Diabetes Ketoacidosis Is a Cause of Concern in Sodium-Glucose Co-Transporter-2 Inhibitors Medication
Pharmaceutical Science-Pharmaceutics
DOI:
https://doi.org/10.22376/ijlpr.2023.13.SP1.P55-P67Keywords:
Diabetes Ketoacidosis, Sodium-Glucose Cotransporter-2 Inhibitor, Ketogenesis, Type-1 Diabetes, Type-2 DiabetesAbstract
Abstract: Diabetic ketoacidosis (DKA) is a dangerous complication that can afflict persons with Type 1 and Type 2 diabetes and is caused by a lack of glucose utilization and insulin generation. DKA is diagnosed by observing the anion gap values, blood glucose level, pH, serum bicarbonate level, and so on. DKA is associated with an elevated blood glucose of > 250 mg/dl (16.7 mmol/l) and is diagnosed by observing the values of anion gap, blood glucose level, pH, serum bicarbonate level, and so on. It occurs more frequently in type 1 diabetics with low insulin levels. Sodium-glucose Co-transporter-2 (SGLT-2) inhibitors are a novel family of anti-diabetic medications that lower blood glucose levels and produce glucosuria. The US Food and Drug Administration (USFDA) has issued a drug safety warning about the increased risk of DKA when using SGLT-2 inhibitors. Following the USFDA's warning, the European Medicine Agency reported 101 more cases of ketoacidosis caused by SGLT-2 inhibitors in people with Type 2 Diabetes Mellitus (EMA). According to the American Association of Clinical Endocrinologists, all SGLT-2 inhibitors should be stopped 3-4 days before major surgery and 24 hours before elective surgery. This review article focuses on the metabolism of ketone bodies and many pathophysiologic mechanisms of SGLT-2 inhibitors, which lower insulin/glucagon ratios, promote glucagon secretion from alpha cells, and increase ketones levels by stimulating lipolysis and resulting in ketogenesis. The primary goal of this study is to improve our understanding of a significant consequence of DKA caused by sodium-glucose cotransporter-2 inhibitors in patients with Type 1 and Type 2 diabetes. Psychosocial factors linked to diabetic ketoacidosis in adults with type 1 diabetes, as well as the prevalence of DKA in COVID-19 patients, have been linked to higher severity of mortality and duration of stay in these patients, according to recent research.
References
Erondu N, Desai M, Ways K, Meininger G. Diabetic ketoacidosis and related events in the canagliflozin type-2 diabetes clinical program. Diabetes Care. 2015;38(9):1680-6. doi: 10.2337/dc15-1251, PMID 26203064.
Singh AK. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: wisdom of hindsight. Indian J Endocrinol Metab. 2015;19(6):722-30. doi: 10.4103/2230-8210.167554, PMID 26693421.
Bairy PS, Das A, Nainwal LM, Mohanta TK, Kumawat MK, Mohapatra PK et al. Design, synthesis and anti-diabetic activity of some novel xanthone derivatives targeting α-glucosidase. Bangladesh J Pharmacol. 2016;11(2):308-18. doi: 10.3329/bjp.v11i2.25851.
Srivastava JK, Dubey P, Singh S, Bhat HR, Kumawat MK, Singh UP. Discovery of novel 1,3,5-triazinethiazolidine-2,4-diones as dipeptidyl peptidase-4 (DPP-4) inhibitor targeting S1 pocket for the treatment of type 2 diabetes along with antibacterial activity. RSC Adv. 2015;5(19):14095-102. doi: 10.1039/C4RA16903D.
Ogawa W, Sakaguchi K. Euglycemia diabetic ketoacidosis induced by SGLT-2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig. 2016;7(2):135-8. doi: 10.1111/jdi.12401, PMID 27042263.
Taylor SI, Blau JE, Rother KI. SGLT-2 Inhibitors May Predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100(8):2849-52. doi: 10.1210/jc.2015-1884, PMID 26086329.
Abate N, Chandalia M. SGLT-2 inhibitors and ketoacidosis: cause of concern? Metab Syndr Relat Disord. 2016;14(1):1-2. doi: 10.1089/met.2015.29002.aba, PMID 26554527.
Laffel L. Ketone bodies: a review of physiology, pathophysiology, and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412-26. doi: 10.1002/(sici)1520-7560(199911/12)15:6<412::aid-dmrr72>3.0.co;2-8, PMID 10634967.
Palmer BF, Deborah J, Taylor SI, Weir MR. Diabetes ketoacidosis, SGLT-2 inhibitors and kidney. J Diabetes Complications. 2016;30(6):1162-6. doi: 10.1016/j.jdiacomp.2016.05.008.
Milder DA, Milder TY, Kam PCA. Sodium-glucose cotransporter type-2 inhibitors: pharmacology and peri-operative considerations. Anaesthesia. 2018;73(8):1008-18. doi: 10.1111/anae.14251, PMID 29529345.
Yu X, Zhang S, Zhang L. Newer perspectives of mechanism for euglycemic Diabetic ketoacidosis. Int J Endocrinol. 2018;2018:7074868. doi: 10.1155/2018/7074868, PMID 30369948.
Kibbey RG. SGLT-2 inhibition and glucagon: cause of alarm? Trends Endocrinol Metab. 2015;26(7):337-8. doi: 10.1016/j.tem.2015.05.011, PMID 26059706.
Barski L, Eshkoli T, Brandstaetter E, Jotkowitz A. Euglycemic diabetes ketoacidosis. Eur J Intern Med. 2019;63:9-14. doi: 10.1016/j.ejim.2019.03.0.
Donnan K, Segar L. SGLT-2 inhibitors and metformin: dual antihyperglycemic therapy and the risk of metabolic acidosis in type-2 diabetes. Eur J Pharmacol. 2019;846:23-9. doi: 10.1016/j.ejphar.2019.01.002, PMID 30639796.
Dizon S, Keely EJ. Insights into the recognition and management of SGLT-2 inhibitors-Associated ketoacidosis: it’s not just euglycemic diabetic ketoacidosis. Can J Diabetes. 2017;41(5):1-5. doi: 10.1016/j.jcjd.2017.05.004.
Chow YY, Worsley R, Topliss DJ. Lessons from the bedside: ketoacidosis and SGLT-2 inhibitors. Med J Aust. 2016;205(4):191-2. doi: 10.5694/mja16.00435, PMID 27510353.
Yehya A, Archana S. Sodium-glucose Cotransporter-2 inhibitor-associated prolonged euglycemic diabetic ketoacidosis in type-2 diabetes: A case report and literature review. Clin Diabetes J. 2019;38(1):112-16. doi: 10.2337/cd19-0035.
Farjo PD, Kidd KM, Reece JL. A case of euglycemic diabetic ketoacidosis following Long-term Empagliflozin Therapy. Diabetes Care. 2016;39(10):e165-6. doi: 10.2337/dc16-0728, PMID 27436273.
McGill JB, Subramanian S. Safety of sodium-glucose Cotransporter-2 inhibitors. Am J Cardiol. 2019;124(1);Suppl 1:S45-52. doi: 10.1016/j.amjcard.2019.10.029, PMID 31741440.
Goldenberg RM, Berard LD, Cheng AY, Verma S, Yale Jean F, Woo Vincent C et al. SGLT-2 inhibitor-associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis Clinical. Clint Ther. 2016;38(12):2654-2664.e1.
[cited 25.7.2021]Available from: http://www.fda.gov. ’FDA warns that SGLT-2 inhibitors for diabetes may result in a serious condition of too much acid in the blood.’ Publish. Food and Drug Administration; May 15, 2015, September 2017.
[cited 25.7.2021]Available from: http://www.ema.europa.eu. EMA; 2016, September 2017. Review of diabetes medicines called SGLT-2 inhibitors started: risk of diabetic ketoacidosis to be examined.
Redford C, Doberty L, Smith J. SGLT-2 inhibitors and the risk of ketoacidosis. Diabetes Endocrinol. 2015;32:263-4. doi: 10.1111/dom.14075.
Wang KM, Isom RT. SGLT-2 inhibitors-induced euglycemic diabetic ketoacidosis: A case report. Kidney Med. 2020;2(2):218-21. doi: 10.1016/j.xkme.2019.12.006, PMID 32734242.
Andalib A, Elbahrawy A, Alshlwi S, Alkhamis A, Hu W, Demyttenaere S et al. Diabetic ketoacidosis following bariatric surgery in patients with Type 2 diabetes. Diabetes Care. 2016;39(8):e121-2. doi: 10.2337/dc16-0280, PMID 27208337.
Hayami T, Kato Y, Kamiya H, Kondo M, Naito E, Sugiura Y et al. Case of ketoacidosis by a sodium-glucose cotransporter-2 inhibitor in a diabetic patient with a low carbohydrate diet. J Diabetes Investig. 2015;6(5):587-90. doi: 10.1111/jdi.12330, PMID 26417418.
Hine J, Paterson H, Abrol E, Russell-Jones D, Herring R. SGLT inhibition and euglycaemic diabetic ketoacidosis. Lancet Diabetes Endocrinol. 2015;3(7):503-4. doi: 10.1016/S2213-8587(15)00204-1, PMID 26025388.
Fayfman M, Pasquel FJ, Umpierrez GE. Management of hyperglycemic crises: diabetic ketoacidosis and hyperglycemic Hyperosmolar State. Med Clin North Am. 2017;101(3):587-606. doi: 10.1016/j.mcna.2016.12.011, PMID 28372715.
Isaacs M, Tonks KT, Greenfield JR. Euglycemic diabetic ketoacidosis in patients using sodium-glucose cotransporter 2 inhibitors. Intern Med J. 2017;47(6):701-4. doi: 10.1111/imj.13442, PMID 28580740.
Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT-2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33(5):1-9. doi: 10.1002/dmrr.2886, PMID 28099783.
Patel L, Ayad S, Rayad MN, Gergis K, Ejikeme C, Talpur A et al. A Case of new onset diabetes and severe diabetes ketoacidosis in a patient with COVID-19. Cureus. 2021;13(8):e16923. doi: 10.7759/cureus.16923, PMID 34513494.
Ren H, Yang Y, Wang F, Yan Y, Shi X, Dong K et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. Cardiovasc Diabetol. 2020;19(1):58. doi: 10.1186/s12933-020-01035-2, PMID 32393351.
Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020;164:108166. doi: 10.1016/j.diabres.2020.108166, PMID 32339533.
Eskandarani RM, Sawan S. Diabetic ketoacidosis on hospitalization with COVID-19 in a previously nondiabetic patient: a review of pathophysiology. Clin Med Insights Endocrinol Diabetes. 2020;13:1179551420984125. doi: 10.1177/1179551420984125, PMID 33488135.
Korytkowski M, Antinori-Lent K, Drincic A, Hirsch IB, McDonnell ME, Rushakoff R et al. A pragmatic approach to inpatient diabetes management during the COVID-19 pandemic. J Clin Endocrinol Metab. 2020;105(9). doi: 10.1210/clinem/dgaa342, PMID 32498085.
Clapin H, Smith G, Vijayanand S, Jones T, Davis E, Haynes A. Moderate and severe diabetic ketoacidosis at type-1 diabetes onset in children over two decades: A population-based study of prevalence and long-term glycemic outcomes. Pediatr Diabetes. 2022;23(4):473-9. doi: 10.1111/pedi.13327, PMID 35218122.
Bolli GB, Porcellati F, Lucidi P, Fanelli CG. Metabolic Effects of SGLT-2 inhibitors during a period of Acute insulin Withdrawal and Development of ketoacidosis in people with type1. Diabetes Care. 2021;44(3):e59-60. doi: 10.2337/dc20-2575, PMID 33608328.
Dorcely B, Nitis J, Schwartzbard A, Newman JD, Goldberg IJ, Sum M. A case report: euglycemic diabetic ketoacidosis presenting as chest pain in a patient on a low carbohydrate diet. Curr Diabetes Rev. 2021;17(2):243-6. doi: 10.2174/1573399816666200316112709, PMID 32178617.
Kapila V, Topf J. Sodium-glucose cotransporter 2 inhibitor-associated euglycemic diabetic ketoacidosis after bariatric surgery: A case and literature review. Cureus. 2021;13(8):e17093. doi: 10.7759/cureus.17093, PMID 34527480.
Plewa MC, Bryant M, King-Thiele R. Euglycemic diabetic ketoacidosis. StatPearls Publishing Island. 2022.
Dutta S, Kumar T, Singh S, Ambwani S, Charan J, Varthya SB. Euglycemic diabetic ketoacidosis associated with SGLT2 inhibitors A systematic review and quantitative analysis. J Fam Med Prim Care. 2022;11(3):927-40. doi: 10.4103/jfmpc.jfmpc_644_21, PMID 35495849.
Alhemeiri M, Alseddeeqi E. Euglycemic diabetic ketoacidosis after discontinuing SGLT2 inhibitor. Case Rep Endocrinol. 2022;2022:4101975. doi: 10.1155/2022/4101975, PMID 35282610.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Namita Bhasin, Manoj Kumar Sharma, Dr. Narender Yadav, Dr. Mukesh Kumar Kumawat

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.