Evaluation of Biofilm Inhibitory Efficacy of Bacopa monnieri, Acalypha indica and Calotropis gigantea Extracts and their Combination Against Wound Colonizing Bacteria Pseudomonas aeruginosa and Staphylococcus Aureus
Pharmaceutical Science-Pharmacognosy & Phytochemistry
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.6.P198-206Keywords:
Biofilm, Antibiotic resistance, Plant extract, Quorum sensing, Extract combination, Synergistic effectAbstract
Key factors in compromised wound healing primarily include bacterial colonization and infection. Extensive use of systemic antibiotics, preferred choice of treatment for clinically infected wounds, is often accompanied with emergence of bacterial resistance. Quorum sensing (QS), density dependent chemical communication, is emerging as a promising area of research since most infectious microorganisms operate this mechanism to realize their pathogenic potential. Foregoing research indicates the potential of studying medicinal plant extracts/components and their combinations as vital inhibitors of QS regulated virulence factors’ production. Our study aims to understand the potential of three plant extracts and their combinations as vital inhibitors of QS regulated virulence factor’s production by two wound pathogens and to achieve this our objectives are to perform their violacein inhibitory (on C. violaceum) and biofilm inhibitory properties (on Pseudomonas aeruginosa and Staphylococcus aureus). Minimum inhibitory concentration (MIC) of aqueous plant extracts against P aeruginosa and S aureus was performed (two-fold serial microdilution). Violacein inhibition was assayed using agar well diffusion while biofilm inhibition by crystal violet method. Organisms presented 5mg/ml (Bacopa monnieri ), 2.5mg/ml (Acalypha indica), and 2.5mg/ml (Calotropis gigantea) as MIC. Three sets of individual extract concentrations (sub-MIC in μg/ml) and their corresponding combinations were used for this study. Extracts exhibited more significant (P<0.0001) violacein inhibition in combination than individually. Biofilm inhibition by extracts' combination was also significantly (P<0.001) higher than that of individual extracts indicating a possible positive herb-herb interaction of phytoconstituents (synergistic or complementary). The relative decrease in response to individual extracts in higher concentrations (set 'c') by both organisms point to possible recalcitrance behavior generally exhibited by bacteria on exposure to higher antibacterial agents. The improved antibiofilm efficacy exhibited by this novel combination may serve as an alternative approach in managing wound colonization by biofilm-producing bacteria and hence faster-wound healing.
References
Dong D, Thomas N, Ramezanpour M, Psaltis AJ, Huang S, Zhao Y, et al. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa biofilms by quatsomes in low concentrations. Exp Biol Med (Maywood). 2020;245(1):34-41. doi: 10.1177/1535370219896779, PMID 31903777.
Wu SC, Marston W, Armstrong DG. Wound care: the role of advanced wound healing technologies. J Vasc Surg. 2010;52(3);Suppl:59S-66S. doi: 10.1016/j.jvs.2010.06.009, PMID 20804934.
Bass S, Sheetu A. Herbal advancements in the treatment to accelerate wound healing. Mod Phytomorphology. 2021;15:76-7.
Mir M, Permana AD, Tekko IA, McCarthy HO, Ahmed N, Rehman AU et al. Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: A promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds. Int J Pharm. 2020;587:119643. doi: 10.1016/j.ijpharm.2020.119643, PMID 32702455.
Rhoads DD, Wolcott RD, Percival SL. Biofilms in wounds: management strategies. J Wound Care. 2008;17(11):502-8. doi: 10.12968/jowc.2008.17.11.31479, PMID 18978690.
De Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun. 2000;68(9):4839-49. doi: 10.1128/IAI.68.9.4839-4849.2000, PMID 10948095.
Doern GV, Jones RN, Pfaller MA, Kugler KC, Beach ML. Bacterial pathogens isolated from patients with skin and soft tissue infections: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 1997). SENTRY Study Group (North America). Diagn Microbiol Infect Dis. 1999;34(1):65-72. doi: 10.1016/s0732-8893(98)00162-x, PMID 10342110.
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2(65):65. doi: 10.3389/fmicb.2011.00065, PMID 21747788.
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603-61. doi: 10.1128/CMR.00134-14, PMID 26016486.
Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(6):2743-50. doi: 10.1128/AAC.02526-12, PMID 23571534.
Manzoor-ul-Haq VR, Singh D, Singh AK, Ninganagouda S, Hiremath J. Dried Mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol Int J. 2014;5(1):1-8.
Gupta K, Singh SP, Manhar AK, Saikia D, Namsa ND, Konwar BK, et al. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa biofilm and virulence by active fraction of Syzygium cumini (L.) Skeels Leaf extract: in-vitro and in silico studies. Indian J Microbiol. 2019;59(1):13-21. doi: 10.1007/s12088-018-0770-9, PMID 30728626.
Sharma A, Khanna S, Kaur G, Singh I. Medicinal plants and their components for wound healing applications. Futur J Pharm Sci. 2021;7(1). doi: 10.1186/s43094-021-00202-w.
Qaralleh H, Al-Limoun MO, Khlaifat A, Khleifat KM, Al-Tawarah N, Alsharafa KY, et al. Antibacterial and antibiofilm activities of a traditional herbal formula against respiratory infection causing bacteria. Trop J. Nat Prod Res. 2020;4(9):527-34.
Patel P, Joshi C, Kothari V. Antipathogenic potential of a polyherbal wound-care formulation (Herboheal) against certain wound-infective gram-negative bacteria. Adv Pharmacol Sci. 2019;2019:1739868. doi: 10.1155/2019/1739868, PMID 30833966.
Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41(1):69-77. doi: 10.1021/ar7000843, PMID 17665872.
Karole S, Shrivastava S, Thomas S, Soni B, Khan S, Dubey J, et al. Polyherbal formulation concept for synergic action: a review. J Drug Delivery Ther. 2019;9(1-s):453-66. doi: 10.22270/jddt.v9i1-s.2339.
Sulaiman CT, Anju K, Anandan EM, Balachandran I. Synergistic interactions of phytochemicals in polyherbal formulation enhance the chemical transformations of active constituents. J Appl Spectrosc. 2021;88(1):181-6. doi: 10.1007/s10812-021-01156-w.
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:108615. doi: 10.1016/j.biopha.2019.108615, PMID 30784919.
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri . Rejuvenation Res. 2013;16(4):313-26. doi: 10.1089/rej.2013.1431, PMID 23772955.
Viji V, Helen A. Inhibition of lipoxygenases and cyclooxygenase-2 enzymes by extracts isolated from Bacopa monnieri (L.) Wettst. J Ethnopharmacol. 2008;118(2):305-11. doi: 10.1016/j.jep.2008.04.017, PMID 18534796.
Moskwa J, Naliwajko SK, Markiewicz-Żukowska R, Gromkowska-Kępka KJ, Nowakowski P, Strawa JW, et al. Chemical composition of Polish propolis and its antiproliferative effect in combination with Bacopa monnieri on glioblastoma cell lines [sci rep] [internet]. Sci Rep. 2020;10(1):21127. doi: 10.1038/s41598-020-78014-w, PMID 33273550.
Singh D, Nag MK, Patel S, Shrivastava S, Daharwal SJ, Singh MR. Treatment strategies in burn wounds: an overview. 2013;5(6):341-52.
Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res. 2020;284(April):197989. doi: 10.1016/j.virusres.2020.197989, PMID 32360300.
Shanmugasundaram ER, Akbar GK, Shanmugasundaram KR. Brahmighritham, An Ayurvedic herbal formula for the control of epilepsy. J Ethnopharmacol. 1991;33(3):269-76. doi: 10.1016/0378-8741(91)90088-u, PMID 1921425.
Murthy S, Gautam MK, Goel S, Purohit V, Sharma H, Goel RK. Evaluation of in vivo wound healing activity of Bacopa monnieri on different wound model in rats. BioMed Res Int. 2013; 2013:1-9.
Sharath R, Harish BG, Krishna V, Sathyanarayana BN, Kumara Swamy HM. Wound healing and protease inhibition activity of bacoside-A, isolated from Bacopa monnieri Wettest. Phyther Res. 2010; 24. Vol. 8; 1217-22.
Nuengchamnong N, Sookying S, Ingkaninan K. LC-ESI-QTOF-MS based screening and identification of isomeric jujubogenin and pseudojujubogenin aglycones in Bacopa monnieri extract. J Pharm Biomed Anal. 2016;129:121-34. doi: 10.1016/j.jpba.2016.06.052, PMID 27423009.
Zhou Y, Shen Y-H, Zhang C, Zhang W-D. Chemical constituents of Bacopa monnieri . Chem Nat Compd. 2007;43(3):355-7. doi: 10.1007/s10600-007-0133-y.
Chekuri S, Lingfa L, Panjala S, Bindu KCS, Anupalli RR. Acalypha indica L. - an Important Medicinal Plant: A Brief Review of Its Pharmacological Properties and Restorative Potential. Eur J Med Plants. 2020 (July):1-10. doi: 10.9734/ejmp/2020/v31i1130294.
Nag A, Anoop M, Sharma K, Verma K. Acalypha indica L.. An Important Medicinal Plant with antimicrobial agents: a review. Int J Res Anal Rev. 2018;5(4):304-9.
Chakre MB, Gaikwad PN, Medpalli KJ, Birru SB. Centre W, biotechnology F. Medicinal properties of Calotropis gigantea. Int J Res Anal Rev. 2019;6(1):175-81.
Biswas TK, Srikanta Pandit S, Shrabana C. Regulation of herbal medicinal products. Pharmaceutical journal Mukherjee PH, P, editors. Vol. 282; 2009. p. 228-40.
Deshmukh PT, Fernandes J, Atul A, Toppo E. Wound healing activity of Calotropis gigantea root bark in rats. J Ethnopharmacol. 2009;125(1):178-81. doi: 10.1016/j.jep.2009.06.007, PMID 19539020.
Gupta A, Naraniwal M, Kothari V. Modern extraction methods for preparation of bioactive plant extracts. Int J Appl Nat Sci. 2012;1(1):8-26.
Clinical and Laboratory Standards Institute. M07-A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically [internet]. Vol. 35(2). p. 1-87; 2015. Available from: http://www.clsi.org [cited 14/9/2022].
Ngadino SA, Setiawan, Koerniasari, Ernawati, Sudjarwo SA. Evaluation of antimycobacterial activity of Curcuma xanthorrhiza ethanolic extract against Mycobacterium tuberculosis H37Rv in vitro. Vet World. 2018;11(3):368-72. doi: 10.14202/vetworld.2018.368-372, PMID 29657431.
Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-75. doi: 10.1038/nprot.2007.521, PMID 18274517.
Kebede T, Gadisa E, Tufa A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLOS ONE. 2021;16(3):e0249253. doi: 10.1371/journal.pone.0249253, PMID 33770121.
Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement Altern Med. 2019;19(1):141. doi: 10.1186/s12906-019-2547-z, PMID 31221162.
Ahmed SO, Zedan HH, Ibrahim YM. Quorum sensing inhibitory effect of bergamot oil and aspidosperma extract against Chromobacterium violaceum and Pseudomonas aeruginosa. Arch Microbiol. 2021;203(7):4663-75. doi: 10.1007/s00203-021-02455-8, PMID 34175964.
Jantorn P, Heemmamad H, Soimala T, Indoung S, Saising J, Chokpaisarn J, et al. Antibiotic resistance profile and biofilm production of staphylococcus pseudintermedius isolated from dogs in Thailand. Pharmaceuticals (Basel). 2021;14(6). doi: 10.3390/ph14060592, PMID 34203050.
Che CT, Wang ZJ, Chow MSS, Lam CWK. Herb-herb combination for therapeutic enhancement and advancement: theory, practice and future perspectives. Molecules. 2013;18(5):5125-41. doi: 10.3390/molecules18055125, PMID 23644978.
Dev SK, Choudhury PK, Srivastava R, Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed Pharmacother. 2019;111:555-67. doi: 10.1016/j.biopha.2018.12.075, PMID 30597309.
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol. 2017;7:106. doi: 10.3389/fcimb.2017.00106, PMID 28421166.
Patel P, Joshi C, Kothari V. Anti-pathogenic efficacy of a polyherbal wound-care formulation (Herboheal) against Staphylococcus aureus, and identifying its molecular targets. Infect Disord Drug Targets. 2018;18. doi: 10.2174/1871526518666181022112552.
Doğan Ş, Gökalsın B, Şenkardeş İ, Doğan A, Sesal NC. Anti-quorum sensing and anti-biofilm activities of Hypericum perforatum extracts against Pseudomonas aeruginosa. J Ethnopharmacol J. 2019;235:293-300.
Alves TF, Chaud MV, Grotto D, Jozala AF, Pandit R, Rai M, et al. Association of silver nanoparticles and curcumin solid dispersion: antimicrobial and antioxidant properties. AAPS PharmSciTech. 2018;19(1):225-31. doi: 10.1208/s12249-017-0832-z, PMID 28681332.
McKenna SR, Latenser BA, Jones LM, Barrette RR, Sherman HF, Varcelotti JR. Serious silver sulphadiazine and mafenide acetate dermatitis. Burns. 1995;21(4):310-2. doi: 10.1016/0305-4179(94)00023-q, PMID 7662136.
Ibrahim YM, Abouwarda AM, Nasr T, Omar FA, Bondock S. Antibacterial and anti-quorum sensing activities of a substituted thiazole derivative against methicillin-resistant Staphylococcus aureus and other multidrug-resistant bacteria. Microb Pathog. 2020;149:104500. doi: 10.1016/j.micpath.2020.104500. PMID 32926996.
Hrynyshyn A, Simões M, Borges A. Biofilms in surgical site infections: recent advances and novel prevention and eradication strategies. Antibiotics (Basel). 2022;11(1). doi: 10.3390/antibiotics11010069, PMID 35052946.
Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. doi: 10.1128/MMBR.00013-14, PMID 25184564.
Moradi F, Hadi N, Bazargani A. Evaluation of quorum-sensing inhibitory effects of extracts of three traditional medicine plants with known antibacterial properties. New Microbes New Infect. 2020;38:100769. doi: 10.1016/j.nmni.2020.100769, PMID 33194208.
Jose D, Lekshmi N, Goel AK, Kumar RA, Thomas S. Development of a novel herbal formulation to inhibit biofilm formation in toxigenic Vibrio cholerae. J Food Prot. 2017;80(11):1933-40. doi: 10.4315/0362-028X.JFP-17-091, PMID 29053421.
Singh D, Sharma D, Agarwal V. Screening of anti-microbial, anti-biofilm activity, and cytotoxicity analysis of a designed polyherbal formulation against shigellosis. J Ayurveda Integr Med. 2021;12(4):601-6. doi: 10.1016/j.jaim.2021.06.007, PMID 34772585.
Saito ST, Trentin Dda S, Macedo AJ, Pungartnik C, Gosmann G, Silveira Jde D et al.. Bioguided Fractionation Shows Cassia alata Extract to Inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa Growth and Biofilm Formation. Evid Based Complement Alternat Med. 2012;2012:867103. doi: 10.1155/2012/867103. PMID 22548121.
Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 2008;16(1):23-9. doi: 10.1111/j.1524-475X.2007.00303.x, PMID 18211576.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Habibu Tanimu, Nadasha Koonath Vijayan, Bindhu O.S

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.