Qualitative Assessment of MWCNT- Treated Grains of Some Food Cereals

Life Sciences-Botany

Authors

  • Anjali Joshi Centre for nanoscience and nanotechnology, Panjab University, Chandigarh, India
  • Neha Thakur Dr. S. S. Bhatnagar UICET, Panjab University, Chandigarh, India
  • Gaurav Verma Centre for nanoscience and nanotechnology, Panjab University, Chandigarh, India and Dr. S. S. Bhatnagar UICET, Panjab University, Chandigarh, India
  • Avneesh Kumar Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab, India
  • Vajinder Kumar Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India
  • Narender Yadav School of Pharmaceutical Sciences, Apeejay Stya University, Sohna, Gurugram, Haryana India
  • Simranjeet Kaur Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab, India

DOI:

https://doi.org/10.22376/ijlpr.2023.13.SP1.L61-73

Keywords:

Wheat, Rice, Oats, MWCNT, Protein Content, Grain Yield

Abstract

Abstract: The advancement in nanotechnology and its utilisation in agriculture increases agricultural output. To protect crops from numerous plant diseases and pests, excessive chemical, pesticide, and fungicide use can be replaced with nanoparticles. The first step of plant growth, seed germination, is thought to be the most delicate time in a plant's life cycle. The effects of carbon nanotubes on seed quality and seed content both before and after treatment are discussed in this study. Rice, wheat, and oat grains were compared with the seeds harvested from MWCNT (multiwalled carbon nanotubes) treated plants at three different concentrations (70, 80, and 90μg/ml) and indicated no significant changes in various components such as carbohydrates, protein, crude fat, crude fibre, moisture and ash contents when compared to untreated grains. Grain primed with MWCNT before sowing resulted in no change in the above components, but an increase in mineral accumulation was found. Here, we noticed a significant increase in grain yield. The treatment of MWCNT enhanced the growth of grains count by two folds compared to the control plant. The wheat grain had a moisture content: 9.3-9.38%, ash content: 1.31-1.35%, crude fat: 0.9-0.93%, crude fibre: 1.1-1.13%, protein content: 9.2-9.38%, carbohydrate content: 77.96-78.04%. The rice grain had a moisture content: 9.98-10.25%, ash content: 0.42-0.45%, crude fat: 1.00-1.02%, crude fibre: 0.9-0.93%, protein content: 4.42-4.49%, carbohydrate content: 82.92-83.03%. The oat grain had a moisture content: 8.95-9.3%, ash content: 1.74-1.8%, crude fat: 2.1-2.3%, crude fibre: 5.1-5.27%, protein content: 9.5-9.59%, carbohydrate content: 71.78-72.23%. The study revealed that the examined MWCNT concentrations might efficiently enhance the grain yield without altering the grain quality. 

References

Soto-Gómez D, Pérez-Rodríguez P. Sustainable agriculture through perennial grains: wheat, rice, maize, and other species. A review. Agric Ecosyst Environ. 2022;325:107747. doi: 10.1016/j.agee.2021.107747.

FAO. The future of food and agriculture ”trends and challenges”; 2017.

Anonymous. Nanotechnology and Nanoscience Applications: Revolution in India and Beyond. Strategic Applications Integrating Nanoscience; 2009. Available from: http://www.sainsce.com.

Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present status and future prospects of jute in nanotechnology: a review. Chem Rec. 2021;21(7):1631-65. doi: 10.1002/tcr.202100135, PMID 34132038.

Saravanadevi K, Devi NR, Dorothy R, Joany RM, Rajendran S, Nguyen TA. Nanotechnology for agriculture: an introduction. In: Nanosensors for smart agriculture. Elsevier; 2022. p. 3-23.

Babu PJ. Nanotechnology mediated intelligent and improved food packaging. Int Nano Lett. 2022;12(1):1-14. doi: 10.1007/s40089-021-00348-8.

Rizvi SS, Moraru CI, Bouwmeester H, Kampers FW, Cheng Y. Nanotechnology and food safety. In: Ensuring global food safety. Academic Press; 2022. p. 325-40.

Saka R, Chella N. Nanotechnology for delivery of natural therapeutic substances: a review. Environ Chem Lett. 2021;19(2):1097-106. doi: 10.1007/s10311-020-01103-9.

Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: mini-review. Sens Int. 2021;2:100089. doi: 10.1016/j.sintl.2021.100089.

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman Hu et al. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ. 2020;721:137778. doi: 10.1016/j.scitotenv.2020.137778.

Fiol DF, Terrile MC, Frik J, Mesas FA, Álvarez VA, Casalongué CA. Nanotechnology in plants: recent advances and challenges. J Chem Technol Biotechnol. 2021;96(8):2095-108. doi: 10.1002/jctb.6741.

Fincheira P, Tortella G, Seabra AB, Quiroz A, Diez MC, Rubilar O. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta. 2021;254(4):66. doi: 10.1007/s00425-021-03714-0, PMID 34491441.

Shaikh A, Meroliya H, Dagade-Gadale S, Waghmode S. Applications of nanotechnology in Precision Agriculture: a review; 2021.

Meena BR, Jatav HS, Dudwal BL, Kumawat P, Meena SS, Singh VK et al. Fertilizer recommendations by using different geospatial technologies in precision farming or nanotechnology; 2022.

Chanu NB, Singh MC. Applications of nanotechnology in precision agriculture. In: Nano-enabled agrochemicals in agriculture. Academic Press; 2022. p. 175-87.

Farooq T, Adeel M, He Z, Umar M, Shakoor N, da Silva W et al. Nanotechnology and plant viruses: an emerging disease management approach for resistant pathogens. ACS Nano. 2021;15(4):6030-7. doi: 10.1021/acsnano.0c10910, PMID 33761237.

Patil AG, Kounaina K, Aishwarya S, Harshitha N, Satapathy P, Hudeda SP et al. Myco-nanotechnology for sustainable agriculture: challenges and opportunities. In: Recent trends in mycological research. Cham: Springer; 2021. p. 457-79. doi: 10.1007/978-3-030-60659-6_20.

Joshi A, Sharma A, Nayyar H, Verma G, Dharamvir K. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop. AIP Conf Proc (Vol. 1675, No. 1, p. 030034). 2015, August. doi: 10.1063/1.4929250.

Bansode AG, Patil CS, Jadhav SS. Efficacy of insecticides against shoot and fruit borer, Eariasvittella F. infesting okra. Pest Manag Hortic Ecosyst. 2015;21(1):106-9.

Joseph T, Morrison M. Nanotechnology in agriculture and food: a nanoforum report. Nanoforum. org.; 2006.

Gorczyca A, Pociecha E, Matras E. Nanotechnology in agriculture, the food sector, and remediation: prospects, relations, and constraints. In: Environmental pollution and remediation. Singapore: Springer; 2021. p. 1-34. doi: 10.1007/978-981-15-5499-5_1.

Beni AA. Nanomaterial application for environmental. Results Eng. 2022:100467.

Mehta VN, Prajapati VS, Rohit JV. Miniaturized analytical technology in agriculture. Miniaturized analytical devices. Mater Technol. 2022:49-70.

Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS et al. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces. 2013;5(16):7965-73. doi: 10.1021/am402052x, PMID 23834323.

Lee SM, Raja PMV, Esquenazi GL, Barron AR. Effect of raw and purified carbon nanotubes and iron oxide nanoparticles on the growth of wheatgrass prepared from the cotyledons of common wheat (Triticum aestivum). Environ Sci Nano. 2018;5(1):103-14. doi: 10.1039/C7EN00680B.

Das KK, Nava V, Chang CW, Chan JW, Xing BS, Yang Y Emerging investigator series: quantification of multiwall carbon nanotubes in plant tissues with spectroscopic analysis. Environ Sci Nano. 2019;6(2):380-7.

Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221-7. doi: 10.1021/nn900887m, PMID 19772305.

Wang X, Han H, Liu X, Gu X, Chen K, Lu D. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res. 2012;14(6):1-10.

De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA et al. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol. 2013;47(21):12539-47. doi: 10.1021/es4034809, PMID 24079803.

Rao DP, Srivastava A. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull. 2014;3(5):502-4.

Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL. Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol. 2015;49(12):7380-90. doi: 10.1021/acs.est.5b01145, PMID 26010305.

Rahmani N, Radjabian T, Soltani BM. Impacts of foliar exposure to multiwalled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Biochem. 2020;150:27-38. doi: 10.1016/j.plaphy.2020.02.022, PMID 32109787.

Cai S, Zhang P, Guo Z, Jin F, Wang J, Song Z et al. Multi-walled carbon nanotubes improve nitrogen use efficiency and nutritional quality in Brassica campestris. Environ Sci Nano. 2022;9(4):1315-29. doi: 10.1039/D1EN01211H.

Hu Y, Zhang P, Zhang X, Liu Y, Feng S, Guo D et al. Multi-wall carbon nanotubes promote the growth of maize (Zea mays) by regulating carbon and nitrogen metabolism in leaves. J Agric Food Chem. 2021;69(17):4981-91. doi: 10.1021/acs.jafc.1c00733, PMID 33900073.

Joshi A, Kaur S, Dharamvir K, Nayyar H, Verma G. Multi‐walled carbon nanotubes applied through seed‐priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J Sci Food Agric. 2018a;98(8):3148-60. doi: 10.1002/jsfa.8818, PMID 29220088.

Joshi A, Kaur S, Singh P, Dharamvir K, Nayyar H, Verma G. Tracking multiwalled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl Nanosci. 2018b;8(6):1399-414. doi: 10.1007/s13204-018-0801-1.

Joshi A, Sharma L, Kaur S, Dharamvir K, Nayyar H, Verma G. Plant nanobionic effect of multiwalled carbon nanotubes on growth, anatomy, yield and grain composition of rice. BioNanoScience. 2020;10(2):430-45. doi: 10.1007/s12668-020-00725-1.

Syeda A, Batool N, Rauf TSS, Razia K. Microbial and Physico-chemical contamination in the wheat flour of the twin cities of Pakistan. Int J Food Saf. 2012;14:75-82.

Hoseney RC. Principles of cereal science and technology. 2nd ed. American Association of Cereal Chemists (AACC); 1994.

AACC. Approved methods of the American Association of Cereal Chemists. 10th ed. St. Paul, MN; 2000.

AOAC. Official methods of analysis. MD: Association of Official Analytical Chemists International; 2000.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. doi: 10.1016/S0021-9258(19)52451-6, PMID 14907713.

Saxena DC, Haridas Rao P. Survey of the quality characteristics of tandoori dough and tandoori roti. J Food Sci Technol. 1995;32(1):74-6.

Gandhi AP, Khare SK, JHA K. Determination of residual hexane and microbiological status in de-oiled soybean meal. J Food Sci Technol. 2001;38(3):260-2.

Oko AO, Ugwu SI. The proximate and mineral compositions of five major rice varieties in Abakaliki, South-Eastern Nigeria. Int J Plant Physiol Biochem. 2011;3(2):25-7.

Saeid A, Hoque S, Kumar U, Das M, Muhammad N, Rahman MM et al. Comparative studies on nutritional quality of commercial wheat flour in Bangladesh. Bangladesh J Sci Ind Res. 2015;50(3):181-8. doi: 10.3329/bjsir.v50i3.25581.

Sidhu JS, Harinder K, Kaur A, Ram MB. Functional and chapati making properties of hull-less barley supplemented wheat flour. J Food Sci Technol. 1990;27(5):311-3.

Singh R, SINGH G, Chauhan GS. Development of soy-fortified biscuits and shelf-life studies. J Food Sci Technol. 2000;37(3):300-3.

Sterna V, Zute S, Brunava L. Oat grain composition and its nutrition benefice. Agric Agric Sci Procedia. 2016;8:252-6. doi: 10.1016/j.aaspro.2016.02.100.

Published

2022-12-24

How to Cite

Joshi, A., Thakur, N., Verma, G., Kumar, A., Kumar, V., Yadav, N., & Kaur, S. (2022). Qualitative Assessment of MWCNT- Treated Grains of Some Food Cereals: Life Sciences-Botany. International Journal of Life Science and Pharma Research, 13(SP 1), L61-L73. https://doi.org/10.22376/ijlpr.2023.13.SP1.L61-73

Issue

Section

Research Articles