Effect of Copper Sulfate On Hematological and Histological Parameters of Freshwater Fish Oreochromis niloticus at Various Sublethal Concentration

Life Sciences-Aquatic Toxicology

Authors

  • S. Sasikumar PG and Research Department of Zoology, Government Arts College for Men, Krishnagiri.Tamilnadu, India, Affiliated to Periyar University,Salem https://orcid.org/0000-0002-3905-1193
  • J. Prakash Sahaya Leon PG and Research Department of Zoology, Government Arts College for Men, Krishnagiri.Tamilnadu, India, Affiliated to Periyar University,Salem. https://orcid.org/0000-0001-6146-3402

DOI:

https://doi.org/10.22376/ijpbs/lpr.2022.12.6.L72-80

Keywords:

Copper Sulfate, Oreochromis niloticus, Hematology, RBC, WBC, MCV, MCH, HB, Histopathology

Abstract

Heavy metals pollution is a great environmental problem in recent years throughout the world. Various activities such as domestic, anthropogenic activities, volcanic eruptions and industrial activities which increase their level of heavy metals concentration into the environment. Copper sulfate is used as an algaecide and fungicide in the fields of agriculture and aquaculture being discharged into water bodies and it can affect the aquatic organisms, especially fishes. The present study deals with the effect of copper sulfate on various hematological parameters of the experimental fish Oreochromis niloticus. Oreochromis niloticus is an important freshwater fish in commercial aquaculture. Fish is a significant food component of human food. Fish are the suitable bio-indicators of heavy metal contamination. Heavy metals are oxidative stress inducers in fish and can reflect aquatic contamination. The Objective of the present study was to analyze the hematological effects of heavy metal CuSO4 on the freshwater fish O.niloticus. The LC50 value of copper sulfate found to be 39.2 mg/L. The fish Oreochromis niloticus were experimented for the different sub lethal concentrations of 1/10, 1/20 and 1/30 of copper sulfate for the period of 30 days to get hematological changes. At the end of the experiment the result shows that the Red Blood Cell (RBC) count and the percentage of hemoglobin (Hb) were significantly decreased as the sub-lethal concentration of heavy metal Copper sulfate increased, while the level of WBC, MCV and MCH significantly increased. The effect of copper sulfate was observed by histopathological investigation of gill and liver of treated fish. The aim of present study is to investigate the hematological and histopathological effects of copper sulfate for the period of 30 days at various sublethal concentration in various tissues of the freshwater fish O. niloticus.Dietary data were collected in detail through face-to-face interview on tilapia O.niloticus consumption. Intake of fish (g) was computed. Statistical analyses were conducted using SPSS software for Windows and all tests were considered significant at p<0:05.

References

Caussy D, Gochfeld M, Gurzau E, Neagu C, Ruedel H. Lessons from case studies of metals: investigating exposure, bioavailability, and risk. J Ecotoxicol Environ Saf. 2003;56(1):45-51. doi: 10.1016/S0147-6513(03)00049-6.

Samanta S, Mitra K, Chandra K, Saha K, Bandopadhyay S, Ghosh A. Heavy metals in water of the rivers Hooghly and Haldi at Haldia and their impact on fish. J Environ Biol. 2005;26(3):517-23. PMID 16334291.

Mason CF. Biology of freshwater pollution. 2nd ed. New York: Longman; 1991. p. 351.

Zhou Q, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal ChimActa. 2008;606(2):135-50. doi: 10.1016/j.aca.2007.11.018. (2003) 57–149. PMID 18082645.

Olaifa F, Olaifa AK, Adelaja AA, Owalabi AG. Heavy metal contamination of ClariasGaripinus from a lake and fish farm in Ibaden, Nigeria. Afr J Biomed Res. 2004;7:145-148.1.

Livingstone D, R. Oxidative stress in aquatic organ- ism in relation to pollution and agriculture. Rev Med Vet. 2003;154:427-30.

Jabeen F, Chaudhry AS. Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromismossambicus from Indus River in Pakistan. Environ Monit Assess. 2010;166(1-4):641-51. doi: 10.1007/s10661-009-1029-z, PMID 19533396.

Malik N, Biswas AK, Qureshi TA, Borana K, Virha R. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess. 2010;160(1-4):267-. doi: 10.1007/s10661-008-0693-8, PMID 19123040.

Varanka Z, Rojik I, Varanka I. Nemcso´k J & amp; A´braha´m M. Biochemical and morphological changes in carp (CyprinuscarpioL.) liver following exposure to copper sulfate and tannis acid, Comp. Biochem Physiol. 2001;128C:67-478.

Schjolden J, Sørensen J, Nilsson GE, Poléo AB. The toxicity of copper to crucian carp (Carassiuscarassius) in soft water. Sci Total Environ. 2007;384(1-3):239-51. doi: 10.1016/j.scitotenv.2007.06.009. PMID 17628637.

Van der Oost R, Beyer J, Vermeulen NP. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ ToxicolPharmacol. 2003;13(2):57-149. doi: 10.1016/s1382-6689(02)00126-6, PMID 21782649.

Suvetha L, Ramesh M, Saravanan M. Influence of cypermethrin toxicity on ionic regulation and gill Na(+)/K(+)-ATPase activity of a freshwater teleost fish Cyprinuscarpio. Environ ToxicolPharmacol. 2010;29(1):44-9. doi: 10.1016/j.etap.2009.09.005, PMID 21787581.

Romani R, Antognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E et al. Increased acetylcholinesterase activities in specimens of Sparusauratus exposed to sublethal copper concentrations. ChemBiol Interact. 2003;145(3):321-9. doi: 10.1016/s0009-2797(03)00058-9, PMID 12732458.

Saravanan M, Devi KU, Malarvizhi A, Ramesh M. Effects of ibuprofen on haematological, biochemical and enzymological parameters of blood in an Indian major carp Cirrhinusmrigala. Environ ToxicolPharmacol. 2003;34:14-22.

Kori-Siakpere O, Ake JEG, Idoge E. Haematological characteristics of the Africansnakehead, Parachacnnaobscura. Afr J Biotechnol. 2005;4(6):527-30.

Mekkawy IA, Mahmoud UM, Sayed Ael-D. Effects of 4-nonylphenol on blood cells of the African catfish Clariasgariepinus (Burchell, 1822). Tissue Cell. 2011;43(4):223-9. doi: 10.1016/j.tice.2011.03.006, PMID 21501852.

Velma V, Tchounwou PB. Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, carassiusauratus. Mutat Res Genet Toxicol Environ Mutagen. 2010;698(1-2):43-51. doi: 10.1016/j.mrgentox.2010.03.014.

Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos P et al. Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesq Vet Bras. 2007;27(3):103-9. doi: 10.1590/S0100-736X2007000300004.

Abdel-Khalek AA. Antioxidant Responses and Nuclear Deformations in Freshwater Fish, Oreochromis niloticus, Facing Degraded Environmental Conditions. Bull Environ ContamToxicol. 2015;94(6):701-8. doi: 10.1007/s00128-015-1509-5, PMID 25726009.

Finney DJ. Probit analysis. 3rd ed. Cambridge: Cambridge University Press; 1971.

Committee on Water Quality Criteria. Water quality criteria. Environmental Protection Agency; 1972.

Mukherjee Kanual L. Medical laboratory technology (Edn). Vol. 1. New York: McGraw-Hill Publishing Company Limited. New Delhi; 1988.

Sahli. Determination of haemoglobin by acid haematin method. In: Dacie JV, Lewis SM, editors. Practical haematology. 5th edChuruchill, London; 1962.

Lee RG, Foerster J, Jukens J, Paraskevas F, Greer JP, Rodgers GM. Wintrobe’s clinical hematology. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 1998.

Gurr E. Methods for analytical histology and histochemistry. London: Leonard Hill (Books) Ltd.; 1959.

Duncan DB. Multiple Range and Multiple F Tests. Biometrics. 1955;11(1):1-42. doi: 10.2307/3001478.

Goel KA, Sharma SD. Some haematological characteristics of Clariasbatrachus under metallic stress of arsenic. Comp Physiol Ecol. 1987;12:63-6.

Goel KA, Gupta K, Sharma M. L. Haematological characteristic of Heteropneustesfossilis under the stress of zinc. Ind J Fish. 1985;36:186-8.

McKim JM, Christensen GM, Hunt EP. Changes in the Blood of Brook Trout ( Salvelinusfontinalis ) After Short-Term and Long-Term Exposure to Copper. J Fish Res Bd Can. 1970;27(10):1883-9. doi: 10.1139/f70-210.

El-Sayed YS, Saad TT, El-Bahr SM. Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ ToxicolPharmacol. 2007;24(3):212-7. doi: 10.1016/j.etap.2007.05.006, PMID 21783813.

Mishra S, Srivastava AK. The acute toxic effects of copper on the blood of a teleost. Ecotoxicol Environ Saf. 1980;4(2):191-4. doi: 10.1016/0147-6513(80)90019-6, PMID 7389638.

Atamanalp M, Yanik T. Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to mancozeb. Turk J Vet Anim Sci. 2003;27:1213-7.

Atamanalp M, Yanik T, Haliloglu HI, Aras MS. Alternations in the hematological parameters of rainbow trout, Oncorhynchus mykiss, exposed to cypermethrin. Isr J AquacultBamidgeh. 2002a;54:99-103.

Aitte SA. Effect of crude oil on the oxygen dissolved, and some biochemical changes of FreshWater fish Barabusluteus (H) and LizaAbu (L). J Chem Pharm Res. 2020;12(11):1-7.

Karan V, Vitorović S, Tutundzić V, Poleksić V. Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery. Ecotoxicol Environ Saf. 1998;40(1-2):49-55. doi: 10.1006/eesa.1998.1641, PMID 9626535.

Sarkar B, Chatterjee A, Adhikari S, Ayyappan S. Carbofuran- and cypermethrin-induced histopathological alterations in the liver of Labeorohita (Hamilton) and its recovery. J ApplIchthyol. 2005;21(2):131-5. doi: 10.1111/j.1439-0426.2004.00590.x.

Arellano JM, Storch V, Sarasquete C; Storch V. & amp. Histological changes and copper accumulation in liver and gills of the Senegales sole, Soleasenegalensis. Ecotoxicol Environ Saf. 1999;44(1):62-72. doi: 10.1006/eesa.1999.1801, PMID 10499990.

Hoyle I, Shaw BJ, Handy RD. Dietary copper exposure in the African walking catfish, Clariasgariepinus: transient osmoregulatory disturbances and oxidative stress. AquatToxicol. 2007;83(1):62-72. doi: 10.1016/j.aquatox.2007.03.014, PMID 17442412.

García-Lestón J, Méndez J, Pásaro E, Laffon B. Genotoxic effects of lead: an updated review. Environ Int. 2010;36(6):623-36. doi: 10.1016/j.envint.2010.04.011, PMID 20466424.

Rehman IU, Ishaq M, Ali L, Khan S, Ahmad I, Din IU et al. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, northern Pakistan. Ecotoxicol Environ Saf. 2018;154:127-36. doi: 10.1016/j.ecoenv.2018.02.033, PMID 29459162.

El-Sadaawy MM, El-Said GF, Sallam NA. Bioavailability of heavy metals in fresh water Tilapia nilotica (Oreachromisniloticus Linnaeus, 1758): potential risk to fishermen and consumers. J Environ Sci Health B. 2013;48(5):402-9. doi: 10.1080/03601234.2013.742719, PMID 23431978.

K. K KD, J. PSl. Toxic effect of cypermethrin on enzymes in freshwater fish Oreochromismossambicus (tilapia). Int J Pharm Biol Sci. 2021;11(6):137-43:L137-143. doi: 10.22376/ijpbs/lpr.2021.11.6.

Abdel Tawwab M, Shalaby AME, Ahmed MH, Khattab YA. Effect of supplemental dietary Lascorbic acid (vitamin C) on mercury intoxication and growth performance of Nile tilapia (Oreochromis niloticus (L.). Ann AgricSciMoshtohor. 2001;39(2):961-73 36.

Published

2022-09-22

How to Cite

Sasikumar, S. ., & Leon, J. P. S. (2022). Effect of Copper Sulfate On Hematological and Histological Parameters of Freshwater Fish Oreochromis niloticus at Various Sublethal Concentration : Life Sciences-Aquatic Toxicology. International Journal of Life Science and Pharma Research, 12(6), L72-L80. https://doi.org/10.22376/ijpbs/lpr.2022.12.6.L72-80

Issue

Section

Research Articles