav E, Pradeepkumar B. Central composite design aided formulation development and optimization of Clarythromycin extended-release tablets. Indian J Pharm Educ Res. 20212:395-406;55(2):395-406. doi: 10.5530/ijper.55.2.77.

Beg S, Sandhu PS, Batra RS, Khurana RK, Singh B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv. 2015;22(6):765-84. doi: 10.3109/10717544.2014.900154. PMID 24673611.

Mishra V, Thakur S, Patil A, Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv. 2018;15(8):737-58. doi: 10.1080/17425247.2018.1504768, PMID 30044646.

Rahman M, Panda SS, Beg S. Pharmaceutical QbD-Omnipresence in the product development lifecycle. Eur Pharm Rev. 2017:1-10.

Waghule T, Dabholkar N, Gorantla S, Rapalli VK, Saha RN, Singhvi G. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): a risk based industrial approach. Biomed Pharmacother. 2021;141:111940. doi: 10.1016/j.biopha.2021.111940. PMID 34328089. Jang H, Hu PC, Jung S, Kim WY, Kim SM, Malmstadt N et al.. Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation. Biotechnol J. 2013;8(11):1341-6. doi: 10.1002/biot.201200388. PMID 23894035.

Paleos CM, Tsiourvas D, Sideratou Z, Pantos A. Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. J Control Release. 20131:141-52;170(1):141-52. doi: 10.1016/j.jconrel.2013.05.011, PMID 23707326.

Semalty A, Semalty M, Singh D, Rawat MS. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharm (Zagreb Croatia). 2009;59(3):335-44. doi: 10.2478/v10007-009-0023-x, PMID 19819829.

Pandita A, Sharma P. Pharmacosomes: an emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm. 2013;2013:348186. doi: 10.1155/2013/348186, PMID 24106615.

Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - an effective triumvirate of pharmacosomes. Adv Colloid Interface Sci. 2018;253:35-65. doi: 10.1016/j.cis.2018.01.003, PMID 29454464.

Jain PK, Kharya M, Gajbhiye A. Pharmacological evaluation of mangiferin herbosomes for antioxidant and hepatoprotection potential against ethanol induced hepatic damage. Drug Dev Ind Pharm. 201311:1840-50;39(11):1840-50. doi: 10.3109/03639045.2012.738685, PMID 23167243.

Jain PK, Khurana N, Pounikar Y, Gajbhiye A, Kharya MD. Enhancement of absorption and hepatoprotective potential through soya-phosphatidylcholine-andrographolide vesicular system. J Liposome Res. 20132:110-8;23(2):110-8. doi: 10.3109/08982104.2012.753456, PMID 23506220.

Akache B, Stark FC, Iqbal U, Chen W, Jia Y, Krishnan L, et al. Safety and biodistribution of sulfated archaeal glycolipid archaeosomes as vaccine adjuvants. Hum Vaccin Immunother. 20187:1746-59;14(7):1746-59. doi: 10.1080/21645515.2017.1423154, PMID 29336668.

Akache B, Stark FC, Iqbal U, Chen W, Jia Y, Krishnan L, et al. Safety and biodistribution of sulfated archaeal glycolipid archaeosomes as vaccine adjuvants. Hum Vaccin Immunother. 20187:1746-59;14(7):1746-59. doi: 10.1080/21645515.2017.1423154, PMID 29336668.

Attar A, Ogan A, Yucel S, Turan K. The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol. 20162:710-6;44(2):710-6. doi: 10.3109/21691401.2014.982800, PMID 25650647.

Zavec AB, Ota A, Zupancic T, Komel R, Ulrih NP, Liovic M. Archaeosomes can efficiently deliver different types of cargo into epithelial cells grown in vitro. J Biotechnol. 2014;192(A) Pt A:130-5:130-5. doi: 10.1016/j.jbiotec.2014.09.015, PMID 25270023.

Bhise K, Kashaw SK, Sau S, Iyer AK. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: quality by design (QbD) approach. Int J Pharm. 2017 Jun 301-2:506-515;526(1-2):506-15. doi: 10.1016/j.ijpharm.2017.04.078, PMID 28502895.

Cunha S, Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: a review. Nanomedicine. 2020;28:102206. doi: 10.1016/j.nano.2020.102206, PMID 32334097.

Shah P, Goodyear B, Haq A, Puri V, Michniak-Kohn B. Evaluations of quality by design (QbD) elements impact for developing niosomes as a promising topical drug delivery platform. Pharmaceutics. 2020;12(3). doi: 10.3390/pharmaceutics12030246, PMID 32182792.

Kaur G, Garg T, Rath G, Goyal AK. Archaeosomes: an excellent carrier for drug and cell delivery. Drug Deliv. 20167:2497-512;23(7):2497-512. doi: 10.3109/10717544.2015.1019653, PMID 25777339.

Dobó DG, Németh Z, Sipos B, Cseh M, Pallagi E, Berkesi D et al. Pharmaceutical development and design of thermosensitive liposomes based on the QbD approach. Molecules. 2022;27(5). doi: 10.3390/molecules27051536, PMID 35268637.

Scioli-Montoto S, Sbaraglini ML, Cisneros JS, Chain CY, Ferretti V, León IE et al. Novel phenobarbital-loaded nanostructured lipid carriers for epilepsy treatment: from QbD to in vivo evaluation. Front Chem. 2022;10:908386. doi: 10.3389/fchem.2022.908386, PMID 36059881.

Higa LH, Arnal L, Vermeulen M, Perez AP, Schilrreff P, Mundiña-Weilenmann C, et al. Ultradeformable archaeosomes for needle free nanovaccination with Leishmania braziliensis antigens. PLOS ONE. 20163:[e0150185 p.];11(3):e0150185. doi: 10.1371/journal.pone.0150185, PMID 26934726.

Attar A, Bakir C, Yuce-Dursun B, Demir S, Cakmakci E, Danis O, et al. Preparation, characterization, and in vitro evaluation of isoniazid and rifampicin-loaded archaeosomes. Chem Biol Drug Des. 20181:153-61;91(1):153-61. doi: 10.1111/cbdd.13066, PMID 28667670.

Rezelj S, Kozorog M, Švigelj T, Ulrih NP, Žnidaršič N, Podobnik M, et al. Cholesterol enriched archaeosomes as a molecular system for studying interactions of cholesterol-dependent cytolysins with membranes. J Membr Biol. 20183:491-505;251(3):491-505. doi: 10.1007/s00232-018-0018-y, PMID 29476261.

McCluskie MJ, Deschatelets L, Krishnan L. Sulfated archaeal glycolipid archaeosomes as a safe and effective vaccine adjuvant for induction of cell-mediated immunity. Hum Vaccin Immunother. 201712:2772-9;13(12):2772-9. doi: 10.1080/21645515.2017.1316912, PMID 28537465.

Rathee S, Kamboj A. Optimization and development of antidiabetic phytosomes by the Box-Behnken design. J Liposome Res. 20182:161-72;28(2):161-72. doi: 10.1080/08982104.2017.1311913, PMID 28337938.

Fahmy R, Kona R, Dandu R, Xie W, Claycamp G, Hoag SW. Quality by design I: Application of failure mode effect analysis (FMEA) and Plackett–Burman design of experiments in the identification of ”main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS PharmSciTech. 2012 Dec4:1243–1254;13(4):1243-54. doi: 10.1208/s12249-012-9844-x, PMID 22993122.

Zhang X, Zong W, Cheng W, Han X. Codelivery of doxorubicin and sodium tanshinone IIA sulfonate using multicompartmentalized vesosomes to enhance synergism and prevent doxorubicin-induced cardiomyocyte apoptosis. J Mater Chem B. 2018;6(32):5243-732:5243-7. doi: 10.1039/c8tb01136b, PMID 32254761.

Zhang ZR, Wang JX, Lu J. [Optimization of the preparation of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine pharmacosomes using central composite design]. Yao Xue Xue Bao. 20016:456-61;36(6):456-61. PMID 12585133.

Bhise K, Kashaw SK, Sau S, Iyer AK. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: quality by design (QbD) approach. Int J Pharm. 20171-2:506-15;526(1-2):506-15. doi: 10.1016/j.ijpharm.2017.04.078, PMID 28502895.

Kovács A, Berkó S, Csányi E, Csóka I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the Quality by Design method. Eur J Pharm Sci. 2017;99:246-57. doi: 10.1016/j.ejps.2016.12.020, PMID 28012940.

Cavalcanti SMT, Nunes C, Costa Lima SA, Soares-Sobrinho JL, Reis S. Optimization of nanostructured lipid carriers for zidovudine delivery using a microwave-assisted production method. Eur J Pharm Sci. 2018;122:22-30. doi: 10.1016/j.ejps.2018.06.017, PMID 29933076.

Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm. 2019;563:110-21. doi: 10.1016/j.ijpharm.2019.03.056, PMID 30935913.

Kaur A, Bhoop BS, Chhibber S, Sharma G, Gondil VS, Katare OP. Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis. Int J Pharm. 20171:206-24;533(1):206-24. doi: 10.1016/j.ijpharm.2017.09.041, PMID 28943207.

Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 20205:1476-94;10(5):1476-94. doi: 10.1007/s13346-020-00803-7, PMID 32519202.

Yadav NK, Raghuvanshi A, Sharma G, Beg S, Katare OP, Nanda S. QbD-based development and validation of a stability-indicating HPLC method for estimating ketoprofen in bulk drug and proniosomal vesicular system. J Chromatogr Sci. 20163:377-89;54(3):377-89. doi: 10.1093/chromsci/bmv151, PMID 26514627.

Sharma T, Jain A, Kaur R, Saini S, Katare OP, Singh B. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation. Drug Deliv Transl Res. 20204:839-61;10(4):839-61. doi: 10.1007/s13346-020-00772-x, PMID 32415654.

Raina H, Kaur S, Jindal AB. Development of efavirenz loaded solid lipid nanoparticles: risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. J Drug Deliv Sci Technol. 2017;39:180-91. doi: 10.1016/j.jddst.2017.02.013.

Pallagi E, Jójárt-Laczkovich O, Németh Z, Szabó-Révész P, Csóka I. Application of the QbD-based approach in the early development of liposomes for nasal administration. Int J Pharm. 2019;562:11-22. doi: 10.1016/j.ijpharm.2019.03.021, PMID 30877028.

Tefas LR, Sylvester B, Tomuta I, Sesarman A, Licarete E, Banciu M, et al. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des Devel Ther. 2017;11:1605-21. doi: 10.2147/DDDT.S129008, PMID 28579758.

Porfire A, Muntean DM, Rus L, Sylvester B, Tomuţă I. A quality by design approach for the development of lyophilized liposomes with simvastatin. Saudi Pharm J. 20177:981-92;25(7):981-92. doi: 10.1016/j.jsps.2017.01.007, PMID 29158704.

Dawoud MHS, Yassin GE, Ghorab DM, Morsi NM. Insulin mucoadhesive liposomal gel for wound healing: a formulation with sustained release and extended stability using quality by design approach. AAPS PharmSciTech. 20194:158;20(4):158. doi: 10.1208/s12249-019-1363-6, PMID 30963353.

Agarwal S, Murthy RSR, Harikumar SL, Garg R. Quality by Design Approach for Development and Characterisation of Solid Lipid Nanoparticles of Quetiapine Fumarate. Curr Comput Aided Drug Des. 20201:73-91;16(1):73-91. doi: 10.2174/1573409915666190722122827, PMID 31429691.

Badawi NM, Teaima MH, El-Say KM, Attia DA, El-Nabarawi MA, Elmazar MM. Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. Int J Nanomedicine. 2018;13:1313-26. doi: 10.2147/IJN.S154033, PMID 29563789.

El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLOS ONE. 20188:e0203405;13(8):e0203405. doi: 10.1371/journal.pone.0203405, PMID 30161251.

Published

2023-03-01

How to Cite

Battula, V. ., Chinthaginjala, H. ., Telkar, M. B. ., Singh, U. N., Bobbarjang, N. ., & Eranti, B. . (2023). Insights of Lipid-Based Drug Delivery Systems with an Emphasis on Quality by Design: Pharmaceutical Science-Pharmaceutics. International Journal of Life Science and Pharma Research, 13(2), P83-P98. https://doi.org/10.22376/ijlpr.2023.13.2.P83-P98

Issue

Section

Review Articles