Hexokinase Activator Attenuates Type 2 Diabetes Mellitus and Associated Endothelial Dysfunction in HFF-STZ-Induced Diabetic Rat
Pharmaceutical Science-Pharmacy
DOI:
https://doi.org/10.22376/ijlpr.2023.13.1.P98-104Keywords:
Diabetes, Hexokinase, Magnesium Sulfate, Vascular Complication, and Hydrogen peroxideAbstract
Hexokinase is an enzyme involved in the glucose metabolism pathway. Magnesium is an inherent cofactor of the Hexokinase enzyme. The plethora of literature suggested that hexokinase level was decreased in diabetic rats. Sodium metavanadate shows insulin-mimetic action. We designed this work to determine the effect of magnesium on diabetes and associated vascular complications in rats. Type-2 diabetes was induced by a high-fat diet and a low dose of streptozotocin.. Diabetic rats were divided into groups, i.e. normal, diabetic, magnesium sulfate, sodium metavanadate, a combination of glibenclamide and metformin, a variety of sodium metavanadate with glibenclamide and metformin, and a combination of magnesium sulfate with glibenclamide and metformin. Magnesium sulfate was used as a hexokinase activator. Blood glucose levels were measured before initiation, between, and after 4 weeks of treatment. Biochemical and tissue parameters were estimated for additional confirmation. A vascular study took the contractile response of hydrogen peroxide in rat thoracic aortas of different groups. Statistical comparisons between groups were performed by two-tailed one-way ANOVA followed by the Dunnett test. P-values <0.05 were considered statistically significant. Treatment with magnesium sulfate and sodium metavanadate (S.M.V.) alone and in combination significantly (p<0.05) modified the elevated blood glucose and various altered biochemical parameters in diabetic rats. Treatment showed a significant decrease (p < 0.001) n elevated contractile responses of hydrogen peroxide in thoracic aortas of diabetic rats Vs Normal Control). Hexokinase activation by magnesium and sodium metavanadate significantly reduced (** p < 0.01) diabetes as well as vascular complications.
References
Federation I. I.D.F. Diabetes Atlas, tenth. Int Diabetes. 2021.
Patel E. Patel NJAriP, BioLogicals. Antidiabetic activity of leaves of Manilkara hexandra: role of carbohydrate metabolizing α-amylase enzyme. 2015;5(2):863-7.
Ekta D, Patel KLV, Shah DA, Patel YK, Kanzariya NR. A novel therapeutic target – glycogen synthase Kinase-3. Inventi Rapid. Mol Pharmacol. 2017;03:7.
Ronimus RS, Morgan HWJB. Communications br. Cloning Biochem Char Novel Mouse ADP-Depend Glucokinase. 2004;315(3):652-8.
Pda PE D, Patel YK, Shah DA, Vegad Kunjal L, Patel NJ. Enzyme Assay Guided Isolation of alpha-amylase Inhibitor from Manilkara hexandra Leaves. NeuroQuantology. 2022;20(11):9.
Frank SK, Fromm H.J.J. Aob, biophysics. Effect of streptozotocin-induced diabetes and insulin treatment on the synthesis of hexokinase II in the skeletal muscle of the rat. 1986;249(1):61-9.
da-Silva WS, Gómez-Puyou A, de Gómez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L, et al. Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state A.D.P. formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem. 2004;279(38):39846-55. doi: 10.1074/jbc.M403835200, PMID 15247300.
Finkel TJCoicb. Oxygen Radic Signal. 1998;10(2):248-53.
Hibino M, Okumura K, Iwama Y, Mokuno S, Osanai H, Matsui H, et al. Oxygen-derived free radical-induced vasoconstriction by thromboxane A2 in aorta of the spontaneously hypertensive rat. J Cardiovasc Pharmacol. 1999;33(4):605-10. doi: 10.1097/00005344-199904000-00013, PMID 10218731.
WYJTAjom F. The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus. 2000;108(6):9-14.
Karasu ÇJFrb, medicine. Increased activity of H2O2 in aorta isolated from chronically streptozotocin-diabetic rats: effects of antioxidant enzymes and enzyme inhibitors. 1999;27(1-2):16-27.
Heffetz D, Bushkin I, Dror R, Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem. 1990;265(5):2896-902. PMID 2154464.
Pieper GM, Langenstroer P. Siebeneich WJCr. Diabet-Induced Endothelial Dysfunct Rat Aorta Role Hydroxyl Radic. 1997;34(1):145-56.
Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn CRM. Biochemistry c. In vivo andin vitro studies of vanadate in human and rodent diabetes mellitus. 1995;153(1):217-31.
Orvig C, Thompson K, Battell M. McNeill JJMiibs. Vanadium Compd Insulin Mimics. 1995;31:575-94.
Gupta BL, Preet A, Baquer NJ. Job. Protective effects of sodium orthovanadate in diabetic reticulocytes and aging red blood cells of Wistar rats. 2004;29(1):73-9.
Srivastava AKJM. Biochemistry C. Anti-Diabet Toxic Eff Vanadium Compd. 2000;206(1):177-82.
Barbagallo M, Dominguez LJ, Resnick LMJH. Insulin-mimetic action of vanadate: role of intracellular magnesium. Hypertension. 2001;38(3 Pt 2):701-4. doi: 10.1161/hy09t1.095392, PMID 11566960.
Barbagallo M, Dominguez LJJ. Aob, biophysics. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. 2007;458(1):40-7.
Barbagallo M, Dominguez LJ, Tagliamonte MR, Resnick LM, Paolisso GJH. Effects of glutathione on red blood cell intracellular magnesium: relation to glucose metabolism. Hypertension. 1999;34(1):76-82. DOI: 10.1161/01.hyp.34.1.76, PMID 10406827.
Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, et al. role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med. 2003;24(1-3):39-52. doi: 10.1016/s0098-2997(02)00090-0, PMID 12537988.
Weber C, Gauda E, Hecht E, Mizaikoff B, Kranz C, editors. Amperometric micro biosensors based on PQQ-dependent glucose dehydrogenase towards the development of an ATP biosensor for in vitro analysis. Munich, Germany: World Congress on Medical Physics and Biomedical Engineering. Springer; 2009.
Chaudhary DP, Sharma R, Bansal D.D.J. Beer. Implications of magnesium deficiency in type 2 diabetes: a review. 2010;134(2):119-29.
Srinivasan K, Patole PS, Kaul CL, Ramarao P. Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol. 2004;26(5):327-33. doi: 10.1358/mf.2004.26.5.831322. PMID 15319810.
Bera TK, De D, Chatterjee K, Ali KM, Ghosh DJI. JoAnn. Effect of Diashis, a polyherbal formulation, in streptozotocin-induced diabetic male albino rats. 2010;1(1):18.
Sohrabipour S, Sharifi MR, Sharifi M, Talebi A, Soltani NJF. Pharmacology c. Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic‐euglycemic clamp technique. 2018;32(6):603-16.
Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn CRJT. JoCE, metabolism. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. 1995;80(11):3311-20.
Garfinkel L, Garfinkel DJM. Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium. 1985;4(2-3):60-72. PMID 2931560.
Xu MZ, Zhang AZ, Li XR, Xu W, Shen LW. Effects of vanadate on the activities of mice glucokinase and hexokinase. J Zhejiang Univ Sci. 2004;5(10):1245-8. doi: 10.1631/jzus.2004.1245, PMID 15362196.
Subrahmanyam G, Sankar KD, Ramalingam K, Bhanu P. Electrolytes. Hypolipidemic Anti-Atherogenic Eff Vanadium High-Fat Diet Rabbits. 2013;30(3).
Lu JF, Nightingale CHJCp. Magnesium sulfate in eclampsia and pre-eclampsia: pharmacokinetic principles. Clin Pharmacokinet. 2000;38(4):305-14. doi: 10.2165/00003088-200038040-00002, PMID 10803454.
Liang Q, Donthi RV, Kralik PM, Epstein PNJCr. Elevated hexokinase increases cardiac glycolysis in transgenic mice. Cardiovasc Res. 2002;53(2):423-30. doi: 10.1016/s0008-6363(01)00495-3, PMID 11827693.
Gommers LM, Hoenderop JG, Bindels RJ, de Baaij JHJD. Hypomagnesemia in type 2 diabetes: a vicious circle? Diabetes. 2016;65(1):3-13. doi: 10.2337/db15-1028, PMID 26696633.
Ankush R, Suryakar A. Ankush NJIjocb. Hypomagnesaemia in type-2 diabetes mellitus patients: a study on the status of oxidative and nitrosative stress. 2009;24(2):184-9.
Kornacki J, Gutowska I, Wiercioch M, Łukomska A, Tarnowski M, Drozd A, et al. Sodium orthovanadate changes fatty acid composition and increased expression of stearoyl-coenzyme A desaturase in THP-1 macrophages. Biol Trace Elem Res. 2020;193(1):152-61. doi: 10.1007/s12011-019-01699-2, PMID 30927246.
Voma C, Romani AJIL, UK. Role of magnesium in the regulation of hepatic glucose homeostasis. 2014:95-111.
Calver A, Collier J, Vallance PJT. Joci. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. 1992;90(6):2548-54.
Rodríguez‐Martínez MA, García‐Cohen EC, Baena AB, González R, Salaíces M. Marín JJBjop. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved. 1998;125(6):1329-35.
Gao Y. Lee RJBjop. Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A2 production. 2001;134(8):1639-46.
Hink U, Tsilimingas N, Wendt M. Münzel TJTie. Mech Underlying Endothelial Dysfunct Diabetes Mellitus. 2003;2(5):293-304.
Camacho-Pereira J, Meyer LE, Machado LB, Oliveira MF, Galina AJPP. Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol. 2009;149(2):1099-110. doi: 10.1104/pp.108.129247, PMID 19109413.
Zabala F, Besler T, Ari N, Karasu C, (Antioxidants in Diabetes-Induced Complications) The ADIC Study Group. Hydrogen peroxide-induced inhibition of vasomotor activity: evaluation of single and combined treatments with vitamin A and insulin in streptozotocin-diabetic rats. Int J Exp Diabetes Res. 2002;3(2):119-30. doi: 10.1080/15604280214484, PMID 11991198.
Cavalcanti-de-Albuquerque JP, de Souza Ferreira E, de Carvalho DP, Galina AJMN. Mitochondria-bound hexokinase (mt-HK) activity differs in cortical and hypothalamic synaptosomes: differential role of mt-HK in H2O2 depuration. Mol Neurobiol. 2018;55(7):5889-900. doi: 10.1007/s12035-017-0807-9, PMID 29119535.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Ekta Patel, Divyakant Patel, Kunjal Vegad, Yogesh Patel, Priya Shah, Dhwani Shah, Nilesh Kanzariya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

