Stability and Shelf-Life of Plasma Bubbling Treated Cow Milk

Life Sciences-Food science and Technology

Authors

  • Samarpita Dash National Institute of Food Technology Entrepreneurship and Management, Thanjavur, Tamil Nadu, India
  • R. Jaganmohan Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

DOI:

https://doi.org/10.22376/ijpbs/lpr.2022.12.2.L111-120

Keywords:

Plasma bubbling, Cow milk, Quality, Food processing, Shelf life

Abstract

The demand of consumers for naturality of food with minimal processing was forced to the scientists for the discovery of non-thermal plasma which is a new technology for the preservation and decontamination of food products. The present study was conducted for the scrutinization of microbial and physicochemical characteristics of plasma bubbled raw cow milk and an extensive comparison was observed for boiled raw cow milk, commercially (pasteurised and UHT) milk. Further, storage study (shelf-life) was done for the plasma bubbled raw cow milk and compared with raw cow milk sample (control). The bubbling of plasma was generated at a voltage of 200V, the flow rate of air 10 litres/hour (L/h) and applied to fresh cow milk for 5, 10, and 15 minutes (min) of time with a volume of 100 mL of the sample operated at room temperature. A declined in microbial cell was observed for coliform and yeast at 200V, 10L/h, 15 min time interval. The pH value of 15 min plasma bubble treated sample was increased significantly to 6.85. While, a slight decrease in value was noticed in total soluble solids (TSS) and titratable acid (TA) after exposure to plasma bubbling. Further, a nondetrimental effect was observed for the nutrient content of plasma bubbling of milk. The result indicates that plasma bubbling at generated at 200V, 10L/h,100mL,15 min treatment enhances the milk quality. However, plasma bubbling: based on indirect dielectric barrier discharge (DBD) may use as a successful decontamination technology without affecting the physicochemical properties which could have a future perspective on industrial food applications.

References

Ebringer L, Ferenčík M, Krajčovič J. Beneficial health effects of milk and fermented dairy products--review. Folia microbiol. 2008;53(5):378-94. doi: 10.1007/s12223-008-0059-1, PMID 19085072.

Rowlands A. Bacteriological Standards for Perishable Foods: (c) Rowlands A. Bacteriological standards for perishable foods. Milk and dairy products. J R Sanit Inst. 1952;72(4):404-10. doi: 10.1177/146642405207200422, PMID 12981677.

National Research Council. Designing foods: animal product options in the marketplace. Natl. Acad. Sci (Wash DC). 1988.

Ghodeker DR, Dudani AT, Ranganathan B. Microbiological quality of Indian milk products. J Milk Food Technol. 1974;37(3):119-22. doi: 10.4315/0022-2747-37.3.119.

Camacho AT, Guitian FJ, Pallas E, Gestal JJ, Olmeda S, Goethert H, Telford S, Spielman A. Serum protein response and renal failure in canine Babesia annae infection. Vet Res. 2005;36(5-6):713-22. doi: 10.1051/vetres:2005026. PMID 16120247.

Lambertini E, Karns JS, Van Kessel JAS, Cao H, Schukken YH, Wolfgang DR, Smith JM, Pradhan AK. Dynamics of Escherichia coli virulence factors in dairy herds and farm environments in a longitudinal study in the United States. Appl Environ Microbiol. 2015;81(13):4477-88. doi: 10.1128/AEM.00465-15, PMID 25911478.

Dhanashekar R, Akkinepalli S, Nellutla A. Milk-borne infections. An analysis of their potential effect on the milk industry. GERMS. 2012;2(3):101-9. doi: 10.11599/germs.2012.1020, PMID 24432270.

Macdonald LE, Brett J, Kelton D, Majowicz SE, Snedeker K, Sargeant JM. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J Food Prot. 2011;74(11):1814-32. doi: 10.4315/0362-028X.JFP-10-269.

Datta N, Deeth HC. Diagnosing the cause of proteolysis in UHT milk. LWT Food Sci Technol. 2003;36(2):173-82. doi: 10.1016/S0023-6438(02)00214-1.

Nair PK, Dalgleish DG, Corredig M. Colloidal properties of concentrated heated milk. Soft Matter. 2013;9(14):3815-24. doi: 10.1039/C2SM27540F.

Ajmal M, Nadeem M, Imran M, Abid M, Batool M, Khan IT, Gulzar N, Tayyab M. Impact of immediate and delayed chilling of raw milk on chemical changes in lipid fraction of pasteurized milk. Lipids Health Dis. 2018;17(1):190. doi: 10.1186/s12944-018-0843-0, PMID 30115071.

Ikawa S, Kitano K, Hamaguchi S. Effects of pH on bacterial inactivation in aqueous solutions due to low‐temperature atmospheric pressure plasma application. Plasma Processes Polym. 2010;7(1):33-42. doi: 10.1002/ppap.200900090.

Kim HJ, Yong HI, Park S, Choe W, Jo C. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr Appl Phys. 2013;13(7):1420-5. doi: 10.1016/j.cap.2013.04.021.

Basaran P, Basaran-Akgul N, Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008;25(4):626-32. doi: 10.1016/j.fm.2007.12.005, PMID 18456118.

Yu H, Perni S, Shi JJ, Wang DZ, Kong MG, Shama G. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. J Appl Microbiol. 2006;101(6):1323-30. doi: 10.1111/j.1365-2672.2006.03033.x, PMID 17105563.

Kim B, Yun H, Jung S, Jung Y, Jung H, Choe W, Jo C. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol. 2011;28(1):9-13. doi: 10.1016/j.fm.2010.07.022, PMID 21056769.

Gurol C, Ekinci FY, Aslan N, Korachi M. Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol. 2012;157(1):1-5. doi: 10.1016/j.ijfoodmicro.2012.02.016, PMID 22622128.

Wu X, Luo Y, Zhao F, M SM, Mu G. Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization. Plasma Process Polym. 2021;18(1). doi: 10.1002/ppap.201900219.

Manoharan D, Stephen J, Radhakrishnan M. Study on low-pressure plasma system for continuous decontamination of milk and its quality evaluation. J Food Process Preserv. 2021;45(2):0-1. doi: 10.1111/jfpp.15138.

Samarpita dash and R. Jaganmohan. Impact of plasma Bubbling On Cow Milk: microbial Reduction and quality Improvement, Life J Sci. Int. Pharm Res. 2022;12, 283–288. doi: 10.22376/ijpbs/lpr.2022.12.1.

Misra NN, Jo C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol. 2017; 64:74-86. doi: 10.1016/j.tifs.2017.04.005.

Surowsky B, Schlüter O, Knorr D. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev. 2015;7(2):82-108. doi: 10.1007/s12393-014-9088-5.

Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ. Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev. 2011;3(3-4):159-70. doi: 10.1007/s12393-011-9041-9.

Mir SA, Shah MA, Mir MM. Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 2016;9(5):734-50. doi: 10.1007/s11947-016-1699-9.

Aparajhitha S, Mahendran R. Effect of plasma bubbling on free radical production and its subsequent effect on the microbial and physicochemical properties of Coconut Neera. Innov Food Sci Emerg Technol. 2019;58. doi: 10.1016/j.ifset.2019.102230, PMID 102230.

Metwally AM, Dabiza NM, El-Kholy WI, Sadek ZI. The effect of boiling on milk microbial contents and quality. J Am Sci. 2011;7:110-4.

Ray B, Speck ML. Plating procedure for the enumeration of coliforms from dairy products. Appl Environ Microbiol. 1978;35(4):820-2. doi: 10.1128/aem.35.4.820-822.1978, PMID 348110.

Godič Torkar K, Golc-Teger S. The presence of some pathogen microorganisms, yeasts and moulds in cheese samples produced at small dairy-processing plants. Acta Agric Slov. 2006;1:37-51.

Wells JG, Shipman LD, Greene KD, Sowers EG, Green JH, Cameron DN, Downes FP, Martin ML, Griffin PM, Ostroff SM. Isolation of Escherichia coli serotype O157: H7 and other Shiga-like-toxin-producing E. coli from dairy cattle. J Clin Microbiol. 1991;29(5):985-9. doi: 10.1128/jcm.29.5.985-989.1991, PMID 2056066.

Marshall V, Poulson-Cook S, Moldenhauer J. Comparative mold and yeast recovery analysis (the effect of differing incubation temperature ranges and growth media). PDA J Pharm Sci Technol. 1998;52(4):165-9. PMID 9752711.

Alves MN, Nesterenko PN, Paull B, Haddad PR, Macka M. Separation of superparamagnetic magnetite nanoparticles by capillary zone electrophoresis using non‐complexing and complexing electrolyte anions and tetramethylammonium as dispersing additive. Electrophoresis. 2018;39(12):1429-36. doi: 10.1002/elps.201800095, PMID 29579343.

Muhammad AI, Li Y, Liao X, Liu D, Ye X, Chen S, Hu Y, Wang J, Ding T. Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control. 2019;96:119-27. doi: 10.1016/j.foodcont.2018.09.010.

Binti Zakaria Z, Yun WS, Alias N, Noor SNM, Mustapha Z, Hussin N, Yusoff NAM. Physicochemical composition, microbiological quality and consumers’ acceptability of raw and pasteurized locally produced goat milk. Mal. J Fundam Appl Sci. 2020;16:475-82.

Cavalcanti AL, Fernandes LV, Barbosa AS, Vieira FF. pH, titratable acidity and total soluble solid content of pediatric antitussive medicines. Acta Stomatol Croat. 2008;42.

Barbano DM, Lynch JM, Fleming JR. Direct and indirect determination of true protein content of milk by Kjeldahl analysis: collaborative study. Journal of AOAC INTERNATIONAL. 1991;74(2):281-8. doi: 10.1093/jaoac/74.2.281.

Kleyn DH, Lynch JM, Barbano DM, Bloom MJ, Mitchell MW DH Mercer F Monahan D Peat B Petit M. Determination of fat in raw and processed milks by the Gerber method: collaborative study. J AOAC Int. 2001;84(5):1499-508. doi: 10.1093/jaoac/84.5.1499, PMID 11601470.

Ting K, Liu YF, Tian-Li G, Lu-Hua Z. Relationships between viscosity and the contents of macromolecular substances from milk with different storage styles. fst. 2016;4(4):49-56. doi: 10.13189/fst.2016.040401.

Girling PJ. Packaging of food in glass containers. Food packaging technology. In: Coles R, editor, Dereck Mc Do-well, Mark J Kirwan editors. Food packaging Technology. Oxford: Blackwell Publishing, CRC Press; 2003. p. 152-73.

Sepulveda DR, Góngora-Nieto MM, Guerrero JA, Barbosa-Cánovas GV. Shelf life of whole milk processed by pulsed electric fields in combination with PEF-generated heat. LWT Food Sci Technol. 2009;42(3):735-9. doi: 10.1016/j.lwt.2008.10.005.

Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys. 2009;11(11). doi: 10.1088/1367-2630/11/11/115020, PMID 115020.

Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Freitas MQ, Silva MC, Raices RSL, Ranadheera CS, Borges FO, Mathias SP, Fernandes FAN, Rodrigues S, Cruz AG. Cold plasma processing of milk and dairy products. Trends Food Sci Technol. 2018;74:56-68. doi: 10.1016/j.tifs.2018.02.008.

Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26(6):610-7. doi: 10.1016/j.biotechadv.2008.08.001, PMID 18775485.

EAS. (East African standards) raw cow milk specifications. EAS 67:2006. ICS 67.100 HS04014.20.00 (Eas. Vol. 67; 2000).

FOSTER EM, NELSON FE, SPECK ML, DOETSCH RN, OLSON JC. Dairy microbiology. Prentice-hall, Inc., Dairy Sci. Vol. 29. New York; 1957. PMID 439452.

Randolph HE, Chakraborty BK, Hampton O, Bogart DL. Microbial counts of individual producer and commingled grade A raw milk. J Milk Food Technol. 1973;36(3):146-51. doi: 10.4315/0022-2747-36.3.146.

Jones FT, Langlois BE. Microflora of retail fluid milk products 1. J Food Prot. 1977;40(10):693-7. doi: 10.4315/0362-028X-40.10.693, PMID 30736235.

Fleet GH, Mian MA. The occurrence and growth of yeasts in dairy products. Int J Food Microbiol. 1987;4(2):145-55. doi: 10.1016/0168-1605(87)90021-3.

Fröhlich-Wyder MT. Yeasts in dairy products. Yeasts Food. 1970 (2003):209-37. doi: 10.1016/B978-1-85573-706-8.50013-7.

Tampieri F, Ginebra MP, Canal C. Quantification of plasma-produced hydroxyl radicals in solution and their dependence on the Ph. Anal Chem. 2021;93(8):3666-70. doi: 10.1021/acs.analchem.0c04906, PMID 33596048.

Vasbinder AJ, De Kruif CG. Casein–whey protein interactions in heated milk: the influence of pH. Int Dairy J. 2003;13(8):669-77. doi: 10.1016/S0958-6946(03)00120-1.

Guo J, Huang K, Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control. 2015;50:482-90. doi: 10.1016/j.foodcont.2014.09.037.

Raynal-Ljutovac K, Park YW, Gaucheron F, Bouhallab S. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin Res. 2007;68(1-2):207-20. doi: 10.1016/j.smallrumres.2006.09.006.

Prasantha BDR, Wimalasiri KMS. Effect of HTST thermal treatments on end-use quality characteristics of goat milk. Int J Food Sci. 2019;2019:1801724. doi: 10.1155/2019/1801724, PMID 31915676.

Ben’Ko EM, Manisova OR, Lunin VV. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars. Russ J Phys Chem. 2013;87(7):1108-13. doi: 10.1134/S0036024413070091.

Almeida FDL, Gomes WF, Cavalcante RS, Tiwari BK, Cullen PJ, Frias JM, Bourke P, Fernandes FAN, Rodrigues S. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Res Int. 2017;102:282-90. doi: 10.1016/j.foodres.2017.09.072, PMID 29195950.

McAuley CM, Singh TK, Haro-Maza JF, Williams R, Buckow R. Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innov Food Sci Emerg Technol. 2016;38:365-73. doi: 10.1016/j.ifset.2016.09.030.

Gavahian M, Chu YH, Mousavi Khaneghah AM, Barba FJ, Misra NN. A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci Technol. 2018;77:32-41. doi: 10.1016/j.tifs.2018.04.009.

Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control. 2015;47:451-6. doi: 10.1016/j.foodcont.2014.07.053.

Elhasan SM, Bushara AM, Abdelhakam KE, Elfaki HA, Eibaid AI, Farahat FH, Sukrab AM. Effect of heat treatments on physico-chemical properties of milk samples. J Acad Ind Res, (JAIR). 2017;6:40-6.

Rolls BA, Porter JWG. Some effects of processing and storage on the nutritive value of milk and milk products. Proc Nutr Soc. 1973;32(1):9-15. doi: 10.1079/PNS19730003, PMID 4594175.

Yan D, Cui H, Zhu W, Talbot A, Zhang LG, Sherman JH, Keidar M. The strong cell-based hydrogen peroxide generation triggered by cold atmospheric plasma [sci rep:10831]. Sci Rep. 2017;7(1):10831. doi: 10.1038/s41598-017-11480-x, PMID 28883477.

Cass OW, Paris JP, Stock AM. Research on the stability of high strength H2O2. Du Pont DE NEMOURS (EI) AND CO. DE: WILMINGTON Publishing; 1966.

Liu F, Sun P, Bai N, Tian Y, Zhou H, Wei S, Zhou Y, Zhang J, Zhu W, Becker K, Fang J. Inactivation of bacteria in an aqueous environment by a direct-current, cold‐atmospheric‐pressure air plasma microjet. Plasma Processes Polym. 2010;7(3-4):231-6. doi: 10.1002/ppap.200900070.

Kornacki JL. Enterobacteriaceae, coliforms and Escherichia coli as quality and safety indicators. Compend Methods Microbilogical Exam Foods. 2001:69-82.

Căpriţă A, Căpriţă R, Creţescu I. The effects of storage conditions on some physicochemical properties of raw and pasteurized milk. J Agroaliment Processes Technol. 2014;20:198-202.

Mittal S, Bajwa U. Effect of heat treatment on the storage stability of low calorie milk drinks. J Food Sci Technol. 2014;51(9):1875-83. doi: 10.1007/s13197-012-0714-z, PMID 25190842.

Sarangapani C, Ryan Keogh DR, Dunne J, Bourke P, Cullen PJ. Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chem. 2017;235:324-33. doi: 10.1016/j.foodchem.2017.05.016, PMID 28554643.

Wu X, Luo Y, Zhao F, M SM, Mu G. Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization. Plasma Process Polym. 2021;18(1). doi: 10.1002/ppap.201900219

Published

2022-03-25

How to Cite

Dash, S., & Jaganmohan, R. (2022). Stability and Shelf-Life of Plasma Bubbling Treated Cow Milk: Life Sciences-Food science and Technology. International Journal of Life Science and Pharma Research, 12(2), L111-L120. https://doi.org/10.22376/ijpbs/lpr.2022.12.2.L111-120

Issue

Section

Research Articles