Review on Classification, Methods, and Characterization of Polymeric Nanoparticles with Their Applications
Pharmaceutical Science-Pharmaceutics
DOI:
https://doi.org/10.22376/ijpbs/lpr.2022.12.6.P24-38Keywords:
Polymeric Nanoparticles, Nanotechnology, Polymerization, Drug delivery, and FTIRAbstract
The majority of this review's emphasis is given to polymer-based nanoparticles, including their production, evaluation and their bioavailability. Biodegradable and biocompatible polymers of synthetic and natural origin make up the matrix of polymerbased nanoparticles. By reducing the size of the particles, polymer-based nanoparticles can significantly improve the solubility of poorly water-soluble drugs. Polymeric nanoparticles are excellent for directing a drug’s action at a particular spot. Additionally, polymeric nanoparticles are used to maintain and regulate the release of the drug. The kind of polymer that was employed to create the polymer-based nanoparticles is the subject of the current review study for their classification, characteristics, and applications of nanoparticles (NPs), which come in a variety of forms and sizes. Nanoparticles, which have diameters in the nm range, are the simplest type of structure. An NPs is well-defined as a collective group of molecules compelled composed of a structural range of fewer than 100nm. As of their higher solubility, smaller size, and improved penetrability, NPs are commonly used for a variety of dosage formulations. Some of the processes used to generate NPs include the Solvent Evaporation Method, Double Emulsion method, Salting Out Method, Precipitation Method, ionic gelation Method and Polymerization Method. The aim and objective of this review article is to give a concise information about polymeric nanoparticles including method of preparation and their applications.
References
Sharma C, Thakur N, Kaur B, Goswami M. Transdermal Patches: State of the art. Int J Drug Deliv Technol. 2020;10(3):414-20. doi: 10.25258/ijddt.10.3.19.
Sharma C, Thakur N, Kaur B, Goswami M. View of Recent advancements in transdermal patches. Int J Health Sci. 2022;6;Suppl 1:6443-60.
Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol. 2007;49(3):217-29. doi: 10.1016/J.YRTPH.2007.07.006, PMID 17868963.
Controlled drug delivery with nanoparticles: current possibilities and future trends; n.d. Semantic Scholar [cited Apr 24, 2022]. Available from: https://www.semanticscholar.org/paper/Controlled-drug-delivery-with-nanoparticles-%3A-and-Couvreur-Dubernet/7eaafcb9a3ab447eb9e1f80fcb2f752f34496537.
A review on polymeric nanoparticles; n.d. [cited May 24, 2022] Available from: https://www.researchgate.net/publication/289135175_A_review_on_polymeric_nanoparticles.
Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113-28. doi: 10.3109/03639049809108571, PMID 9876569.
Nanotechnology: small matter, many unknowns – Annabelle Hett. Google Books; n.d. [cited Jul 20, 2022] Available from: https://books.google.co.in/books/about/Nanotechnology.html?id=gsniAAAAMAAJ&redir_esc=y.
Hossain MK, Ahmed MH, Khan MI, Miah MS, Hossain S. Recent progress of rare earth oxides for sensor, detector, and electronic device applications: a review. ACS Appl Electron Mater. 2021;3(10):4255-83. doi: 10.1021/acsaelm.1c00703.
Tiwari DK, Behari J, Sen P. Application of nanoparticles in waste water treatment. World Appl Sci J. 2008;3:417-33. - References - Scientific Research Publishing. (n.d.).
Debuigne F, Jeunieau L, Wiame M, B.Nagy JB. Synthesis of organic nanoparticles in different W/O microemulsions. Langmuir. 2000;16(20):7605-11. doi: 10.1021/LA991638V.
Salavati-Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. 2008;27(17):3514-8. doi: 10.1016/J.POLY.2008.08.020.
Tai CY, te Tai C, Chang MH, Liu HS. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind Eng Chem Res. 2007;46(17):5536-41. doi: 10.1021/IE060869B.
Figuerola A, di Corato R, Manna L, Pellegrino T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res. 2010;62(2):126-43. doi: 10.1016/J.PHRS.2009.12.012, PMID 20044004.
Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM et al. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc. 2007;129(6):1516-7. doi: 10.1021/JA0673332, PMID 17283991.
Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH. Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surf A Physicochem Eng Aspects. 2001;182(1-3):123-30. doi: 10.1016/S0927-7757(00)00825-6.
Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release. 1998;50(1-3):31-40. doi: 10.1016/S0168-3659(97)00106-5, PMID 9685870.
Hoa LTM, Chi NT, Nguyen LH, Chien DM. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method. J Exp Nanosci. 2012;7(2):189-97. doi: 10.1080/17458080.2010.515247.
Vaculikova E, Grunwaldova V, Kral V, Dohnal J, Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17(11):13221-34. doi: 10.3390/MOLECULES171113221, PMID 23132139.
Kawashima Y, Niwa T, Handa T, Takeuchi H, Iwamoto T, Itoh K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J Pharm Sci. 1989;78(1):68-72. doi: 10.1002/JPS.2600780118, PMID 2709323.
Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release. 2009;133(2):90-5. doi: 10.1016/J.JCONREL.2008.09.073, PMID 18848962.
Liu J, Qiu Z, Wang S, Zhou L, Zhang S. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed Mater. 2010;5(6):065002. doi: 10.1088/1748-6041/5/6/065002, PMID 20924138.
Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496(2):173-90. doi: 10.1016/J.IJPHARM.2015.10.057, PMID 26522982.
Kadian R. Nanoparticles: a promising drug delivery approach. Asian J Pharm Clin Res. 2018;11(1):30. doi: 10.22159/AJPCR.2017.V11I1.22035.
Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113-28. doi: 10.3109/03639049809108571, PMID 9876569.
60 71 Jung T Kamm W Breitenbach A kaiserling E Xiao JK Kissel T biodegradable; n.d. Course Hero [cited Apr 24, 2022]. Available from: https://www.coursehero.com/file/p7cj0ds/60-71-Jung-T-Kamm-W-Breitenbach-A-Kaiserling-E-Xiao-JK-Kissel-T-Biodegradable/.
Siddiqua Gazi A, Sailaja AK. Preparation and characterization of paracetamol loaded Eudragit S100 nanoparticles by salting out technique. J Dev Drugs. 2018;07(1). doi: 10.4172/2329-6631.1000183.
Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci. 2005;25(4-5):357-67. doi: 10.1016/J.EJPS.2005.03.013, PMID 15916889.
Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1-4. doi: 10.1016/0378-5173(89)90281-0.
Chorny M, Fishbein I, Danenberg HD, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83(3):389-400. doi: 10.1016/S0168-3659(02)00211-0, PMID 12387947.
Hebeish A, El-Rafie MH, EL-Sheikh MA, El-Naggar ME. Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant. J Inorg Organomet Polym Mater. 2013;24:3, 24(3), 515–524. doi: 10.1007/S10904-013-0004-X.
Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers – Calvo −1997. J Appl Polym Sci. n.d.
Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Semant Sch. n.d.
Patra S, Basak P, Tibarewala DN. Synthesis of gelatin Nano/submicron particles by binary nonsolvent aided coacervation (BNAC) method. Mater Sci Eng C Mater Biol Appl. 2016;59:310-8. doi: 10.1016/J.MSEC.2015.10.011, PMID 26652378.
Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513-25. doi: 10.1016/J.EJPB.2007.09.009, PMID 17983737.
(PDF) ionotropic gelation – A novel method to prepare chitosan nanoparticles; n.d. [cited May 24, 2022] Available from: https://www.researchgate.net/publication/288354069_Ionotropic_gelation_-_A_novel_method_to_prepare_chitosan_nanoparticles.
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. doi: 10.1016/J.BIOTECHADV.2008.09.002, PMID 18854209.
Puglisi G, Fresta M, Giammona G, Ventura CA. Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation. Int J Pharm. 1995;125(2):283-7. doi: 10.1016/0378-5173(95)00142-6.
Pattanayak M, Nayak PL. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J Nano Sci Technol. 2013;2(1):6-09. doi: 10.5829/idosi.wjnst.2013.2.1.21132.
Desai R, Mankad V, Gupta SK, Jha PK. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett. 2012;4(1):30-4. doi: 10.1166/NNL.2012.1278.
Ahmed M, Ali MM. Synthesis and characterisation of zirconium oxide nanoparticles via the hydrothermal method and evaluation of their antibacterial activity. Res J Pharm Technol. 2021;14(2):938-42. doi: 10.5958/0974-360X.2021.00167.0.
Florence AT. Targeted and controlled drug delivery: novel carrier systems. Int J Pharm. 2003;267(1-2):157. doi: 10.1016/S0378-5173(03)00356-9.
Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release. 2001;70(3):353-63. doi: 10.1016/S0168-3659(00)00367-9, PMID 11182205.
Betancor L, Luckarift HR. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 2008;26(10):566-72. doi: 10.1016/J.TIBTECH.2008.06.009, PMID 18757108.
de Assis DN, Mosqueira VCF, Vilela JMC, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. Int J Pharm. 2008;349(1-2):152-60. doi: 10.1016/J.IJPHARM.2007.08.002, PMID 17869460.
Ansari MT, Hussain A, Nadeem S, Majeed H, Saeed-Ul-Hassan S, Tariq I et al. Preparation and characterization of solid dispersions of artemether by freeze-dried method. BioMed Res Int. 2015;2015:109563. doi: 10.1155/2015/109563, PMID 26097842.
Mohan AC, Renjanadevi B. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction(XRD). Procedia Technol. 2016;24:761-6. doi: 10.1016/J.PROTCY.2016.05.078.
Khanna PK, Gaikwad S, v. Adhyapak PV, Singh N, Marimuthu R. Synthesis and characterization of copper nanoparticles. Mater Lett. 2007;61(25):4711-4. doi: 10.1016/J.MATLET.2007.03.014.
Farrell D, Majetich SA, Wilcoxon JP. Preparation and characterization of monodisperse Fe nanoparticles. J Phys Chem B. 2003;107(40):11022-30. doi: 10.1021/JP0351831.
zur Mühlen A, zur Mühlen E, Niehus H, Mehnert W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res. 1996;13(9):1411-6. doi: 10.1023/A:1016042504830, PMID 8893284.
Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD et al. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res. 2003;20(3):479-84. doi: 10.1023/A:1022676709565, PMID 12669972.
Polakovič M, Görner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J Control Release. 1999;60(2-3):169-77. doi: 10.1016/S0168-3659(99)00012-7, PMID 10425323.
Otsuka H, Nagasaki Y, Kataoka K. Pegylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55(3):403-19. doi: 10.1016/S0169-409X(02)00226-0, PMID 12628324.
W, L. Agriculturists, C., MC, D., SS, D., & L, I. (1993). Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. Journal of Drug Targeting, 1(3), 237–243. https://doi.org/10.3109/10611869308996081.
Kreuter J. Physicochemical characterization of polyacrylic nanoparticles. Int J Pharm. 1983;14(1):43-58. doi: 10.1016/0378-5173(83)90113-8.
Magenheim B, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers – ultrafiltration technique at low pressure. Int J Pharm. 1993;94(1-3):115-23. doi: 10.1016/0378-5173(93)90015-8.
Marsalek R. Particle size and zeta potential of ZnO. APCBEE Procedia. 2014;9:13-7. doi: 10.1016/J.APCBEE.2014.01.003.
Hoffmann F, Cinatl J, Kabicková H, Kreuter J, Stieneker F. Preparation, characterization and cytotoxicity of methylmethacrylate copolymer nanoparticles with a permanent positive surface charge. Int J Pharm. 1997;157(2):189-98. doi: 10.1016/S0378-5173(97)00242-1, PMID 10477816.
Dudhani AR, Kosaraju SL. Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym. 2010;81(2):243-51. doi: 10.1016/J.CARBPOL.2010.02.026.
Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65(1):26-38. doi: 10.1016/j.ejpb.2006.07.007, PMID 16962750.
Hassellöv M, Kaegi R. Analysis and characterization of manufactured nanoparticles in aquatic environments. Environ Hum Health Impacts Nanotechnol. 2009:211-66. doi: 10.1002/9781444307504.CH6.
Yukawa HY, Tsukamoto R, Kano A, Okamoto Y, Tokeshi M, Ishikawa T et al. Quantum dots conjugated with transferrin for brain tumor cell imaging. J Cell Sci Ther. 2013;04(3). doi: 10.4172/2157-7013.1000150.
Arif T, Nisa N, Amin SS, Shoib S, Mushtaq R, Shawl MR. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics. J Nanomed Biother Discov. 2015;5(3):1-10. doi: 10.4172/2155-983X.1000134.
Heidari A. Pharmacogenomics and Pharmacoproteomics studies of Phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles as sandwiched anti-cancer Nano drugs between two DNA/RNA molecules of human cancer cells. J Pharmacogenomics Pharmacoproteomics. 2016;7(2). doi: 10.4172/2153-0645.1000E153.
Os K, Yv R. Nano drug delivery systems to overcome cancer drug resistance – a review. J Nanomed Nanotechnol. 2016;7(3):378. doi: 10.4172/2157-7439.1000378.
Menaa Dr. DB. The importance of nanotechnology in biomedical sciences. J Biotechnol Biomaterial. 2011;01(5). doi: 10.4172/2155-952X.1000105e.
Shatrohan Lal RK. Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: a review. J Nanomater Mol Nanotechnol. 2014;03(4). doi: 10.4172/2324-8777.1000150.
Herrero-Vanrell R, Rincón AC, Alonso M, Reboto V, Molina-Martinez IT, Rodríguez-Cabello JC. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release. 2005;102(1):113-22. doi: 10.1016/J.JCONREL.2004.10.001, PMID 15653138.
Vauthier C, Dubernet, C., Chauvierre, C., Brigger, I., & Couvreur, P. (n.d.). Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. https://doi.org/10.1016/j.jconrel.2003.08.005.
Weingart J, Vabbilisetty P, Sun XL. Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv Colloid Interface Sci. 2013;197-198:68-84. doi: 10.1016/J.CIS.2013.04.003, PMID 23688632.
A G. Organic solar cells and its characteristics. J Material Sci Eng. 2015;04(6). doi: 10.4172/2169-0022.1000203.
Morganti P. Nanoparticles and nanostructures man-made or naturally recovered: the biomimetic activity of chitin nanofibrils. J Nanomater Mol Nanotechnol. 2012;01(2). doi: 10.4172/2324-8777.1000101.
Zhu Z, Zhou J, Liu H, He Z, Wang X. Enhanced photocatalytic activity of polyvinylpyrrolidone assisted microwave hydrothermal grown tin oxide photocatalysts. J Nanomater Mol Nanotechnol. 2012;01(2). doi: 10.4172/2324-8777.1000103.
Dyson SD, Fahmy TM, Metcalfe SM, Barker RA. Evaluation of PLGA nanoparticles carrying leukaemia inhibitory factor for stromal-like support of rat fetal dopaminergic cells. J Nanomater Mol Nanotechnol. 2016;s2. doi: 10.4172/2324-8777.S2-003.
Xavier S. Effect of neodymium substitution on structural and magnetic properties of cobalt ferrite nanoparticles. J Nanomater Mol Nanotechnol. 2013;02(7). doi: 10.4172/2324-8777.1000133.
Sharma A. Influences of dopant concentration on crystallography, optical and electrical properties of cadmium oxide nanoparticles. J Nanomater Mol Nanotechnol. 2014;03(2). doi: 10.4172/2324-8777.1000145.
Abo Alhasan AA. Rapid induced aggregation of gold nanoparticles by Diolefinic dyes. J Nanomater Mol Nanotechnol. 2014;03(2). doi: 10.4172/2324-8777.1000142.
Nabid MR, Sedghi R. Synthesis of nonionic dendrimer-like star block copolymers based on PCL and PEG as stabilizer for gold nanoparticles. J Nanomater Mol Nanotechnol. 2016;02(7). doi: 10.4172/2324-8777.1000129.
Gandhi H, Khan S. Biological synthesis of silver nanoparticles and its antibacterial activity. J Nanomed Nanotechnol. 2016;07(2). doi: 10.4172/2157-7439.1000366.
Pantidos N. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 2014;05(5). doi: 10.4172/2157-7439.1000233.
Kumar H, Kumar A, Gangwar DK, Kumar P, Singh G, Soni U. Potential application of gold nanostructures in photodynamic therapy. J Nanomed Nanotechnol. 2016;7(1):1-4. doi: 10.4172/2157-7439.1000349.
Mortimer CJ, Burke L. Microbial interactions with nanostructures and their importance for the development of electrospun nanofibrous materials used in regenerative medicine and filtration. J Microb Biochem Technol. 2016;8(3). doi: 10.4172/1948-5948.1000285.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761-9. doi: 10.1038/SJ.CLPT.6100400, PMID 17957183.
New innovation in renewable energy provided by the organic solar cells based on 3-aryl-4-hydroxyquinolin-2-(1H)-one; n.d. Correlation-Structure/Electronic Properties [cited Apr 25, 2022]. Available from: https://1library.net/document/ydj8o81y-innovation-renewable-provided-hydroxyquinolin-correlation-structure-electronic-properties.html.
Olson JL, Velez-Montoya R, Nghiem N, Ammar DA, Mandava N, Stoldt CR. Intraocular biocompatibility of gold-nanoparticles. J Nanomater Mol Nanotechnol. 2013;2(2). doi: 10.4172/2324-8777.1000111.
Khetawat S. Nanotechnology (nanohydroxyapatite crystals): recent advancement in treatment of dentinal hypersensitivity. JBR J Interdiscip Med Dent Sci. 2015;03(3). doi: 10.4172/2376-032X.1000181.
Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano. 2016;10(4):3918-35. doi: 10.1021/acsnano.6b01401, PMID 27043181.
Jp Y, S K. Characterization and Antibacterial Activity of Synthesized Silver and Iron Nanoparticles using Aloe vera. J Nanomed Nanotechnol. 2016;7(3). doi: 10.4172/2157-7439.1000384.
S K, V P. A Theoretical Study of CO Adsorption on Pt-Me (Me- Fe, Co, Ni) Nanoclusters. J Thermodyn Catal. 2016;7(2). doi: 10.4172/2157-7544.1000169.
Wu JC. Silica three-dimensional biosensors. Biosens J. 2015;s4. doi: 10.4172/2090-4967.1000127.
Anja Sommer SK. Oxidized silicon nanoparticles and iron oxide nanoparticles for radiation therapy. J Nanomater Mol Nanotechnol. 2014;s2. doi: 10.4172/2324-8777.S2-002.
[PDF]; n.d. Green synthesis of silver nanoparticles and characterization using plant leaf essential oil compound citral and their antifungal activity against human pathogenic fungi | Semantic Scholar [cited Apr 25, 2022]. Available from: https://www.semanticscholar.org/paper/Green-synthesis-of-silver-nanoparticles-and-using-Thanighaiarassu-Nambikkairaj/19189455b7f6cccc4340a77d2311e7fc075dc5e7.
Drelich J. Nanoparticles in a liquid: new state of liquid? J Nanomater Mol Nanotechnol. 2013;02(1). doi: 10.4172/2324-8777.1000E105.
Goswami N. Recent trends in research on semiconductor nanostructures for lasers, optics and photonics applications. J Laser Opt Photonics. 2014;01(2). doi: 10.4172/2469-410X.1000e102.
Hoseinnejad M, Jafari SM, Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol. 2018;44(2):161-81. doi: 10.1080/1040841X.2017.1332001, PMID 28578640.
de Jong WH, Borm PJA. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/IJN.S596, PMID 18686775.
Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci. 2011;12(6):3705-22. doi: 10.3390/IJMS12063705, PMID 21747701.
Cheng L, Wang C, Liu Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale. 2013;5(1):23-37. doi: 10.1039/C2NR32311G, PMID 23135546.
Upadhyay PK, Jain VK, Sharma K, Sharma R. Synthesis and applications of ZnO nanoparticles in biomedicine. Res J Pharm Technol. 2020;13(4):1636-44. doi: 10.5958/0974-360X.2020.00297.8.
Published
How to Cite
Issue
Section
Copyright (c) 2022 Dheerender Kumar Sharma, Nishant Thakur, Barsha Deb

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.