Endophytic Fungi Fusarium Equiseti EF2 Isolated from Leucas Aspera: A Novel Biocontrol Agent Against Culex Sp
Life Sciences-Microbiology
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.6.L107-117Keywords:
Leucas aspera, Fusarium equiseti, Culex mosquito, Larvicidal activity, and Endophytic fungiAbstract
Among several life-threatening diseases, vector-borne diseases play a significant role. Mosquito-borne conditions are dangerous and are more prevalent. Culex is the most prevalent and causative agent of many zoonotic diseases among various mosquito species. Endophytic fungi that reside in the healthy plant produce an array of bioactive compounds against several conditions causing pathogens. Thus, this study aimed to identify a novel antilarval combination from the endophytic fungi present in Leucas aspera leaves. The objectives include the isolation of endophytic fungi from leaf samples, selection of potent antilarval endophyte, and characterization of its bioactive compound. The exploration of the least studied fungi, Fusarium equiseti as an endophyte in the leaves of Leucas aspera with potent antilarval properties is an inquisitive discovery. A total of 10 endophytic fungi (EF-1 to EF-10) were isolated and screened for the larvicidal activity of the fungal broth and its spore. The best isolate, EF-2 was identified as Fusarium equiseti. The crude sample and the active fraction of the ethyl acetate extract exhibited potent antilarval properties against Culex mosquito larvae with 90% mortality. Phytochemical analysis and characterization studies by UV-Vis spectroscopy and GC-MS revealed bioactive compounds in the active fraction of the extract. Overall, this study suggested a new option for biocide formulation that could aid in the effort to control mosquitoes. Among several discoveries of bioactive compounds from the plant extracts, this study has identified novel compounds from its endophytic fungi rather than the plant itself. The extracts of endophytic fungi Fusarium equiseti isolated from Leucas aspera, has antilarvicidal activity.
References
Nanjesh Kumar NK, Hegde R, Badiger S, Kiran KG. A study of mosquito borne diseases awareness, attitude and practices among the rural population in Karnataka, India. Int J Community Med Public Health. 2017;4(11):4178. doi: 10.18203/2394-6040.ijcmph20174824.
Afridi R, Afridi H, Saeed K. Prevalence of Culex, Aedes, Anopheles and Armigeres mosquitoes at selected localities of district Peshawar Khyber Pakhtunkhwa Pakistan. Int J Mosq Res. 2017;4(2):128-34.
Xia H, Wang Y, Atoni E, Zhang B, Yuan Z. Mosquito-associated viruses in China. Virol Sin. 2018;33(1):5-20. doi: 10.1007/s12250-018-0002-9, PMID 29532388.
Nchoutpouen E, Talipouo A, Djiappi-Tchamen B, Djamouko-Djonkam L, Kopya E, Ngadjeu CS et al. Culex species diversity, susceptibility to insecticides and role as a potential vector of lymphatic filariasis in the city of Yaoundé, Cameroon. PLOS Negl Trop Dis. 2019;13(4):e0007229. doi: 10.1371/journal.pntd.0007229, PMID 30943198.
Lymphatic filariasis; Published 2021. World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.
Raghavendra K, Barik TK, Reddy BPN, Sharma P, Dash AP. Malaria vector control: from past to future. Parasitol Res. 2011;108(4):757-79. doi: 10.1007/s00436-010-2232-0, PMID 21229263.
Beyger L, Orrego R, Guchardi J, Holdway D. The acute and chronic effects of endosulfan pulse-exposure on Jordanella floridae (Florida flagfish) over one complete life-cycle. Ecotoxicol Environ Saf. 2012;76(2):71-8. doi: 10.1016/j.ecoenv.2011.09.015, PMID 22018545.
Pavela R, Maggi F, Iannarelli R, Benelli G. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop. 2019;193:236-71. doi: 10.1016/j.actatropica.2019.01.019, PMID 30711422.
Koodalingam A, Mullainadhan P, Rajalakshmi A, Deepalakshmi R, Ammu M. Effect of a Bt-based product (Vectobar) on esterases and phosphatases from larvae of the mosquito Aedes aegypti. Pestic Biochem Physiol. 2012;104(3):267-72. doi: 10.1016/j.pestbp.2012.09.008.
Sathiyanathan M. Umarajan associate Professor K, Sathiyanathan CM, Umarajan K. Larvicidal activity of endophytic fungi isolated from selected medicinal plants on Aedes aegypti. ~ 247 ~ J Pharmacogn Phytochem. 2019;8(2):247-53.
Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al. Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. Fungal Biology. 2019:105-44. doi: 10.1007/978-3-030-03589-1_6.
Tan RX, Zou WX. Endophytes: A rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448-59. doi: 10.1039/b100918o, PMID 11548053.
Hawas UW, Al-Farawati R, Abou El-Kassem LTA, Turki AJ. Different culture metabolites of the Red Sea fungus Fusarium equiseti optimize the inhibition of hepatitis C virus NS3/4A protease (HCV PR). Mar Drugs. 2016;14(10). doi: 10.3390/md14100190, PMID 27775589.
Prajapati MS, Patel JB, Modi K, Shah MB. Leucas aspera: a review. Pharmacogn Rev. 2010;4(7):85-7. doi: 10.4103/0973-7847.65330, PMID 22228946.
Nirmala KA, Kanchana M. Leucas aspera – a review of its Biological activity. Syst Rev Pharm. 2018;9(1):41-4. doi: 10.5530/srp.2018.1.8.
Bezerra JDP, Nascimento CCF, Barbosa Rdo N, Da Silva DCV, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Brazilian J Microbiol. 2015;46(1):49-57. doi:10.1590/S1517-838246120130657.
Yu J, Wu Y, He Z, Li M, Zhu K, Gao B. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera. Mycobiology. 2018;46(2):85-91. doi: 10.1080/12298093.2018.1454008, PMID 29963309.
Suresh G, Kokila D, Suresh TC, Kumaran S, Velmurugan P, Vedhanayakisri KA et al. Mycosynthesis of anticancer drug Taxol by Aspergillus oryzae, an endophyte of Tarenna asiatica, characterization, and its activity against a human lung cancer cell line. Biocatal Agric Biotechnol. 2020;24:101525. doi: 10.1016/j.bcab.2020.101525.
Ranganathan N, Mahalingam G. Secondary metabolite as therapeutic agent from endophytic fungi Alternaria longipes strain VITN14G of mangrove plant Avicennia officinalis. J Cell Biochem. 2019;120(3):4021-31. doi: 10.1002/jcb.27686, PMID 30321457.
Vivekanandhan P, Karthi S, Shivakumar MS, Benelli G. Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathog Glob Health. 2018;112(1):37-46. doi: 10.1080/20477724.2018.1438228, PMID 29457957.
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9(9):868-77. doi: 10.1101/gr.9.9.868.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2, PMID 2231712.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. Version 11. 2021;38(7):3022-7. doi: 10.1093/molbev/msab120, PMID 33892491.
Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLOS ONE. 2013;8(8):e72520. doi: 10.1371/journal.pone.0072520, PMID 23977310.
Devi NN, Prabakaran JJ, Wahab F. Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac J Trop Biomed. 2012;2(3):S1280-4. doi: 10.1016/S2221-1691(12)60400-6.
Bankole AE, Adekunle AA, Sowemimo AA, Umebese CE, Abiodun O, Gbotosho GO. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitol Res. 2016;115(1):299-305. doi: 10.1007/s00436-015-4747-x, PMID 26391173.
Banu KS, Cathrine L. General techniques involved in phytochemical analysis. Int J Adv Res Chem Sci. 2015;2(4):25-32.
Kaur N, Arora DS, Kalia N, Kaur M. UV spec and GC MS.pdf [sci rep]. Sci Rep. 2020;10(1):18792. doi: 10.1038/s41598-020-75722-1, PMID 33139805.
Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F et al. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry. 2013;87:65-77. doi: 10.1016/j.phytochem.2012.11.009, PMID 23266268.
Venkateswarulu N, Shameer S, Bramhachari PV, Basha SKT, Nagaraju C, Vijaya T. Isolation and characterization of plumbagin (5- hydroxyl- 2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants: isolation and characterization of plumbagin producing endophytic fungi from endemic medicinal plants. Biotechnol Rep (Amst). 2018;20:e00282. doi: 10.1016/j.btre.2018.e00282, PMID 30294561.
Sneath PHA, Sokal RR. Numerical taxonomy. W.H.freeman and company. San Francisco: W H Freeman and Company. San Francisco; 1973.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-91. doi: 10.1111/j.1558-5646.1985.tb00420.x, PMID 28561359.
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101(30):11030-5. doi: 10.1073/pnas.0404206101, PMID 15258291.
Elbers ARW, Koenraadt CJM, Meiswinkel R. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change. Rev Sci Tech. 2015;34(1):123-37. doi: 10.20506/rst.34.1.2349, PMID 26470453.
Koodalingam A, Deepalakshmi R, Ammu M, Rajalakshmi A. Effects of NeemAzal on marker enzymes and hemocyte phagocytic activity of larvae and pupae of the vector mosquito Aedes aegypti. J Asia Pac Entomol. 2014;17(2):175-81. doi: 10.1016/j.aspen.2013.12.007.
Anderson JR, Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg. 2006;75(5):886-92. doi: 10.4269/ajtmh.2006.75.886, PMID 17123982.
Iqbal N, Agrawal A, Kumar J. Development of effervescent tablet formulation for rapid control of mosquito problem in early stages from different breeding sites. Arab J Chem. 2021;14(4):103082. doi: 10.1016/j.arabjc.2021.103082.
Karunaratne P, De Silva P, Weeraratne T, Surendran N. Insecticide resistance in mosquitoes: development, mechanisms and monitoring. Ceylon J Sci. 2018;47(4):299. doi: 10.4038/cjs.v47i4.7547.
Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep. 2006;23(5):753-71. doi: 10.1039/b609472b, PMID 17003908.
Jimmy C, Joseph S. A comparative study on mosquito larvicidal activity of selected plants. Aureole. 2018;X(December):40-5.
Suganya G, Karthi S, Shivakumar MS. Larvicidal activities of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res. 2014;113(3):875-80. doi: 10.1007/s00436-013-3718-3.
Xie W, Mirocha CJ, Wen Y. Formyl fusarochromanone and diacetyl fusarochromanone, two new metabolites of fusarium equiseti. J Nat Prod. 1991;54(4):1165-7. doi: 10.1021/np50076a048.
Mahdavian E, Palyok P, Adelmund S, Williams-Hart T, Furmanski BD, Kim YJ et al. Biological activities of fusarochromanone: a potent anti-cancer agent. BMC Res Notes. 2014;7:601. doi: 10.1186/1756-0500-7-601, PMID 25187308.
Eze PM, Abonyi DO, Abba CC, Proksch P, Okoye FBC, Esimone CO. Toxic, but beneficial compounds from endophytic fungi of Carica papaya. Eurobiotech J. 2019;3(2):105-11. doi: 10.2478/ebtj-2019-0012.
Vivekanandhan P, Deepa S, Kweka EJ, Shivakumar MS. Toxicity of Fusarium oxysporum-VKFO-01 derived silver nanoparticles as potential Inseciticide against three mosquito vector species (Diptera: Culicidae). J Clust Sci. 2018;29(6):1139-49. doi: 10.1007/s10876-018-1423-1.
Hawas UW, Farrag ARH, Ahmed EF, Abou El-Kassem LT. Cytotoxic effect of Fusarium equiseti fungus metabolites against N-Nitrosodiethylamine- and CCL4-induced hepatocarcinogenesis in rats. Pharm Chem J. 2018;52(4) (July):326-33. doi: 10.1007/s11094-018-1816-3.
Baskar K, Chinnasamy R, Pandy K, Venkatesan M, Sebastian PJ, Subban M et al. Larvicidal and histopathology effect of endophytic fungal extracts of Aspergillus tamarii against Aedes aegypti and Culex quinquefasciatus. Heliyon. 2020;6(10):e05331. doi: 10.1016/j.heliyon.2020.e05331, PMID 33150212.
Abutaha N, Mashaly AMA, Al-Mekhlafi FA, Farooq M, Al-shami M, Wadaan MA. Larvicidal activity of endophytic fungal extract of Cochliobolus spicifer (Pleosporales: Pleosporaceae) on Aedes caspius and Culex pipiens (Diptera: Culicidae). Appl Entomol Zool. 2015;50(3):405-14. doi: 10.1007/s13355-015-0347-6.
Singh A, Kumar J, Sharma VK, Singh DK, Kumari P, Nishad JH et al. Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. S Afr J Bot. 2021;140:87-94. doi: 10.1016/j.sajb.2021.03.004.
Ramos RTM, Bezerra ICF, Ferreira MRA, Soares LAL. Spectrophotometric quantification of flavonoids in herbal material, crude extract, and fractions from leaves of Eugenia uniflora Linn. Pharmacogn Res. 2017;9(3):253-60. doi: 10.4103/pr.pr_143_16, PMID 28827966.
Liu ZL, Liu QZ, Du SS, Deng ZW. Mosquito larvicidal activity of alkaloids and limonoids derived from Evodia rutaecarpa unripe fruits against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2012;111(3):991-6. doi: 10.1007/s00436-012-2923-9, PMID 22526296.
Inaba K, Ebihara K, Senda M, Yoshino R, Sakuma C, Koiwai K et al. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biol. 2022;20(1):43. doi: 10.1186/s12915-022-01233-2, PMID 35172816.
Aiyesanmi AF, Ademefun AE, Ibigbami OA, Adelodun AA. Polycyclic aromatic hydrocarbons and organochlorine pesticides in floodplain soils: A case study of Onuku River in Okitipupa, Nigeria. Environ Chall. 2021;5(October):100351. doi: 10.1016/j.envc.2021.100351.
Cabrera-Rodríguez R, Luzardo OP, Almeida-González M, Boada LD, Zumbado M, Henríquez-Hernández LA. Database of persistent organic pollutants in umbilical cord blood: concentration of organochlorine pesticides, PCbs, BDEs and polycyclic aromatic hydrocarbons. Data Brief. 2020;28:104918. doi: 10.1016/j.dib.2019.104918, PMID 31879698.
Kaji A, Iwata T, Kiriyama N, Wakusawa S, Miyamoto K. Four new metabolites to Aspergillus terreus. Chem Pharm Bull. 1994;42(8):1682-4. doi: 10.1248/cpb.42.1682.
Prasher IB, Dhanda RK. GC-MS Analysis of Secondary Metabolites of endophytic Nigrospora sphaerica isolated from Parthenium hysterophorus. Int J Pharm Sci Rev Res. 2017;44(1):217-23.
Elgorban AM, Bahkali AH, Al Farraj DA, Abdel-wahab MA. Natural products of Alternaria sp., an endophytic fungus isolated from Salvadora persica from Saudi Arabia. Saudi J Biol Sci. 2019;26(5):1068-77. doi: 10.1016/j.sjbs.2018.04.010, PMID 31303842.
Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC et al. Safety assessment of Cyclomethicone, cyclotetrasiloxane, Cyclopentasiloxane, Cyclohexasiloxane, and Cycloheptasiloxane. Int J Toxicol. 2011;30(6);Suppl:149S-227S. doi: 10.1177/1091581811428184, PMID 22247236.
Gökdere M, Ateş S. Extractive fermentation of gibberellic acid with free and immobilized Gibberella fujikuroi. Prep Biochem Biotechnol. 2014;44(1):80-9. doi: 10.1080/10826068.2013.792275, PMID 24117154.
Guo W, Sheng J, Zhao H, Feng X. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Factories. 2016;15(1):24. doi: 10.1186/s12934-016-0423-9, PMID 26830023.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Kuppuswamy Kavitha, Paneerselvam Aarthi, Mani Prakash

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.