Conditioned Medium of Induced Mesenchymal Stem Cells as an Activator of Differentiation in The Osteogenic Direction

Life Sciences-Medicine

Authors

  • Nadezhdin S.V Belgorod State National Research University, Belgorod, Russia
  • Belyaeva V.S Belgorod State National Research University, Belgorod, Russia
  • Nadezhdina N.A OGBUZ "Children's Regional Clinical Hospital", Belgorod, Russia
  • Pokrovskaya L.A National Research Tomsk State University, Tomsk, Russia
  • Shutov V.I Belgorod State National Research University, Belgorod, Russia
  • Volobueva S.V OGBUZ "Children's Regional Clinical Hospital", Belgorod, Russia
  • Maklakov D.V Belgorod State National Research University, Belgorod, Russia
  • Pokrovskii M.V Belgorod State National Research University, Belgorod, Russia

DOI:

https://doi.org/10.22376/ijpbs/lpr.2022.12.6.SP23.L37-43

Keywords:

Mesenchymal Stem Cells, Secretion, Conditioned Medium, Differentiation, Osteoinduction, Alkaline Phosphatase

Abstract

In the prevailing era, the need for new biologically active substances of peptide nature and their therapeutic impacts are of great interest of the contemporary pharmacology. Hence, this study intends to assess the osteoinductive potential of the conditioned medium concentrate on native mesenchymal stem cells. To gratify the study’s aim, this study was carried out on a culture of rat mesenchymal stem cells. To stimulate the differentiation of Mesenchymal stem cells in the osteogenic direction, this study used a complete nutrient medium containing dexamethasone, ascorbic acid, sodium ß -glycerophosphate in the concentrations recommended in the guidelines. Subsequently, the resulting concentrate sample was examined using HPLC-MS / MS mass, spectrometric analysis. Part of the previously obtained concentrate of the conditioned medium was used, to assess the proliferation and differentiation of rat Mesenchymal stem cells in the osteogenic direction by staining for alkaline phosphatase. Given the results of the study, it can be concluded that that most of the identified proteins of the conditioned medium concentrate belong to the group of proteins regulating cellular processes, and groups of proteins were also, found that relate to the organization of the extracellular structure, the processes of cell development, or are directly responsible for the differentiation of Mesenchymal stem cells in the osteogenic direction. Along with this, the concentrate of the conditioned medium does not affect the proliferation rate of Mesenchymal stem cells. Thus, the resulting concentrate of the conditioned medium, can be further used, for the development of therapeutic preparations with osteoinductive and regenerative potential.

References

Belyaeva VS, Stepenko YV, Lyubimov II, Kulikov AL, Tietze AA, Kochkarova IS et al.. M. Patrakhanov E.A., Belashova A.V., Lebedev P.R., Gureeva A.V. Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases. Research Results in Pharmacology, 2020; 6(3): 75–86. DOI: 10.3897/rrpharmacology.6.58891.

Bibik IV, Korokin MV, Krivokolysko SG, Elena EY, Bibik EY. Pe-culiarities of pharmacological activity of Tetrahydropyridone and hexahydro-quinoline derivatives in experiment. Res Results Pharmacol. 2020;6(4):7-12. doi: 10.3897/rrpharmacology.6.57882.

Pobeda AS, Kalatanova A, Abasheva D, Dolzhikov AA, Solovev N, Shchurovskaya KV et al. Study to elucidate the pharmacological activity of retinalamin in a rat model of ischemic retinopathy. Re-Search Results Pharmacol. 2021;7(2):39-48. doi: 10.3897/rrpharmacology.7.67390.

Golubev IV, Gureev VV, Korokin MV, Zatolokina MA, Avdeeva EV, Gureeva AV et al. Preclinical study of innovative peptides mimicking the tertiary structure of the α-helix B of erythropoietin. Res Results Pharmacol. 2020;6(2):85-96. doi: 10.3897/rrpharmacology.6.55385.

Pokrovskaya LA, Zubareva EV, Nadezhdin SV, Lysenko AS, Litovkina TL. Biological activity of mesenchymal stem cells secretome as a basis for cell-free therapeutic approach. Res Results Pharmacol. 2020;6(1):57-68. doi: 10.3897/rrpharmacology.6.49413.

Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya AS. Pleiotropic effects of erythropoietin. Influence of erythropoietin on processes of mesenchymal stem cells differentiation. RRP. 2019;5(1):53-66. doi: 10.3897/rrpharmacology.5.33457.

Golubinskaya PA, Puzanov MV, Burda SY, Kostina DA, Burda YE. Effect of the secretome of multipotent mesenchymal stromal cells induced by dexamethasone in vitro on the expression of phospho-NF-κB p65 and Ki-67 in mononuclear cells. Res Results Pharmacol. 2021;7(2):101-7. doi: 10.3897/rrpharmacology.7.68533.

Golubinskaya PA, Sarycheva MV, Burda SY, ... Korokin MV, Burda YE. Pharmacological modulation of cell functional activity with valproic ac-id and erythropoietin. Res Results Pharmacol. 2019;55(2):89-99. doi: 10.3897/rrpharmacology.5.34710.

Zubareva EV, Nadezhdin SV, Nadezhdina NA, Belyaeva VS, Burda YE, Avtina TV et al. 3D organotypic cell structures for drug development and microorganism-Host in-teraction research. Res Results Pharmacol. 2021;7(1):47-64. doi: 10.3897/rrpharmacology.7.62118.

L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1-9. doi: 10.1016/j.cytogfr.2019.04.002, PMID 30954374.

Teixeira FG, Salgado AJ. Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res. 2020;15(1):75-7. doi: 10.4103/1673-5374.264455, PMID 31535654.

Pittenger MF, Mbalaviele G, Black M, Mosca JD, Marshak DR. Mes-enchymal stem cells. In: Koller MR, Palsson BO, Masters JRW, editors. Hu-man cell culture. The Netherlands Kluwer: academic publishers. Vol. 5; 2001. p. 189-207.

Ding J, Ghali O, Lencel P, Broux O, Chauveau C, Devedjian JC et al. TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesen-chymal stem cells. Life Sci. 2009;84(15-16):499-504. doi: 10.1016/j.lfs.2009.01.013, PMID 19302812.

Kang Y, Georgiou AI, MacFarlane RJ, Klontzas ME, Heliotis M, Tsiridis E et al. Fibronectin stimulates the osteogenic differentiation of murine embryonic stem cells. J Tissue Eng Regen Med. 2017;11(7):1929-40. doi: 10.1002/term.2090, PMID 26449737.

Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci. 1997;110(18):2187-96. doi: 10.1242/jcs.110.18.2187, PMID 9378768.

Klavert J, van der Eerden BCJ. Fibronectin in fracture healing: biological mechanisms and regenerative avenues. Front Bioeng Biotechnol. 2021;9:663357. doi: 10.3389/fbioe.2021.663357, PMID 33937219.

Plessner M, Melak M, Chinchilla P, Baarlink C, Grosse R. Nuclear F-actin formation and reorganization upon cell spreading. J Biol Chem. 2015;290(18):11209-16. doi: 10.1074/jbc.M114.627166, PMID 25759381.

Sen B, Xie Z, Uzer G, Thompson WR, Styner M, Wu X et al. Intranuclear actin regulates osteogenesis. Stem Cells. 2015;33(10):3065-76. doi: 10.1002/stem.2090, PMID 26140478.

Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of ac-tin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):283. doi: 10.1186/s13287-020-01789-2, PMID 32678016.

Tong Z, Liu Y, Xia R, Chang Y, Hu Y, Liu P et al. F-actin regulates osteoblastic differentiation of mesenchymal stem cells on TiO2 nanotubes through MKL1 and YAP/TAZ. Nanoscale Res Lett. 2020;15(1):183. doi: 10.1186/s11671-020-03415-9, PMID 32965618.

Lowe DA, Lepori-Bui N, Fomin PV, Sloofman LG, Zhou X, Farach-Carson MC et al. Deficiency in perlecan/HSPG2 during bone development enhances osteogenesis and decreases quality of adult bone in mice. Calcif Tissue Int Jul. 2014;95(1):29-38. doi: 10.1007/s00223-014-9859-2, PMID 24798737.

Pei S, Parthasarathy S, Parajuli A, Martinez J, Lv M, Jiang S et al. Per-lecan/Hspg2 deficiency impairs bone’s calcium signaling and associated transcrip-tome in response to mechanical loading. Bone. 2020;131:115078. doi: 10.1016/j.bone.2019.115078, PMID 31715337.

Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol. 2000; 21;148(4):665-78. doi: 10.1083/jcb.148.4.665, PMID 10684249.

Kjær M. Role of extracellular matrix in adaptation of tendon and Skel-etal muscle to mechanical loading. Physiol Rev. 2004;84(2):649-98. doi: 10.1152/physrev.00031.2003.

Schoengraf P, Lambris JD, Recknagel S, Kreja L, Liedert A, Brenner RE et al. Does complement play a role in bone develop-ment and regeneration? Immunobiology. 2013;218(1):1-9. doi: 10.1016/j.imbio.2012.01.020, PMID 22464814.

Published

2022-10-08

How to Cite

S.V, N., V.S, B., N.A, N., L.A, P., V.I, S., S.V, V., D.V, M., & M.V, P. (2022). Conditioned Medium of Induced Mesenchymal Stem Cells as an Activator of Differentiation in The Osteogenic Direction: Life Sciences-Medicine. International Journal of Life Science and Pharma Research, 12(SP23), L37-L43. https://doi.org/10.22376/ijpbs/lpr.2022.12.6.SP23.L37-43

Issue

Section

Research Articles