Green Synthesis and Applications of Silver Nanoparticles Using Plant Extracts: A Review Article
Pharmaceutical Science-Pharmaceutics
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.6.P220-233Keywords:
Green Synthesis, Plant Extract, Nanotechnology, Silver nanoparticles, antimicrobial activities and ApplicationsAbstract
The nanoparticle (NP) biosynthesis field is still underdeveloped and has long been known to impact many industries significantly. Recently, the synthesis of silver NPs has been given excessive attention in developed countries because of the requirement to develop environmental supporter technologies to synthesize materials. The uses of green chemicals are environmentally friendly, non-poisonous, and inexpensive. It has been shown that various microbes, including yeast, fungi, bacteria, and plants, can synthesize intracellular and extracellular AgNPs. All systematic information reflects the unique possessions of AgNPs, which have many uses such as antifungal, antibacterial, anticancer, and antiviral agents, brilliant natural catalytic larvae, dyedegrading, excellent antioxidants, treatment of complications associated with diabetes, and wound curative. Physical and chemical methods use high radiation levels and high concentrations of reducing agents and stabilizers that are dangerous to the environment and human health. Therefore, the synthesis of NPs is a one-step bioremediation approach and consumes low energy for an environmentally friendly synthesis of NPs. Recently, the development of effective green chemistry methods using reducing agents, limiters, and natural stabilizers to obtain AgNPs of good shape and sizes has become an area of research. This review aims to explore the green synthesis of silver nanoparticles using plant extract, and the characterization of synthesized silver nanoparticles with their different applications. Also, this review is meant to tell about the plants and their various parts that can be used for the green chemistry of silver nanoparticles in an environmentally friendly basis with their many therapeutic applications. Finally, this review summarizes the latest published data that can be used for research.
References
Philip D. Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(1):327-31. doi: 10.1016/J.SAA.2010.10.015, PMID 21030295.
1, Bansal M, Bansal A, Sharma M, Kanwar P. Green synthesis of gold and silver nanoparticles. Res J Pharm Biol Chem Sci. 2015;6(3):1710-6. | Request PDF. (n.d.).
Kumar CG, Poornachandra Y. Biodirected synthesis of miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surf B Biointerfaces. 2015;125:110-9. doi: 10.1016/J.COLSURFB.2014.11.025, PMID 25460601.
Firdhouse MJ, Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol. 2015;2015:1-18. doi: 10.1155/2015/829526.
Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng. 2015;2015:1-9. doi: 10.1155/2015/682749.
Varghese R, A. Satin leaf (Chrysophyllum oliviforme) Extract Mediated Green Synthesis of Silver Nanoparticles: antioxidant and Anticancer Activities.
Jahn W. Review: chemical aspects of the use of gold clusters in structural biology. J Struct Biol. 1999;127(2):106-12. doi: 10.1006/JSBI.1999.4123, PMID 10527899.
Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and Challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7(6):753-63. doi: 10.1517/17425241003777010, PMID 20408736.
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373-433. doi: 10.1021/CR100449N, PMID 22204603.
Hu D, Tian Z, Wu W, Wan W, Li ADQ. Photoswitchable nanoparticles enable high-resolution cell imaging: Pulsar microscopy. J Am Chem Soc. 2008;130(46):15279-81. doi: 10.1021/JA805948U, PMID 18939833.
Priyam A, Singh PP, Gehlout S. Role of endocrine-disrupting engineered nanomaterials in the pathogenesis of type 2 diabetes mellitus. Front Endocrinol. 2018;9:704-. doi: 10.3389/FENDO.2018.00704, PMID 30542324.
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050-74. doi: 10.3762/BJNANO.9.98, PMID 29719757.
Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J et al. Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. Int J Nanomedicine. 2019;14:5087-107. doi: 10.2147/IJN.S200254, PMID 31371949.
Hurst SJ, Lytton-Jean AKR, Mirkin CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem. 2006;78(24):8313-8. doi: 10.1021/AC0613582, PMID 17165821.
Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):033001. doi: 10.1088/2043-6262/4/3/033001.
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6(2):257-62. doi: 10.1016/J.NANO.2009.07.002, PMID 19616126.
Wang H, Qiao X, Chen J, Wang X, Ding S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys. 2005;94(2-3):449-53. doi: 10.1016/J.MATCHEMPHYS.2005.05.005.
Haefeli C, Franklin C, Hardy K. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol. 1984;158(1):389-92. doi: 10.1128/JB.158.1.389-392.1984, PMID 6715284.
Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep (Amst). 2015;5(C):112-9. doi: 10.1016/J.BTRE.2014.12.001, PMID 28626689.
Gandhi H, Khan S. Biological synthesis of silver nanoparticles and its antibacterial activity. J Nanomed Nanotechnol. 2016;07(2). doi: 10.4172/2157-7439.1000366.
Firdhouse MJ, Lalitha P. Biogenic silver nanoparticles – synthesis, characterization and its potential against cancer inducing bacteria. J Mol Liq. 2016;222:1041-50. doi: 10.1016/J.MOLLIQ.2016.07.141.
[PDF]; n.d. Biosynthesis of Silver Nanoparticles by endophytic Fungi Pestaloptiopsis pauciseta Isolated from the Leaves of Psidium guajava Linn. | Semantic Scholar [cited Jul 21, 2022]. Available from: https://www.semanticscholar.org/paper/Biosynthesis-of-Silver-Nanoparticles-by-Endophytic-Vardhana-Kathiravan/e7739259f695f950116a95f20c820ede4358cb6d.
Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res. 2016;42(3):301-12. doi: 10.1016/J.EJAR.2016.05.004.
Salvadori MR, Ando RA, Nascimento CAO, Corrêa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLOS ONE. 2015;10(6):e0129799. doi: 10.1371/JOURNAL.PONE.0129799, PMID 26043111.
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10(3):507-17. doi: 10.1007/S11051-007-9275-X.
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515-9. doi: 10.1021/nl0155274.
Biosynthesis of silver nanoparticles from dental caries causing fungi Candida albicans; n.d. Semantic Scholar [cited Jul 21, 2022]. Available from: https://www.semanticscholar.org/paper/Biosynthesis-of-Silver-Nanoparticles-from-Dental-Saminathan/5cb8cc546ea6ca801472db971355b2131ed7fb64.
A.R.M. Abd El-Aziz’s research works. Riyadh: King Saud University (KKUH) and other places; n.d. [cited Jul 21, 2022] Available from: https://www.researchgate.net/scientific-contributions/ARM-Abd-El-Aziz-2144860739.
Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech. 2016;6(2):132-. doi: 10.1007/S13205-016-0433-7, PMID 28330204.
Saxena J, Sharma PK, Sharma MM, Singh A. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus. 2016;5(1):861. doi: 10.1186/s40064-016-2558-x, PMID 27386310.
Azmath P, Baker S, Rakshith D, Satish S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J. 2016;24(2):140-6. doi: 10.1016/J.JSPS.2015.01.008, PMID 27013906.
Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi MJ et al. Biosynthesis and characterization of silver nanoparticles by aspergillus species. BioMed Res Int. 2016;2016:5435397. doi: 10.1155/2016/5435397, PMID 27652264.
(PDF) Myco-synthesis of silver nanoparticles from Trichoderma harzianum and its impact on germination status of oil seed; n.d. [cited Jul 21, 2022] Available from: https://www.researchgate.net/publication/342881281_Myco-synthesis_of_silver_nanoparticles_from_Trichoderma_harzianum_and_its_impact_on_germination_status_of_oil_seed.
Ammar HAM, El-Desouky TA. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol. 2016;121(1):89-100. doi: 10.1111/JAM.13140, PMID 27002915.
Rathod D, Golinska P, Wypij M, Dahm H, Rai M. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med Microbiol Immunol. 2016;205(5):435-47. doi: 10.1007/S00430-016-0462-1, PMID 27278909.
Elbeshehy EKF, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front Microbiol. 2015;6(MAY):453. doi: 10.3389/FMICB.2015.00453/ABSTRACT, PMID 26029190.
Pourali P, Razavian Zadeh N, Yahyaei B. Silver nanoparticles production by two soil isolated bacteria, Bacillus thuringiensis and Enterobacter cloacae, and assessment of their cytotoxicity and wound healing effect in rats. Wound Repair Regen. 2016;24(5):860-9. doi: 10.1111/wrr.12465, PMID 27448276.
Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett. 2015;5(1):29-35. doi: 10.1007/S40089-014-0133-4.
Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl Nanosci (Switzerland). 2015;5(6):703-9. doi: 10.1007/S13204-014-0366-6/FIGURES/7.
Annamalai J, Nallamuthu T. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl Nanosci. 2016;6(2):259-65. doi: 10.1007/S13204-015-0426-6, PMID 26900538.
Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci (Switzerland). 2015;5(4):499-504. doi: 10.1007/s13204-014-0341-2.
Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc. 2015;19(3):311-7. doi: 10.1016/J.JSCS.2012.04.007.
Gavade NL, Kadam AN, Suwarnkar MB, Ghodake VP, Garadkar KM. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(B)(PB):953-60. doi: 10.1016/J.SAA.2014.09.118, PMID 25459621.
Ramesh PS, Kokila T, Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;142:339-43. doi: 10.1016/J.SAA.2015.01.062, PMID 25710891.
Miri A, Sarani M, Rezazade Bazaz M, Darroudi M. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc. 2015;141:287-91. doi: 10.1016/J.SAA.2015.01.024, PMID 25682217.
Panja S, Chaudhuri I, Khanra K, Bhattacharyya N. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfia serpentina Benth. Asian Pac J Trop Dis. 2016;6(7):549-56. doi: 10.1016/S2222-1808(16)61085-X.
v. Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31(4):240-8. doi: 10.1016/J.TIBTECH.2013.01.003, PMID 23434153.
Ghaffari-Moghaddam M, Hadi-Dabanlou R, Khajeh M, Rakhshanipour M, Shameli K. Green synthesis of silver nanoparticles using plant extracts. Korean J Chem Eng. 2014;31(4):548-57. doi: 10.1007/S11814-014-0014-6.
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-61. doi: 10.1021/LA020835I.
Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U. Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: characterization, antimicrobial and urease Inhibitory Activities against Helicobacter pylori. Int J Mol Sci. 2012;13(8):9923-41, 9923–9941. doi: 10.3390/IJMS13089923, PMID 22949839.
Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Aspects. 2009;339(1-3):134-9. doi: 10.1016/J.COLSURFA.2009.02.008.
Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA. Biosynthesis, characterisation and antibacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod. 2013;41(1):235-40. doi: 10.1016/J.INDCROP.2012.04.017.
Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017;7(1), 1–13:15867. doi: 10.1038/s41598-017-15724-8, PMID 29158537.
Khan A, Anwar Y, Hasan MM, Iqbal A, Ali M, Alharby HF et al. Attenuation of drought stress in brassica seedlings with exogenous application of Ca2+ and H2O2. Plants (Basel, Switzerland). 2017;6(2):621-35. doi: 10.3390/PLANTS6020020, PMID 28505096.
Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod. 2014;52:562-6. doi: 10.1016/J.INDCROP.2013.10.050.
(PDF) A biogenic approach for the synthesis and characterization of zinc oxide nanoparticles produced by Tinospora cordifolia; n.d. [cited May 27, 2022] Available from: https://www.researchgate.net/publication/281032780_A_biogenic_approach_for_the_synthesis_and_characterization_of_zinc_oxide_nanoparticles_produced_by_tinospora_cordifolia.
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera Plant extract. Biotechnol Prog. 2006;22(2):577-83. doi: 10.1021/BP0501423, PMID 16599579.
Mondal NK, Chowdhury A, Dey U, Mukhopadhya P, Chatterjee S, Das K et al. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis. 2014;4;Suppl 1:S204-10. doi: 10.1016/S2222-1808(14)60440-0.
Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Green synthesis of silver nanoparticles: a review. Green Sustain Chem. 2016;06(1):34-56. doi: 10.4236/GSC.2016.61004.
Chahardoli A, Karimi N, Fattahi A. Biosynthesis, Characterization, antimicrobial and cytotoxic Effects of Silver Nanoparticles Using Nigella arvensis Seed Extract. Iran J Pharm Res IJPR. 2017;16(3):1167-75. /pmc/articles/PMC5610771. PMID 29201104.
Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Aspects. 2010;368(1-3):58-63. doi: 10.1016/J.COLSURFA.2010.07.024.
Patete JM, Peng X, Koenigsmann C, Xu Y, Karn B, Wong SS. Viable methodologies for the synthesis of high-quality nanostructures. Green Chem. 2011;13(3):482-519. doi: 10.1039/C0GC00516A.
Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2014;128:257-62. doi: 10.1016/J.SAA.2014.02.105, PMID 24674916.
Liz-Marzán LM. Nanometals: formation and color*. Colloidal Synth Plasmonic Nanometals. 2020:1-13. doi: 10.1201/9780429295188-1.
Abdelghany TM, Al-Rajhi AMH, al Abboud MA, Alawlaqi MM, Ganash Magdah A, Helmy EAM et al. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience. 2017;8:1, 8(1), 5–16. doi: 10.1007/S12668-017-0413-3.
Giannini C, Ladisa M, Altamura D, Siliqi D, Sibillano T, de Caro L. X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals. 2016;6(8):87. doi: 10.3390/CRYST6080087.
Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod. 2013;46:132-7. doi: 10.1016/J.INDCROP.2013.01.019.
Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D. One step green synthesis of silver Nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B Biointerfaces. 2012;94:114-7. doi: 10.1016/J.COLSURFB.2012.01.026, PMID 22348989.
Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf B Biointerfaces. 2012;95:235-40. doi: 10.1016/J.COLSURFB.2012.03.001, PMID 22483838.
Perni S, Hakala V, Prokopovich P. Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;460:219-24. doi: 10.1016/j.colsurfa.2013.09.034.
Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2014;7(6):1131-9. doi: 10.1016/J.ARABJC.2013.04.007.
Zhang M, Zhang K, de Gusseme B, Verstraete W, Field R. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Http://Dx.Doi.Org/10.1080/08927014.2013.873419. 2014;30(3):347-57. doi: 10.1080/08927014.2013.873419, PMID 24564796.
Scorzoni L. de Paula e Silva. Marcos: ACA, C. M., Assato, P. A., de Melo, W. C. M. A., de Oliveira, H. C., Costa-Orlandi, C. B., Mendes-Giannini, M. J. S., & Fusco-Almeida, A. M. (2017). Antifungal therapy: New advances in the understanding and treatment of mycosis. Frontiers in Microbiology, 8(JAN), 36. https://doi.org/10.3389/FMICB.2017.00036/BIBTEX.
Mondal NK, Chowdhury A, Dey U, Mukhopadhya P, Chatterjee S, Das K et al. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis. 2014;4;Suppl 1:S204-10. doi: 10.1016/S2222-1808(14)60440-0.
Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27(6):359-67. doi: 10.1016/J.TIBTECH.2009.03.002, PMID 19406497.
Lackner P, Beer R, Broessner G, Helbok R, Galiano K, Pleifer C et al. Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive Hydrocephalus. Neurocrit Care. 2008;8(3):360-5. doi: 10.1007/s12028-008-9071-1, PMID 18320144.
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580-8. doi: 10.1016/J.TIBTECH.2010.07.006, PMID 20724010.
Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R, et al. The use of BMP-2 coupled – nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 2010. (n.d.);31(35):9293-300. doi: 10.1016/j.biomaterials.2010.08.041, PMID 20864167.
Akhavan A, Sodagar A, Mojtahedzadeh F, Sodagar K. Investigating the effect of incorporating nanosilver/nanohydroxyapatite particles on the shear bond strength of orthodontic adhesives. Acta Odontol Scand. 2013;71(5):1038-42. doi: 10.3109/00016357.2012.741699, PMID 23294142.
(PDF) application of nanoparticles in waste water treatment; n.d. [cited Jul 22, 2022] Available from: https://www.researchgate.net/publication/242124777_Application_of_Nanoparticles_in_Waste_Water_Treatment.
Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM et al. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc. 2007;129(6):1516-7. doi: 10.1021/JA0673332, PMID 17283991.
Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crops Prod. 2014;52:714-20. doi: 10.1016/J.INDCROP.2013.11.037.
Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 2012;47(12):2405-10. doi: 10.1016/J.PROCBIO.2012.09.025.
Silvestre C, Duraccio D, Cimmino S. Food packaging based on polymer nanomaterials. Prog Polym Sci. 2011;36(12):1766-82. doi: 10.1016/J.PROGPOLYMSCI.2011.02.003
Published
How to Cite
Issue
Section
Copyright (c) 2022 Akshay, Anchal Verma, Akshay Saroha, Rajeev Garg

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.