Advancement of Phage Therapy Approaches in The Battle of Multi-Drug Resistance: A Review
Pharmaceutical Science-Pharmaceutical Science and Technology
DOI:
https://doi.org/10.22376/ijlpr.2023.13.2.P17-P36Keywords:
Antibiotic Resistance, Multidrug-Resistant Bacteria, Antimicrobial, Bacteriophage, and Phage TherapyAbstract
One of the most significant issues faced by humanity today is antibiotic resistance. Drugs are used in such vast amounts for human health, aquatic life, and agricultural animals that harmful bacteria have developed antibiotic resistance to various antibiotics. Further, the usage of antibiotics is increasing because of situations such as increased infections and chronic diseases that need antimicrobial treatment. Since antimicrobial resistance is rising, it is necessary to take action to help reduce and eliminate infectious diseases and ensure animal and human health. Because of this, many attempts are being made to tackle multi-drugresistant bacteria. Among the many advanced techniques that are occurring, the use of phage therapy is one such emerging procedure. The main aim of this prospective review is to identify the various new phage formulations available as a potential therapeutic intervention to combat multidrug resistance among bacteria and the objective is to identify the various reasons associated with the induction of the phenomenon of "multidrug resistance" among different bacteria, focusing on the use of phage therapy, its advantages as well as disadvantages over antibiotics as a possible therapeutic intervention. Various phage formulations, such as phage cocktails with antibiotics, nanoparticles, phage-delivering hydrogels, and many more, are emerging formulations that have successful results in fighting against multi-drug-resistant bacteria. Commercial phage solutions have helped combat antimicrobial resistance in poultry and livestock farms, improving everyone's health worldwide. As a result, this study shall serve as a source of information and understanding of the concerns mentioned above for the entirety of society and every human community.
References
Levin-Reisman I, Brauner A, Ronin I, Balaban NQ. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci U S A. 2019;116(29):14734-9. doi: 10.1073/pnas.1906169116, PMID 31262806.
Mandal SM, Roy A, Ghosh AK, Hazra TK, Basak A, Franco OL. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol. 2014;5:105. doi: 10.3389/fphar.2014.00105, PMID 24860506.
Levy SB. The antibiotic paradox: how the misuse of antibiotics destroys their curative powers. 2nd ed. Cambridge, MA: Perseus Publishing; 2002.
Maurois A. Life of Sir Alexander Fleming: discoverer of penicillin. London: E P Dutton, & Co., Inc; 1959.
Herrmann M, Laxminarayan R. Antibiotic effectiveness: new challenges in natural resource management. Annu Rev Resour Econ. 2010;2(1):125-38. doi: 10.1146/annurev.resource.050708.144125.
Trastoy R, Manso T, Fernández-García L, Blasco L, Ambroa A, Pérez del Molino ML et al. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin Microbiol Rev. 2018;31(4). doi: 10.1128/CMR.00023-18, PMID 30068737.
Mukhopadhyay S, Bharath Prasad AS, Mehta CH, Nayak UY. Antimicrobial peptide polymers: no escape to ESKAPE pathogens-a review. World J Microbiol Biotechnol. 2020;36(9):131. doi: 10.1007/s11274-020-02907-1, PMID 32737599.
Antibiotic resistance threats in the United States; 2013 [internet]. Stacks. Available from: cdc.gov. 2022 [cited Sep 28 2022]. Available from: https://stacks.cdc.gov/view/cdc/20705.
Parkins MD, Somayaji R, Waters VJ. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev. 2018;31(4):e00019-18. doi: 10.1128/CMR.00019-18, PMID 30158299.
Zhou QT, Leung SS, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83-99. doi: 10.1016/j.addr.2014.10.022, PMID 25451137.
Britt NS, Ritchie DJ, Kollef MH, Burnham CA, Durkin MJ, Hampton NB et al. Importance of site of infection and antibiotic selection in the treatment of carbapenem-resistant pseudomonas aeruginosa sepsis. Antimicrob Agents Chemother. 2018;62(4). doi: 10.1128/AAC.02400-17, PMID 29378722.
Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994;264(5157):375-82. doi: 10.1126/science.8153624, PMID 8153624.
Spratt BG. Resistance to antibiotics mediated by target alterations. Science. 1994;264(5157):388-93. doi: 10.1126/science.8153626, PMID 8153626.
Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med. 2013;368(4):299-302. doi: 10.1056/NEJMp1215093, PMID 23343059.
Eda S, Mitsui H, Minamisawa K. Involvement of the smeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl Environ Microbiol. 2011;77(9):2855-62. doi: 10.1128/AEM.02858-10, PMID 21398477.
Squires RA. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. N Z Vet J. 2018;66(5):229-35. doi: 10.1080/00480169.2018.1491348, PMID 29925297.
Payne RJ, Phil D, Jansen VA. Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther. 2000;68(3):225-30. doi: 10.1067/mcp.2000.109520, PMID 11014403.
Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol. 2016;7:1024. doi: 10.3389/fmicb.2016.01024.
Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresso AW. Bacteriophages from ExPEC reservoirs kill pandemic multidrug-resistant strains of clonal group ST131 in animal models of bacteremia. Sci Rep. 2017;7:46151. doi: 10.1038/srep46151, PMID 28401893.
Domingo-Calap P, Delgado-Martínez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics (Basel). 2018;7(3):66. doi: 10.3390/antibiotics7030066, PMID 30060506.
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther. 2019;17(12):1011-41. doi: 10.1080/14787210.2019.1694905, PMID 31735090.
Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv. 2020;6(20):eaba1590. doi: 10.1126/sciadv.aba1590, PMID 32440552.
Kopač T, Lisac A, Mravljak R, Ručigaj A, Krajnc M, Podgornik A. Bacteriophage delivery systems based on composite PolyHIPE/Nanocellulose hydrogel particles. Polymers. 2021;13(16):2648. doi: 10.3390/polym13162648, PMID 34451188.
Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A. Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a delivery system in phage therapy. AMB Express. 2019;9(1):87. doi: 10.1186/s13568-019-0810-9, PMID 31209685.
Anal AK, Stevens WF. Chitosan–alginate multilayer beads for controlled release of ampicillin. Int J Pharm. 2005;290(1-2):45-54. doi: 10.1016/j.ijpharm.2004.11.015, PMID 15664129.
Colom J, Cano-Sarabia M, Otero J, Cortés P, Maspoch D, Llagostera M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol. 2015;81(14):4841-9. doi: 10.1128/AEM.00812-15, PMID 25956778.
Opperman CJ, Wojno JM, Brink AJ. Treating bacterial infections with bacteriophages in the 21st century. S Afr J Infect Dis. 2022;37(1):346. doi: 10.4102/sajid.v37i1.346, PMID 35399556.
Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol. 2018;102(6):2563-81. doi: 10.1007/s00253-018-8811-1, PMID 29442169.
Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141-51. doi: 10.1007/s00253-015-7247-0, PMID 26767986.
Wang C, Li P, Niu W, Yuan X, Liu H, Huang Y et al. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol. 2019;170(3):156-64. doi: 10.1016/j.resmic.2019.01.003, PMID 30716390.
Tawil N, Sacher E, Mandeville R, Meunier M. Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst. 2014;139(6):1224-36. doi: 10.1039/c3an01989f, PMID 24434867.
Hernández-Reyes CH, Schikora A. Salmonella, a cross-kingdom pathogen infecting humans and plants. FEMS Microbiol Lett. 2013;343(1):1-7. doi: 10.1111/1574-6968.12127, PMID 23488473.
Centers for Disease Control and Prevention (CDC). D. C. a. Vital signs: incidence and trends of infection with pathogens transmitted commonly through food–foodborne diseases active surveillance network, 10 U.S. sites, 1996-2010. MMWR Morb Mortal Wkly Rep. 2011;60(22):749-55. PMID 21659984.
da Silva EP, De Martinis EC. Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes. Appl Microbiol Biotechnol. 2013;97(3):957-68. doi: 10.1007/s00253-012-4611-1, PMID 23233205.
World Health Organization, Food and Agriculture Organization of the United Nations. Risk assessment of Listeria monocytogenes in ready-to-eat foods: interpretative summary [internet]; 2004. Apps. Available from: who.int [cited Sep 30 2022]. Available from: https://apps.who.int/iris/handle/10665/42874.
Barreiros dos Santos M, Agusil JP, Prieto-Simón B, Sporer C, Teixeira V, Samitier J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron. 2013;45:174-80. doi: 10.1016/j.bios.2013.01.009, PMID 23500360.
Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol. 2010;8(11):827-34. doi: 10.1038/nrmicro2437, PMID 20938454.
Rakhuba DV, Kolomiets EI, Dey ES, Novik GI. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol. 2010;59(3):145-55. doi: 10.33073/pjm-2010-023, PMID 21033576.
Chibani-Chennoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother. 2004;48(7):2558-69. doi: 10.1128/AAC.48.7.2558-2569.2004, PMID 15215109.
Mai V, Ukhanova M, Reinhard MK, Li M, Sulakvelidze A. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage. 2015;5(4):e1088124. doi: 10.1080/21597081.2015.1088124, PMID 26909243.
Metsälä J, Lundqvist A, Virta LJ, Kaila M, Gissler M, Virtanen SM. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy. 2015;45(1):137-45. doi: 10.1111/cea.12356, PMID 24943808.
Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol. 2015;11(3):182-90. doi: 10.1038/nrendo.2014.210, PMID 25488483.
Mikkelsen KH, Allin KH, Knop FK. Effect of antibiotics on gut microbiota, glucose metabolism and body weight regulation: a review of the literature. Diabetes Obes Metab. 2016;18(5):444-53. doi: 10.1111/dom.12637, PMID 26818734.
Servick K. Drug development. Beleaguered phage therapy trial presses on. Science. 2016;352(6293):1506. doi: 10.1126/science.352.6293.1506, PMID 27339963.
Bourdin G, Navarro A, Sarker SA, Pittet AC, Qadri F, Sultana S, et al. Coverage of diarrhoea-associated Escherichia coli isolates from different origins with two types of phage cocktails. Microb Biotechnol. 2014;7(2):165-76. doi: 10.1111/1751-7915.12113, PMID 24528873.
Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBio medicine. 2016;4:124-37.
Granowitz EV, Brown RB. Antibiotic adverse reactions and drug interactions. Crit Care Clin. 2008;24(2):421-2. doi: 10.1016/j.ccc.2007.12.011, PMID 18361954.
Vallejos A. Adverse reactions by antibiotics in a pediatric and neonatal intensive care unit located in Bogotá, Colombia. Biomedica. 2007;27(1):66-75. doi: /S0120-41572007000100007, PMID 17546225.
Bhattacharya S. The facts about penicillin allergy: a review. J Adv Pharm Technol Res. 2010;1(1):11-7. PMID 22247826.
McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B, Huq S, et al. Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology. 2013;443(2):187-96. doi: 10.1016/j.virol.2013.05.022, PMID 23755967.
Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35-45. doi: 10.1016/S1473-3099(18)30482-1, PMID 30292481.
Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care. 2009;18(6):237-8. doi: 10.12968/jowc.2009.18.6.42801, PMID 19661847.
Verma NK, Tan SJ, Chen J, Chen H, Ismail MH, Rice SA et al. inPhocus: current state and challenges of phage research in Singapore. Phage (New Rochelle). 2022;3(1):6-11. doi: 10.1089/phage.2022.29028.nkv, PMID 36161195.
Tetz G, Tetz V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog. 2016;8:33. doi: 10.1186/s13099-016-0109-1, PMID 27340433.
Seed KD. Battling phages: how bacteria defend against viral attack. PLOS Pathog. 2015;11(6):e1004847. doi: 10.1371/journal.ppat.1004847, PMID 26066799.
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages – advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci. 2012;13(8):699-722. doi: 10.2174/138920312804871193, PMID 23305359.
Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6:26717. doi: 10.1038/srep26717, PMID 27225966.
Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171-8. doi: 10.1016/j.mib.2014.11.019, PMID 25528295.
Quirós P, Colomer-Lluch M, Martínez-Castillo A, Miró E, Argente M, Jofre J, et al. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob Agents Chemother. 2014;58(1):606-9. doi: 10.1128/AAC.01684-13, PMID 24165177.
Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015;69:234-42. doi: 10.1016/j.watres.2014.11.021, PMID 25482914.
Nilsson AS. Pharmacological limitations of phage therapy. Ups J Med Sci. 2019;124(4):218-27. doi: 10.1080/03009734.2019.1688433, PMID 31724901.
Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E, Freitag A, Paterson N, Jackson M, Lougheed MD, Dowson C, Kumar V, Ferris W, Chan F, Doucette S, Fergusson D. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA. 2010;304(19):2145-53. doi: 10.1001/jama.2010.1665.
Yang MY, Chan JG, Chan HK. Pulmonary drug delivery by powder aerosols. J Control Release. 2014;193:228-40. doi: 10.1016/j.jconrel.2014.04.055. PMID: 24818765.
Kanj SS, Kanafani ZA. Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc. 2011;86(3):250-9. doi: 10.4065/mcp.2010.0674. PMID: 21364117.
Shetty N, Park H, Zemlyanov D, Mangal S, Bhujbal S, Zhou. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. International Journal of Pharmaceutics. 2018;544(1):222-34. doi: 10.1016/j.ijpharm.2018.04.034.
Lin Y, Chang RYK, Britton WJ, Morales S, Kutter E, Li J et al. Inhalable combination powder formulations of phage and ciprofloxacin for P. aeruginosa respiratory infections. Eur J Pharm Biopharm. 2019;142:543-52. doi: 10.1016/j.ejpb.2019.08.004, PMID 31398437.
Chang RY, Wong J, Mathai A, Morales S, Kutter E, Britton W et al. Production of highly stable spray dried phage formulations for treatment of pseudomonas aeruginosa lung infection. Eur J Pharm Biopharm. 2017;121:1-13. doi: 10.1016/j.ejpb.2017.09.002, PMID 28890220.
Chang RYK, Kwok PCL, Khanal D, Morales S, Kutter E, Li J et al. Inhalable bacteriophage powders: glass transition temperature and bioactivity stabilization. Bioeng Transl Med. 2020;5(2):e10159. doi: 10.1002/btm2.10159, PMID 32440564.
Cheng S, Kourmatzis A, Mekonnen T, Gholizadeh H, Raco J, Chen L et al. Does upper airway deformation affect drug deposition? Int J Pharm. 2019;572:118773. doi: 10.1016/j.ijpharm.2019.118773, PMID 31678391.
Matinkhoo S, Lynch KH, Dennis JJ, Finlay WH, Vehring R. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci. 2011;100(12):5197-205. doi: 10.1002/jps.22715, PMID 22020816.
Li M, Chang RYK, Lin Y, Morales S, Kutter E, Chan HK. Phage cocktail powder for pseudomonas aeruginosa respiratory infections. Int J Pharm. 2021;596:120200. doi: 10.1016/j.ijpharm.2021.120200, PMID 33486032.
Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN, Thomas L et al. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol. 2011;60(11):1697-700. doi: 10.1099/jmm.0.029744-0, PMID 21737541.
Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;2018(1):60-6. doi: 10.1093/emph/eoy005, PMID 29588855.
Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349-57. doi: 10.1111/j.1749-4486.2009.01973.x, PMID 19673983.
Ngiam L, Schembri MA, Weynberg K, Guo J. Bacteriophage isolated from non-target bacteria demonstrates broad host range infectivity against multidrug‐resistant bacteria. Environ Microbiol. 2021;23(9):5569-86. doi: 10.1111/1462-2920.15714, PMID 34390602.
Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLOS ONE. 2017;12(7):e0179245. doi: 10.1371/journal.pone.0179245, PMID 28719657.
Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLOS ONE. 2018;13(10):e0206278. doi: 10.1371/journal.pone.0206278, PMID 30356310.
Jamal M, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T et al. Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol. 2019;64(1):101-11. doi: 10.1007/s12223-018-0636-x, PMID 30090964.
Lin Y, Chang RYK, Britton WJ, Morales S, Kutter E, Chan HK. Synergy of nebulized phage PEV20 and ciprofloxacin combination against pseudomonas aeruginosa. Int J Pharm. 2018;551(1-2):158-65. doi: 10.1016/j.ijpharm.2018.09.024, PMID 30223075.
Lin Y, Quan D, Chang RYK, Chow MYT, Wang Y, Li M et al. Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation-A proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm. 2021;158:166-71. doi: 10.1016/j.ejpb.2020.11.019, PMID 33253892.
Kim M, Jo Y, Hwang YJ, Hong HW, Hong SS, Park K et al. Phage-antibiotic Synergy via delayed lysis. Appl Environ Microbiol. 2018;84(22):e02085-18. doi: 10.1128/AEM.02085-18, PMID 30217844.
Chang RYK, Das T, Manos J, Kutter E, Morales S, Chan HK. Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. AAPS J. 2019;21(3):49. doi: 10.1208/s12248-019-0315-0, PMID 30949776.
Akturk E, Oliveira H, Santos SB, Costa S, Kuyumcu S, Melo LDR et al. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics (Basel). 2019;8(3):103. doi: 10.3390/antibiotics8030103, PMID 31349628.
Sturino JM, Klaenhammer TR. Inhibition of bacteriophage replication in streptococcus thermophilus by subunit poisoning of primase. Microbiology (Reading). 2007;153(10):3295-302. doi: 10.1099/mic.0.2007/007567-0, PMID 17906129.
Lopes A, Pereira C, Almeida A. Sequential combined effect of phages and antibiotics on the inactivation of Escherichia coli. Microorganisms. 2018;6(4):125. doi: 10.3390/microorganisms6040125, PMID 30563133.
Blasco L, Ambroa A, Lopez M, Fernandez-Garcia L, Bleriot I, Trastoy R et al. Combined use of the ab105-2φΔci Lytic mutant phage and different antibiotics in clinical isolates of multi-resistant Acinetobacter baumannii. Microorganisms. 2019;7(11):556. doi: 10.3390/microorganisms7110556, PMID 31726694.
Pacios O, Fernández-García L, Bleriot I, Blasco L, González-Bardanca M, López M et al. Enhanced antibacterial activity of Repurposed Mitomycin C and imipenem in combination with the Lytic phage vB_KpnM-VAC13 against clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2021;65(9):e0090021. doi: 10.1128/AAC.00900-21, PMID 34228538.
Barros JAR, Melo LDR, Silva RARD, Ferraz MP, Azeredo JCVR, Pinheiro VMC et al. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine. 2020;24:102145. doi: 10.1016/j.nano.2019.102145, PMID 31857183.
Wroe JA, Johnson CT, García AJ. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A. 2020;108(1):39-49. doi: 10.1002/jbm.a.36790, PMID 31443115.
Kaur P, Gondil VS, Chhibber S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm. 2019;572:118779. doi: 10.1016/j.ijpharm.2019.118779, PMID 31740093.
Chang RYK, Okamoto Y, Morales S, Kutter E, Chan HK. Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages. Int J Pharm. 2021;605:120850. doi: 10.1016/j.ijpharm.2021.120850, PMID 34216771.
Kumari S, Harjai K, Chhibber S. Topical treatment of Klebsiella pneumoniae B5055 induced burn wound infection in mice using natural products. J Infect Dev Ctries. 2010;4(6):367-77. doi: 10.3855/jidc.312, PMID 20601788.
Kumari S, Harjai K, Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol. 2011;60(2):205-10. doi: 10.1099/jmm.0.018580-0, PMID 20965914.
Cobb LH, Park J, Swanson EA, Beard MC, McCabe EM, Rourke AS et al. CRISPR-cas9 modified bacteriophage for treatment of staphylococcus aureus induced osteomyelitis and soft tissue infection. PLOS ONE. 2019;14(11):e0220421. doi: 10.1371/journal.pone.0220421, PMID 31756187.
Kim HY, Chang RYK, Morales S, Chan HK. Bacteriophage-delivering hydrogels: current progress in combating antibiotic resistant bacterial infection. Antibiotics (Basel). 2021;10(2):130. doi: 10.3390/antibiotics10020130, PMID 33572929.
Ismail R, Dorighello Carareto ND, Hornez JC, Bouchart F. A localized phage-based antimicrobial system: effect of alginate on phage desorption from β-TCP ceramic bone substitutes. Antibiotics (Basel). 2020;9(9):560. doi: 10.3390/antibiotics9090560, PMID 32878156.
Lusk JE, Williams RJ, Kennedy EP. Magnesium and the growth of Escherichia coli. J Biol Chem. 1968;243(10):2618-24. doi: 10.1016/s0021-9258(18)93417-4, PMID 4968384.
Luong T, Salabarria AC, Roach DR. Phage therapy in the resistance era: where do we stand and where are we going? Clin Ther. 2020;42(9):1659-80. doi: 10.1016/j.clinthera.2020.07.014, PMID 32883528.
Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351. doi: 10.3390/v10070351, PMID 29966329.
Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG, Barahman R et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A. 2020;117(21):11207-16. doi: 10.1073/pnas.1919888117, PMID 32424102.
Abdelsattar A, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol. 2022;23(3):337-60. doi: 10.2174/1389201022666210426092002, PMID 33902418.
Rodriguez-Gonzalez RA, Leung CY, Chan BK, Turner PE, Weitz JS. Quantitative models of phage-antibiotic combination therapy. mSystems. 2020;5(1):e00756-19. doi: 10.1128/mSystems.00756-19, PMID 32019835.
Sunderland KS, Yang M, Mao C. Phage‐enabled nanomedicine: from probes to therapeutics in precision medicine. Angew Chem Int Ed Engl. 2017;56(8):1964-92. doi: 10.1002/anie.201606181, PMID 27491926.
Hyman P, Denyes J. Bacteriophages in nanotechnology: history and future. Bacteriophages. 2018:1-31. doi: 10.1007/978-3-319-40598-8_22-1.
Su HL, Lin SH, Wei JC, Pao IC, Chiao SH, Huang CC et al. Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLOS ONE. 2011;6(6):e21125. doi: 10.1371/journal.pone.0021125, PMID 21695045.
Lara HH, Ayala-Núñez NV, Ixtepan Turrent LdC, Rodríguez Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2010;26(4):615-21. doi: 10.1007/s11274-009-0211-3.
Manoharadas S, Altaf M, Alrefaei AF, Devasia RM, Badjah Hadj AYM, Abuhasil MSA. Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and ’green synthesized’ silver nanoparticles. RSC Adv. 2021;11(3):1420-9. doi: 10.1039/D0RA09725J.
Mohamed A, Taha O, El-Sherif HM, Connerton PL, Hooton SPT, Bassim ND et al. Bacteriophage ZCSE2 is a potent antimicrobial against Salmonella enterica serovars: ultrastructure, genomics and efficacy. Viruses. 2020;12(4):424. doi: 10.3390/v12040424, PMID 32283768.
Abdelsattar AS, Nofal R, Makky S, Safwat A, Taha A, El-Shibiny A. The synergistic effect of biosynthesized silver nanoparticles and phage ZCSE2 as a novel approach to combat multidrug-resistant Salmonella enterica. Antibiotics (Basel). 2021;10(6):678. doi: 10.3390/antibiotics10060678, PMID 34198823.
Endersen L, Coffey A. The use of bacteriophages for food safety. Curr Opin Food Sci. 2020;36:1-8. doi: 10.1016/j.cofs.2020.10.006.
Woolston J, Parks AR, Abuladze T, Anderson B, Li M, Carter C et al. Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage. 2013;3(3):e25697. doi: 10.4161/bact.25697, PMID 24228226.
Intralytix, Inc. Intralytix, Inc; n.d. [cited Jun 29 2022] Available from: https://www.intralytix.com/index.php?page=prod.
Fister S, Fuchs S, Stessl B, Schoder D, Wagner M, Rossmanith P. Screening and characterisation of bacteriophage P100 insensitive listeria monocytogenes isolates in Austrian dairy plants. Food Control. 2016;59:108-17. doi: 10.1016/j.foodcont.2015.05.026.
Listeria solution – PhageGuard; n.d. PhageGuard – the natural solution for food safety [cited Jun 29 2022]. Available from: https://phageguard.com/listeria-solution/.
Sadekuzzaman M, Yang S, Mizan MFR, Kim H, Ha S. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control. 2017;78:256-63. doi: 10.1016/j.foodcont.2016.10.056.
Perera MN, Abuladze T, Li M, Woolston J, Sulakvelidze A. Bacteriophage cocktail significantly reduces or eliminates listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol. 2015;52:42-8. doi: 10.1016/j.fm.2015.06.006, PMID 26338115.
Kawacka I, Olejnik-Schmidt A, Schmidt M, Sip A. Effectiveness of phage-based inhibition of listeria monocytogenes in food products and food processing environments. Microorganisms. 2020;8(11):1764. doi: 10.3390/microorganisms8111764, PMID 33182551.
O’Sullivan L, Bolton D, McAuliffe O, Coffey A. The use of bacteriophages to control and detect pathogens in the dairy industry. Int J Dairy Technol. 2020;73(1):1-11. doi: 10.1111/1471-0307.12641.
Vikram A, Tokman JI, Woolston J, Sulakvelidze A. Phage biocontrol improves food safety by significantly reducing the level and prevalence of Escherichia coli O157:H7 in various foods. J Food Prot. 2020;83(4):668-76. doi: 10.4315/0362-028X.JFP-19-433, PMID 32221572.
Soffer N, Woolston J, Li M, Das C, Sulakvelidze A. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLOS ONE. 2017;12(3):e0175256. doi: 10.1371/journal.pone.0175256, PMID 28362863.
Gardner GM, Weiser RS. A bacteriophage for Mycobacterium smegmatis. Proc Soc Exp Biol Med. 1947;66(1):205. doi: 10.3181/00379727-66-16037, PMID 20270730.
Marei AM, El-Behedy EM, Mohtady HA, Afify AF. Evaluation of a rapid bacteriophage-based method for the detection of Mycobacterium tuberculosis in clinical samples. J Med Microbiol. 2003;52(4):331-5. doi: 10.1099/jmm.0.05091-0, PMID 12676872.
McNerney R, Kambashi BS, Kinkese J, Tembwe R, Godfrey-Faussett P. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. J Clin Microbiol. 2004;42(5):2115-20. doi: 10.1128/JCM.42.5.2115-2120.2004, PMID 15131178.
Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron. 2018;118:204-16. doi: 10.1016/j.bios.2018.07.058, PMID 30081260.
Laure NN, Ahn J. Development of phage-based assay to differentiate ciprofloxacin resistant and sensitive Salmonella Typhimurium. Food Sci Biotechnol. 2021;30(2):315-20. doi: 10.1007/s10068-020-00858-9, PMID 33732522.
Moses S, Vagima Y, Tidhar A, Aftalion M, Mamroud E, Rotem S et al. Characterization of Yersinia pestis phage Lytic activity in human whole blood for the selection of efficient therapeutic phages. Viruses. 2021;13(1):89. doi: 10.3390/v13010089, PMID 33440682.
Schofield DA, Molineux IJ, Westwater C. Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol. 2009;47(12):3887-94. doi: 10.1128/JCM.01533-09, PMID 19828743.
Garcia E, Elliott JM, Ramanculov E, Chain PS, Chu MC, Molineux IJ. The genome sequence of Yersinia pestis bacteriophage φA1122 reveals an intimate history with the Coliphage T3 and T7 genomes. J Bacteriol. 2003;185(17):5248-62. doi: 10.1128/JB.185.17.5248-5262.2003, PMID 12923098.
Yang Q, Deng S, Xu J, Farooq U, Yang T, Chen W et al. Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Mikrochim Acta. 2021;188(4):107. doi: 10.1007/s00604-020-04676-y, PMID 33660086.
Mahato K, Srivastava A, Chandra P. Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. Biosens Bioelectron. 2017;96:246-59. doi: 10.1016/j.bios.2017.05.001, PMID 28501745.
O’Connell L, Mandula O, Leroy L, Aubert A, Marcoux PR, Roupioz Y. Ultrafast and multiplexed bacteriophage susceptibility testing by surface plasmon resonance and phase imaging of immobilized phage microarrays. Chemosensors. 2022;10(5):192. doi: 10.3390/chemosensors10050192.
Kingston-O’Connell L, Roupioz Y, Marcoux P. Optical bacteriophage susceptibility testing by SPR (surface plasmon resonance). Plasmonics Biol Med. 2021;XVIII. doi: 10.1117/12.2578753.
O’Connell L, Marcoux PR, Roupioz Y. Strategies for surface immobilization of whole bacteriophages: a review. ACS Biomater Sci Eng. 2021;7(6):1987-2014. doi: 10.1021/acsbiomaterials.1c00013, PMID 34038088.
Hyeon SH, Lim WK, Shin HJ. Novel surface plasmon resonance biosensor that uses full‐length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium. Biotechnol Appl Biochem. 2021;68(1):5-12. doi: 10.1002/bab.1883, PMID 31916280.
Gaudreault J, Forest-Nault C, De Crescenzo G, Durocher Y, Henry O. On the use of surface plasmon resonance-based biosensors for advanced Bioprocess monitoring. Processes. 2021;9(11):1996. doi: 10.3390/pr9111996.
Hoe S, Semler DD, Goudie AD, Lynch KH, Matinkhoo S, Finlay WH et al. Respirable bacteriophages for the treatment of bacterial lung infections. J Aerosol Med Pulm Drug Deliv. 2013;26(6):317-35. doi: 10.1089/jamp.2012.1001, PMID 23597003.
Abedon ST. Phage therapy of pulmonary infections. Bacteriophage. 2015;5(1):e1020260. doi: 10.1080/21597081.2015.1020260, PMID 26442188.
Chang RYK, Wallin M, Lin Y, Leung SSY, Wang H, Morales S et al. Phage therapy for respiratory infections. Adv Drug Deliv Rev. 2018;133:76-86. doi: 10.1016/j.addr.2018.08.001, PMID 30096336.
Wu N, Dai J, Guo M, Li J, Zhou X, Li F, et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerg Microbes Infect. 2021;10(1):612-8. doi: 10.1080/22221751.2021.1902754, PMID 33703996.
Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020;5(3):465-72. doi: 10.1038/s41564-019-0634-z, PMID 32066959.
Tiwari BR, Kim S, Rahman M, Kim J. Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J Microbiol. 2011;49(6):994-9. doi: 10.1007/s12275-011-1512-4, PMID 22203564.
Liu KY, Yang WH, Dong XK, Cong LM, Li N, Li Y, et al. Inhalation study of mycobacteriophage D29 aerosol for mice by endotracheal route and nose-only exposure. J Aerosol Med Pulm Drug Deliv. 2016;29(5):393-405. doi: 10.1089/jamp.2015.1233, PMID 26745146.
Chow MYT, Chang RYK, Li M, Wang Y, Lin Y, Morales S, et al. Pharmacokinetics and time-kill study of inhaled antipseudomonal bacteriophage therapy in mice. Antimicrob Agents Chemother. 2020;65(1):e01470-20. doi: 10.1128/AAC.01470-20, PMID 33077657.
Carrigy NB, Chang RY, Leung SSY, Harrison M, Petrova Z, Pope WH. et al. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm Res. 2017;34(10):2084-96. doi: 10.1007/s11095-017-2213-4, PMID 28646325.
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of inhaled phage therapy for combatting pulmonary infections. Front Cell Infect Microbiol. 2021;11:758392. doi: 10.3389/fcimb.2021.758392, PMID 34938668.
Javadzadeh Y, Yaqoubi S. Therapeutic nanostructures for pulmonary drug delivery. Nanostruct. Drug Deliv. 2017:619-38.
Marqus S, Lee L, Istivan T, Kyung Chang RY, Dekiwadia C, Chan HK et al. High frequency acoustic nebulization for pulmonary delivery of antibiotic alternatives against staphylococcus aureus. Eur J Pharm Biopharm. 2020;151:181-8. doi: 10.1016/j.ejpb.2020.04.003, PMID 32315699.
Kurosawa M, Watanabe T, Futami A, Higuchi T. Surface acoustic wave atomizer. Sens Actuat A. 1995;50(1-2):69-74. doi: 10.1016/0924-4247(96)80086-0.
Qi A, Yeo LY, Friend JR. Interfacial destabilization and atomization driven by surface acoustic waves. Phys Fluids. 2008;20(7):074103. doi: 10.1063/1.2953537.
Ju J, Yamagata Y, Ohmori H, Higuchi T. High-frequency surface acoustic wave atomizer. Sens Actuat A. 2008;145-146:437-41. doi: 10.1016/j.sna.2008.01.001.
Winkler A, Harazim S, Collins DJ, Brünig R, Schmidt H, Menzel SB. Compact SAW aerosol generator, Biomed. Microdev. 2017:19-9.
Qi A, Friend JR, Yeo LY, Morton DAV, Mcintosh MP, Spiccia L. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab Chip. 2009;9(15):2184-93. doi: 10.1039/b903575c, PMID 19606295.
Hogan CJ Jr, Kettleson EM, Lee MH, Ramaswami B, Angenent LT, Biswas P. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J Appl Microbiol. 2005;99(6):1422-34. doi: 10.1111/j.1365-2672.2005.02720.x, PMID 16313415.
Hogan CJ, Lee M, Biswas P. Capture of viral particles in soft X-ray–enhanced corona systems: charge distribution and transport characteristics. Aerosol Sci Technol. 2004;38(5):475-86. doi: 10.1080/02786820490462183.
Eninger RM, Hogan CJ, Biswas P, Adhikari A, Reponen T, Grinshpun SA. Electrospray versus nebulization for aerosolization and filter testing with bacteriophage particles. Aerosol Sci Technol. 2009;43(4):298-304. doi: 10.1080/02786820802626355.
Fernández Tena A, Casan Clarà P. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48(7):240-6. English, Spanish. doi: 10.1016/j.arbres.2012.02.003, PMID 22464044.
Cheng YS. Mechanisms of pharmaceutical aerosol deposition in the respiratory tract. AAPS PharmSciTech. 2014;15(3):630-40. doi: 10.1208/s12249-014-0092-0, PMID 24563174.
Jaworek A. Electrospray droplet sources for thin film deposition. J Mater Sci. 2007;42(1):266-97. doi: 10.1007/s10853-006-0842-9.
Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012;65(2):395-8. doi: 10.1111/j.1574-695X.2012.00977.x, PMID 22524448.
Thomas JJ, Bothner B, Traina J, Benner WH, Siuzdak G. Electrospray ion mobility spectrometry of intact viruses. Spectroscopy. 2004;18(1):31-6. doi: 10.1155/2004/376572.
Jung JH, Lee JE, Kim SS. Generation of nonagglomerated airborne bacteriophage particles using an electrospray technique. Anal Chem. 2009;81(8):2985-90. doi: 10.1021/ac802584z, PMID 19301849.
Otero J, García-Rodríguez A, Cano-Sarabia M, Maspoch D, Marcos R, Cortés P et al. Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy. Front Microbiol. 2019;10:689. doi: 10.3389/fmicb.2019.00689, PMID 31019499.
Nieth A, Verseux C, Barnert S, Süss R, Römer W. A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin Drug Deliv. 2015;12(9):1411-24. doi: 10.1517/17425247.2015.1043125, PMID 25937143.
Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices (Auckl). 2015;8:131-9. doi: 10.2147/MDER.S48888, PMID 25709510.
Singla S, Harjai K, Katare OP, Chhibber S. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J Infect Dis. 2015;212(2):325-34. doi: 10.1093/infdis/jiv029, PMID 25605867.
Puapermpoonsiri U, Spencer J, van der Walle CF. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. Eur J Pharm Biopharm. 2009;72(1):26-33. doi: 10.1016/j.ejpb.2008.12.001, PMID 19118627.
Kesser KC, Geller DE. New aerosol delivery devices for cystic fibrosis. Respir Care. 2009;54(6):754-67; discussion 767-8. doi: 10.4187/002013209790983250, PMID 19467162.
Fischer A, Stegemann J, Scheuch G, Siekmeier R. Novel devices for individualized controlled inhalation can optimize aerosol therapy in efficacy, patient care and power of clinical trials. Eur J Med Res. 2009;14;Suppl 4(Suppl 4):71-7. doi: 10.1186/2047-783x-14-s4-71, PMID 20156730.
Bennett WD. Controlled inhalation of aerosolised therapeutics. Expert Opin Drug Deliv. 2005;2(4):763-7. doi: 10.1517/17425247.2.4.763, PMID 16296800.
Rogliani P, Calzetta L, Coppola A, Cavalli F, Ora J, Puxeddu E et al. Optimizing drug delivery in COPD: the role of inhaler devices. Respir Med. 2017;124:6-14. doi: 10.1016/j.rmed.2017.01.006, PMID 28284323.
Thorn J, Rylander R. Inflammatory response after inhalation of bacterial endotoxin assessed by the induced sputum technique. Thorax. 1998;53(12):1047-52. doi: 10.1136/thx.53.12.1047, PMID 10195077.
Muhlebach MS, Noah TL. Endotoxin activity and inflammatory markers in the airways of young patients with cystic fibrosis. Am J Respir Crit Care Med. 2002;165(7):911-5. doi: 10.1164/ajrccm.165.7.2107114, PMID 11934713.
Parfitt T. Georgia: an unlikely stronghold for bacteriophage therapy. Lancet. 2005;365(9478):2166-7. doi: 10.1016/S0140-6736(05)66759-1.
Russian pharmacopoeia OFS.1.7.1.0002.15 Bacteriophages are therapeutic and prophylactic [cited Sep 9 2022]. Available from: http://pharmacopoeia.ru/ofs-1-7-1-0002-15-bakteriofagi-lechebno-profilakticheskie/.
Fauconnier A. Phage therapy regulation: from night to dawn. Viruses. 2019;11(4):352. doi: 10.3390/v11040352, PMID 30999559.
Actualité. Phagothérapie: l’ANSM annonce la création d’un comité scientifique spécialisé temporaire (CSST) intitulé ’Phagothérapie – retour d’expérience et perspectives’ – ANSM [internet]; 2022. Ansm. Available from: sante.fr [cited Oct 9 2022]. Available from: https://ansm.sante.fr/actualites/phagotherapie-lansm-annonce-la-creation-dun-comite-scientifique-specialise-temporaire-csst-intitule-phagotherapie-retour-dexperience-et-perspectives.
Adaptive Phage Therapeutics, Inc. Expanded access study of phage treatment in Covid-19 patients on antimicrobials for pneumonia or bacteremia/septicemia due to A. baumannii, P. aeruginosa or S. aureus [internet]; 2022 [cited Oct 9 2022]. Available from: http://clinicaltrials.gov/ct2/show/NCT04636554.
Gigante A, Atterbury RJ. Veterinary use of bacteriophage therapy in intensively reared livestock. Virol J. 2019;16(1):155. doi: 10.1186/s12985-019-1260-3, PMID 31831017.
Leptihn S, Loh B. Complexity, challenges and costs of implementing phage therapy. Future Microbiol. 2022;17(9):643-6. doi: 10.2217/fmb-2022-0054, PMID 35400196.
Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;372(16):1539-48. doi: 10.1056/NEJMra1403772, PMID 25875259.
Li C, Nyaruaba R, Zhao X, Xue H, Li Y, Yang H et al. Thermosensitive hydrogel wound dressing loaded with bacteriophage lysin LysP53. Viruses. 2022;14(9):1956. doi: 10.3390/v14091956, PMID 36146767.
Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev. 2020 November 24;44(6):684-700. doi: 10.1093/femsre/fuaa017, PMID 32472938.
Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015 December;13(12):777-86. doi: 10.1038/nrmicro3564, PMID 26548913.
De Siqueira RS, Dodd CE, Rees CE. Evaluation of the natural virucidal activity of teas for use in the phage amplification assay. Int J Food Microbiol. 2006;111(3):259-62. doi: 10.1016/j.ijfoodmicro.2006.04.047, PMID 16920213.
Park K, Cha KE, Myung H. Observation of inflammatory responses in mice orally fed with bacteriophage T7. J Appl Microbiol. 2014;117(3):627-33. doi: 10.1111/jam.12565, PMID 24916438.
Kittler S, Wittmann J, Mengden RALP, Klein G, Rohde C, Lehnherr H. The use of bacteriophages as one-health approach to reduce multidrug-resistant bacteria. Sustain Chem Pharm. 2017;5:80-3. doi: 10.1016/j.scp.2016.06.001.
Vagima Y, Gur D, Aftalion M, Moses S, Levy Y, Makovitzki A et al. Phage therapy potentiates second-line antibiotic treatment against pneumonic plague. Viruses. 2022;14(4):688. doi: 10.3390/v14040688, PMID 35458417.
Maganha de Almeida Kumlien AC, Borrego CM, Balcázar JL. Antimicrobial resistance and bacteriophages: an overlooked intersection in water disinfection. Trends Microbiol. 2021;29(6):517-27. doi: 10.1016/j.tim.2020.12.011, PMID 33500192.
Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and delivery of therapeutic phages. Appl Environ Microbiol. 2020;87(5). doi: 10.1128/AEM.01979-20, PMID 33310718.
Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B. Phage therapy: current status and perspectives. Med Res Rev. 2020 January;40(1):459-63. doi: 10.1002/med.21593. PMID 31062882.
Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses. 2013;5(3):806-23. doi: 10.3390/v5030806, PMID 23478639.
Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219-32. doi: 10.1016/j.chom.2019.01.014, PMID 30763536.
Paule A, Frezza D, Edeas M. Microbiota and phage therapy: future challenges in medicine. Med Sci (Basel). 2018 October 5;6(4):86. doi: 10.3390/medsci6040086, PMID 30301167.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Punam Kumari, Tamalika Chakraborty, Sutripto Ghosh

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.