Comparative Assessment of Bioactive Compounds, Nutritive, Mineral Composition and In-Vitro Bioactivity of Marine Macro Algae Valoniopsis Pachynema and Dictyota Ciliolata

Life Sciences-Food science and nutrition

Authors

  • Bhuvaneshwari J Research Scholar, Department of Biotechnology, Srimad Andavan Arts and Science College, (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli) Thiruvanaikovil, Tiruchirapalli, Tamil Nadu, India https://orcid.org/0000-0002-1872-6913
  • Thirumalai Vasan.P Head, Department of Biotechnology, Srimad Andavan Arts and Science College, (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli) Thiruvanaikovil, Tiruchirapalli, Tamil Nadu, India https://orcid.org/0000-0001-8935-0389

DOI:

https://doi.org/10.22376/ijpbs/lpr.2022.12.5.L88-102

Keywords:

Marine Macro Algae, Valoniopsis Pachynema, Dictyota Ciliolata, Antioxidant Activity, DPPH, PMB, Proximate Nutritional Analysis, Mineral Composition

Abstract

Marine-based nutraceuticals have proved their extensive applications in functional foods and its bioactive molecules play a crucial role as therapeutic agents. The aim of the study is to elucidate in-depth understanding of the nutritional properties and biological activities of the two marine algae. The main objectives of the current study is to comparatively analyse the phytochemicals, nutritional composition and its pharmacological activities of the green and the brown marine macro algae named V.pachynema and D.ciliolata respectively using three different solvents. Additionally, the total chlorophyll content, phenolic content, nutritional, mineral composition, antioxidative and antibacterial activities of the methanolic extract were evaluated. Results showed elemental distribution of V.pachynema in the decreasing order Na > Ca> k > Mg > Fe > Ni> Mn >Co> As > Pb > Cu> Zn > Cr > Cd> Se> V while D.ciliolata in the order of Na > Ca> k > Mg >Ni >Fe> As> Co >Pb> Mn > Zn> Se>Cr> Cd> V>Cu. The relative nutritional composition showed high ash and carbohydrate for both the algae. The percentage composition of ash content was 68.42 ± 0.43% , 37.45 ± 0.26 % (g 100g-1 DW) while carbohydrate content was 50.17± 0.60%, 45.78 ± 0.69% (g 100g-1 DW) for V.pachynema and D.ciliolata respectively. The crude methanolic extract of both the algae were investigated for antioxidant activity with two in vitro antioxidant assays including 1,1-diphenyl-2- picrylhydrazyl radical (DPPH), Phosphomolybdenum (PMB) assays. In addition, Folin–Ciocalteu was used to measure phenolic content (TPC) to determine the antioxidant components. Total phenolic content was found to be highest in V.pachynema 51 GAE 10µg/ml and the methanolic extract of V.pachynema showed higher levels of phenolic compounds and antioxidant activities when compared with D.ciliolata. The tested marine algal extracts exhibited radical scavenging activity that is comparatively dose-dependent to its phenolic concentration. Methanolic extract of the marine algae V.pachynema exhibited better inhibitory activity against gram positive bacterium that are resistant to drugs when compared to the brown algae D.ciliolata. This study enabled a detailed understanding of the nutritional and biochemical composition, free radical scavenging activities of two marine macroalgae. This algal biomass could be potent resources of anti-oxidants and could act as dietary food supplements owing to their rich diversified bioactivities.

 

References

S. D, B. B, S. H, C. J, K SK. Therapeutic potential and pharmacological significance of the marine algae Gracilaria corticata. PBE;4(2). doi: 10.26510/2394-0859.pbe.2017.11.

Cox S, Abu-Ghannam N, Gupta S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Food Res Int. 2010;17:205-20.

Anandhan S, Kumara HS. Biorestraining potential of marine macro algae collected from Rameshwaram, Tamil Nadu. Res J Biol Sci. 2011;1:385-92.

Lee SH, Jeon YJ. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia. 2013;86:129-36. doi: 10.1016/j.fitote.2013.02.013, PMID 23466874.

Ragunathan V, Pandurangan J, Ramakrishnan T. Gas chromatography-mass spectrometry Analysis of methanol Extracts from Marine Red Seaweed Gracilaria corticata. Pharmacogn J. 2019;11(3):547-54. doi: 10.5530/pj.2019.11.87.

Khairy HM, El-Shafay SM. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia. 2013;55(2):435-52. doi: 10.5697/oc.55-2.435.

Tsakin E, Caki Z, Ozturk M, Taskin E. Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean Sea. Afr J Biotechnol. 2010;9(27):4272-7.

Lavanya R, Veerappan N. Antibacterial Potential of six seaweeds collected from Gulf of Mannar of Southeast Coast of India. Adv Ecol Res. 2011;5(1):38-44.

Durairaj SB, Andiyappan BR. Screening of Phytochemicals, antibacterial, Antioxidant and anti-inflammatory Activity of Dictyota barteyresiana Seaweed Extracts. AJBLS. 2020;9(1):20-6. doi: 10.5530/ajbls.2020.9.4.

Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109;Suppl 1:69-75. doi: 10.1289/ehp.01109s169, PMID 11250806.

Reka P, Thahira Banu A, Seethalakshmi M. Elemental composition of selected edible seaweeds using SEM- energy dispersive spectroscopic analysis. International. Food Res. 2017;24(2):600-6.

Southgate DAT, Waldron KW, Johnson IT, Fenwick GR. Dietary fibre. Chem Biol Technol Agric. 1990:386.

Harborne JB. Phytochemical methods, A guide to modern techniques of plant analysis. Chapman & Hall, London, Ltd.; 1973. p. 49-188.

AOAC. Official methods of analysis. 17th ed. Gaithersburg, MD: Association of Official Chemists; 2000.

Rattaya S, Benjakul S, Prodpran T. Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand. Int Aquat Res. 2015;7(1):1-16. doi: 10.1007/s40071-014-0085-3.

Singleton VL, Orthofer R, Lamuela-Raventós RM. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol. 1999;299:152-78. doi: 10.1016/S0076-6879(99)99017-1.

AOAC. Official methods of analysis. 18th (Ed.). Gaithersburg, MD: Association of Official Analytical Chemists; 2011.

Tokuşoglu O, Uunal MK. Biomass Nutrient Profiles of Three Microalgae: spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci. 2003;68(4):1144-8. doi: 10.1111/j.1365-2621.2003.tb09615.x.

Zhu CJ, Lee YK. Determination of biomass dry weight of marine microalgae. J Appl Phycol. 1997;9(2):189-94. doi: 10.1023/A:1007914806640.

Ortiz JE, Uquiche E, Robert P, Romero N, Quitral V, Llantén C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Technol. 2009;111(4):320-7. doi: 10.1002/ejlt.200800140.

Ribeiro SMR, Barbosa LCA, Queiroz JH, Knödler M, Schieber A. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem. 2008;110(3):620-6. doi: 10.1016/j.foodchem.2008.02.067.

Prietop PM, Aguilar M. Spectrophotometric qualification of antioxidant capacity through the formation of a phosphomolybdenum complex specific application to the determination of vitamin E. Anal Biochem. 1999;269:337-41.

Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493-6. doi: 10.1093/ajcp/45.4_ts.493, PMID 5325707.

Zar JH . Biostatistical analysis. 2nd ed. Englewood Cliffs, NJ: Prentice Hall; 1984

Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634-46. doi: 10.2174/156800908786241050, PMID 18991571.

Fawole OA, Amoo SO, Ndhlala AR, Light ME, Finnie JF, Van Staden JV. Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa. J Ethnopharmacol. 2010;127(2):235-41. doi: 10.1016/j.jep.2009.11.015, PMID 19932161.

Baba SA, Malik SA. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci. 2015;9(4):449-54. doi: 10.1016/j.jtusci.2014.11.001.

Duan XJ, Zhang WW, Li XM, Wang BG. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem. 2006;95(1):37-43. doi: 10.1016/j.foodchem.2004.12.015.

Jung KA, Lim SR, Kim Y, Park JM. Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol. 2013;135:182-90. doi: 10.1016/j.biortech.2012.10.025, PMID 23186669.

Ortiz JN, Romero N, Robert P, Araya J, Lopez-Hernández J, Bozzo C et al. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva Lactuca and Durvillaea antarctica. Food Chem. 2006;99(1):98-104. doi: 10.1016/j.foodchem.2005.07.027.

Kumar JIN, Kumar RN, Amb MK, Bora A, Chakraborty S. Variation of biochemical composition of eighteen marine macroalgae collected from Okha coast, Gulf of Kutch, India. J Agric Food Chem. 2010;9:404-10.

Rameshkumar S, Ramakritinan CM, Eswaran K, M, Yokeshbabu. Proximate composition of some selected seaweeds from Palk Bay and Gulf of Mannar, Tamil Nadu, India. Asian J Pharm. 2012;3:1-5.

Benjama O, Masniyom P. Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand. Songklanakarin J Sci Technol. 2011;33:575-83.

Polat S, Ozogul Y. Biochemical composition of some red and brown macro-algae from the Northeastern Mediterranean Sea. Int J Food Sci Nutr. 2008;59(7-8):566-72. doi: 10.1080/09637480701446524, PMID 19382347.

Ratana-arporn P, Chirapart A. Nutritional evaluation of tropical green seaweeds Caulerpa lentillifera and Ulva reticulata. Kasetsart J Nat Sci. 2006;40:75-83.

M. El-Manawy I, Z. Nassar M, M. Fahmy N, H. Rashedy S. Evaluation of proximate composition, antioxidant and antimicrobial activities of some seaweeds from the Red Sea coast, Egypt. Egypt J Aquat Biol Fish. 2019;23(1):317-29. doi: 10.21608/ejabf.2019.30541.

Roy S, Anatharaman P. Biochemical compositions of seaweed collected from Olaikuda and Vadakadu, Rameshwaram, South East coast of India. ICES J Mar Sci. 2017;7(7):1-5.

Blakemore WR. Post harvest treatment and quality control of Eucheuma seaweeds. In: Proceedings of the regional workshop on seaweed culture and marketing. South Pacific aquaculture development project. Rome: Food and Agriculture Organization; 1990. p. 48-52.

Jose J, Xavier J. Study of mineral and nutritional Compositions of some seaweeds found alone the coast of Gulf of Mannar, India. Plant Sci Today. 2020;7(4):631-7.

Bhuvaneshwari. J and Thirumalai Vasan.P. Biomedical potentials of Marine Natural Products- An overview. J Nat Rem. 2020;21, 8(1) 222-234.

MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR. Nutritional value of edible seaweeds. Nutr Rev. 2007;65(12 Pt 1):535-43. doi: 10.1301/nr.2007.dec.535-543, PMID 18236692.

Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37(18):4311-30. doi: 10.1016/S0043-1354(03)00293-8, PMID 14511701.

Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour Technol. 2005;96(16):1796-803. doi: 10.1016/j.biortech.2005.01.002, PMID 16051086.

Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol. 2006;97(18):2402-6. doi: 10.1016/j.biortech.2005.10.014, PMID 16311028.

Rupérez P. Mineral content of edible marine seaweeds. Food Chem. 2002;79(1):23-6. doi: 10.1016/S0308-8146(02)00171-1.

Dawczynski C, Schäfer U, Leiterer M, Jahreis G. Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agric Food Chem. 2007;55(25):10470-5. doi: 10.1021/jf0721500, PMID 17994690.

Balina K, Romagnoli F, Blumberga D. Chemical composition and potential use of Fucus vesiculosus from Gulf of Riga. Energy Procedia. 2016;95:43-9. doi: 10.1016/j.egypro.2016.09.010.

Omar HH, Abdullatif BM, El-Kazan MM, El-Gendy AM. Read sea water and Biochemical composition of seaweeds at southern coast of Jeddah, Saudi Arabia. Life Sci. 2013;10(4):1073-80.

Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from macroalgae origin: health benefits and risks for consumers. Mar Drugs. 2018;16(11):400. doi: 10.3390/md16110400, PMID 30360515.

López-López I, Cofrades S, Cañeque V, Díaz MT, López O, Jiménez-Colmenero F. Effect of cooking on the chemical composition of low-salt, low-fat Wakame / olive oil added beef patties with special reference to fatty acid content. Meat Sci. 2011;89(1):27-34. doi: 10.1016/j.meatsci.2011.03.016, PMID 21497025.

Adluri RS, Zhan L, Bagchi M, Maulik N, Maulik G. Comparative effects of a novel plant-based calcium supplement with two common calcium salts on proliferation and mineralization in human osteoblast cells. Mol Cell Biochem. 2010;340(1-2):73-80. doi: 10.1007/s11010-010-0402-0, PMID 20213262.

Dhara C, Reddy DCRK, Balar N, Suthar P, Gajaria T, Devesh K et al. Assessment of the Nutritive, Biochemical, Antioxidant and antibacterial Potential of eight Tropical Macro algae Along Kachchh Coast, India as Human Food Supplements. J Aquat Food Prod Technol. 2017.

Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(Suppl 1):i3-i14. doi: 10.1093/ndtplus/sfr163, PMID 26069819.

Omar HH, Abdullatif BM, El-Kazan MM, El-Gendy AM. Read sea water and Biochemical composition of seaweeds at southern coast of Jeddah, Saudi Arabia. Life Sci. 2013;10(4):1073-80.

Nielsen FH. Ultra-trace minerals. Mod Nutr Health Dis. 1999;9:283-303.

Ooi DJ, Iqbal S, Ismail M. Proximate composition, nutritional attributes and mineral composition of Peperomia pellucida L. (Ketumpangan Air) grown in Malaysia. Molecules. 2012;17(9):11139-45. doi: 10.3390/molecules170911139, PMID 22986924.

Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin Nutr. 1998;67(5);Suppl:952S-9S. doi: 10.1093/ajcn/67.5.952S, PMID 9587135.

Balina K, Romagnoli F, Blumberga D. Chemical composition and potential use of Fucus vesiculosus from Gulf of Riga. Energy Procedia. 2016;95:43-9. doi: 10.1016/j.egypro.2016.09.010.

Nriagu JO. Production and uses of chromium. In: Chromium in the natural and human environments. New York: Wiley; 1988.

Kazantzis G. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis. Environ Health Perspect. 1981;40:143-61. doi: 10.1289/ehp.8140143, PMID 7023929.

Kisten K, Moodley R, Jonnalagadda SB. Elemental analysis and nutritional value of seaweed from KwaZulu-Natal, South Africa. Anal Lett. 2017;50(3):580-90. doi: 10.1080/00032719.2016.1182545.

Bernard A, Lauwerys R. Effects of cadmium exposure in humans. In: Cadmium. Berlin: Springer; 1986.

Schroeder HA, Tipton IH. The human body burden of lead. Arch Environ Health. 1968;17(6):965-78. doi: 10.1080/00039896.1968.10665354, PMID 4177349.

El-Said GF, El-Sikaily A. Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environ Monit Assess. 2013;185(7):6089-99. doi: 10.1007/s10661-012-3009-y, PMID 23212555.

Zbikowski R, Szefer P, Latała A. Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environ Pollut. 2006;143(3):435-48. doi: 10.1016/j.envpol.2005.12.007, PMID 16458400.

Ibrahim EA, Aly HF, Baker DH, Mahmoud KH, El-Baz FK. Marine algal sterol hydrocarbon with anti-inflammatory, anticancer and antioxidant properties. Int J Pharm Biol Sci. 2016;7:392-8.

Kanatt SR, Chander R, Sharma A. Antioxidant potential of mint in radiation processed lamb meet. Food Chem. 2007;100(2):451-8. doi: 10.1016/j.foodchem.2005.09.066.

Rajeshkumar SH, Kannan C, Annadurai G. Green synthesis of silver nanoparticles using marine brown algae Turbinaria Conoides and its antibacterial activity. Int J Pharm Biol Sci. 2012;3(4):502-10.

Dhinakaran DI, Rajalakshmi R, Sivakumar T, Jeeva S. Antimicrobial activities and bioactive metabolites from marine algae Valoniopsis pachynema and Sargassum swartzii. J Pharmacogn Phytochem. 2016;4(1).

Elsie BH, DhanaRajan MS. Evaluation of antimicrobial activity and phytochemical screening of Gelidium acerosa. J Pharm Sci Res. 2010;2(11):704.

Published

2022-07-28

How to Cite

J, B., & Vasan.P, T. . (2022). Comparative Assessment of Bioactive Compounds, Nutritive, Mineral Composition and In-Vitro Bioactivity of Marine Macro Algae Valoniopsis Pachynema and Dictyota Ciliolata: Life Sciences-Food science and nutrition. International Journal of Life Science and Pharma Research, 12(5), L88-L102. https://doi.org/10.22376/ijpbs/lpr.2022.12.5.L88-102

Issue

Section

Research Articles