Structural Analysis and In-Silico Inhibitor Interaction Studies of Leishmania donovani Heat-Shocked Proteins 83 (HSP83)
DOI:
https://doi.org/10.22376/ijlpr.2023.13.SP1.P8-18Keywords:
Leishmania donovani, Molecular Chaperone, Heat Shocked Proteins 83(HSPs 83), Inhibitor Search, Docking StudyAbstract
Leishmaniasis is a parasite disease prevalent in 88 nations worldwide, causing high morbidity and mortality in most developing countries. Since no vaccine or pharmaceutical treatment with the best therapeutic window is available, the World Health Organization has listed Leishmaniasis as a priority disease. The enzyme heat shock protein 83 (Hsp83), which is frequently found in cells, catalyzes cellular biological pathways to carry out tasks such as protein folding, intracellular protein trafficking, acquired thermotolerance, differentiation, adaptability, pathogenicity, persistence in the host cell and preventing proteins from being damaged by heat and other stresses. Therefore, HSP actively rewires cellular functions and signalling pathways, which is crucial for cell survival. Inhibition of HSP may interfere with pathogenesis and virulence by impairing several processes. Therefore, L. donovani heat shock protein 83 (LdHsp83) has been suggested as a potential leishmaniasis therapeutic target. Thus, in this study, we built the structure of HSP83 by homology modelling. We used Leishmania primary HSP90 crystal structure (PDB ID 3HJCA) as a template for constructing 3D models of LdHSP83 by comparative modelling approach using SWISS-MODEL, Phyre, GENO 3D program server and Prime 2.1 (Maestro 9.1, Schrodinger 2010) program tool. Based on overall stereochemical quality (PROCHECK, DOPE, Verify 3D), the best model was selected and further used for structural analysis. The energy-minimized, refined and characterized model was further investigated for antileishmanial activity with currently available antileishmanial drugs and enumerated virtual library of chemical compounds through a docking approach. A few combinations, including oxmetidine, had an excellent binding affinity with the Hsp83, as indicated by Glide Score (G Score) and Gold Fitness Score. These potential inhibitors were further studied for SAR and ADMET properties, respectively, by TSAR 3.3 and Qikprop 2.3, indicating the safety and efficacy of these compounds. Once preclinically and clinically examined, these compounds may further be implemented in leishmaniasis therapy.
References
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res. 2017;6:750. doi: 10.12688/f1000research.11120.1, PMID 28649370.
Dawit G, Girma Z, Simenew K. A review on biology. Epidemiology and public health significance of Leishmaniasis. J Bacteriol Parasitol. 2013;4(166):2.
El-Radhi AS. Fever in common infectious diseases. In: Clinical manual of fever in children. Cham: Springer; 2018. p. 85-140.
El Gkotmi N, Loutsidi NE, Delibasi S. The hematological manifestations and aspects of visceral Leishmaniasis. Hosp Chronicles. 2021;16(2):69-71.
Berman JD. Development of miltefosine for the leishmaniases. Mini Rev Med Chem. 2006;6(2):145-51. doi: 10.2174/138955706775475993, PMID 16472183.
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Dev Ther. 2018;12:25-40. doi: 10.2147/DDDT.S146521, PMID 29317800.
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R et al. 2017.
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R et al. Drug resistance and treatment failure in Leishmaniasis: A 21st century challenge. PLOS Negl Trop Dis. 2017;11(12):e0006052. doi: 10.1371/journal.pntd.0006052, PMID 29240765.
Prasanna P, Upadhyay A. Heat shock proteins as the druggable targets in Leishmaniasis: promises and perils. Infect Immun. 2021;89(2):e00559-20. doi: 10.1128/IAI.00559-20, PMID 33139381.
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204-12. doi: 10.1093/nar/gku989.
Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O et al. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr. 1998;54(6 Pt 1):1078-84. doi: 10.1107/s0907444998009378, PMID 10089483.
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998;23(10):403-5. doi: 10.1016/s0968-0004(98)01285-7, PMID 9810230.
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al. protein Identification and Analysis Tools on the Expasy Server. ln: John M. The Proteomics Protocols Handbook. 2005:571-607.
Hall TA 1999, Jan. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-2000.
Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995 Dec;11(6):681-4. doi: 10.1093/bioinformatics/11.6.681, PMID 8808585.
Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291-325. doi: 10.1146/annurev.biophys.29.1.291, PMID 10940251.
Schrödinger. Suite 2009 Protein Preparation Wizard; Epik version 2.0. New York: Schrödinger, LLC; 2009; Impact. version 5.5; Prime. version 2.1.
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195-201. doi: 10.1093/bioinformatics/bti770, PMID 16301204.
Bennett‐Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins. 2008;70(3):611-25. doi: 10.1002/prot.21688, PMID 17876813.
Combet C, Jambon M, Deléage G, Geourjon C. Geno3D: automatic comparative molecular modelling of protein. Bioinformatics. 2002;18(1):213-4. doi: 10.1093/bioinformatics/18.1.213, PMID 11836238.
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750-9. doi: 10.1021/jm030644s, PMID 15027866.
LigPrep V. New York: Schrödinger. LLC; 2010. p. 2.4.
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-49. doi: 10.1021/jm0306430, PMID 15027865.
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750-9. doi: 10.1021/jm030644s, PMID 15027866.
Nurisso A, Bravo J, Carrupt PA, Daina A. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: impact on gold docking performance. J Chem Inf Model. 2012;52(5):1319-27. doi: 10.1021/ci200515g, PMID 22462609.
Mansuri R, Kumar A, Rana S, Panthi B, Ansari MY, Das S et al. In vitro evaluation of antileishmanial activity of computationally screened compounds against ascorbate peroxidase to combat amphotericin B drug resistance. Antimicrob Agents Chemother. 2017;61(7):e02429-16. doi: 10.1128/AAC.02429-16, PMID 28461317.
Ansari Md Yousuf, Asif Equbal, Manas Ranjan Dikhit, Rani Mansuri, Sindhuprava Rana, Vahab Ali, Ganesh Chandra Sahoo, and Pradeep Das. "Establishment of correlation between in-silico and in-vitro test analysis against Leishmania HGPRT to inhibitors." International journal of biological macromolecules 83 (2016): 78-96.
QikProp. version 3.3. New York: Schrödinger, LLC; 2010.
McLeod RR; 1992. Temporal scattering and response software users’ manual. Version 2. 3 (No. UCRL-MA-104861-Ver. 2-3). CA: Lawrence Livermore National Laboratory.
Das S, Banerjee A, Kamran M, Ejazi SA, Asad M, Ali N et al. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. J Biol Chem. 2020 Jul 17;295(29):9934-47. doi: 10.1074/jbc.RA120.014587, PMID 32471865.
Batista FAH, Ramos Jr SL, Tassone G, Leitão A, Montanari CA, Botta M et al. Discovery of small molecule inhibitors of Leishmania braziliensis Hsp90 chaperone. J Enzyme Inhib Med Chem. 2020 Jan 1;35(1):639-49. doi: 10.1080/14756366.2020.1726342, PMID 32048531.
Palma LC, Ferreira LF, Petersen AL, Dias BR, Menezes JP, Moreira DR et al. A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci Rep. 2019 Oct 14;9(1):1.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Rani Mansuri, Anupama Diwan, Pankaj Kumar Mundotiya, Jagbir Singh

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.