Antibacterial Potential of Marine Brown Algae Turbinaria Conoides Against Bacteria Associated with Diabetic Foot Ulcer

Life Sciences-Botany

Authors

  • T. Chitrikha Suresh P.G. & Research Department of Botany, Queen Mary's College, Chennai-600 004, India
  • T. V. Poonguzhali P.G. & Research Department of Botany, Queen Mary's College, Chennai-600 004, India
  • V. Anuradha Department of Biochemistry, Mohamed Sathak College of Arts and Science, Chennai-600119, India
  • S. Bharathi P.G. & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram – 631561, India https://orcid.org/0000-0002-2767-297X
  • B. Ramesh P.G. & Research Department of Biotechnology, Sri Sankara Arts and Science College, Kanchipuram – 631561, India
  • G. Suresh P.G. & Research Department of Microbiology, Sri Sankara Arts and Science College, Kanchipuram – 631561, India

DOI:

https://doi.org/10.22376/ijlpr.2023.13.2.L202-L210

Keywords:

Marine brown algae, Turbinaria conoides, solvent extracts, antibacterial, agar well diffusion method, diabetic foot ulcer.

Abstract

The marine brown algae Turbinaria conoides was extracted with different solvents, viz., acetone, ethanol, methanol and distilled water. The extracts were screened for the presence of various phytochemicals and examined for antibacterial activity by agar well diffusion method. Diabetic foot ulcer (DFU) associated bacteria and their respective standard strains, such as Staphylococcus aureus ATCC 5923, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 700603 and Enterococcus faecal ATCC 25922 were used as test bacteria. Among the different solvent extracts, the aqueous extract possessed the maximum zone of inhibition against both test and standard bacterial strains. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the aqueous extract against test pathogens were 128-4μg. The eluent mixture for separating the active fraction was selected by thin layer chromatography (TLC), which was found to be n-hexane: ethylacetate (6:4) with a maximum of four spots. In column chromatography, 25th -27th-minute fractions showed maximum antibacterial activity against all the DFU bacterial strains. Our study aims to find the use of T. conoides for treating DFU-associated bacterial infections. The objectives include exploring different solvent extracts of T. conoides for antibacterial activity and characterization of bioactive metabolite. 

References

Al-Saif SSA, Abdel-Raouf N, El-Wazanani HA, Aref IA. Antibacterial substances from marine algae isolated from the Jeddah coast of Red Sea, Saudi Arabia. Saudi J Biol Sci. 2014;21(1):57-64. doi: 10.1016/j.sjbs.2013.06.001, PMID 24596500.

Moni SS, Alam MF, Safhi MM, Jabeen A, Sanobar S, Siddiqui R et al. Potency of nano-antibacterial formulation from Sargassum binders against selected human pathogenic bacteria. Braz J Pharm Sci. 2018;54(4):1-9. doi: 10.1590/s2175-97902018000417811.

Arizza V. Marine biodiversity as a source of new drugs. Ital J Zool. 2013;80(3):317-8. doi: 10.1080/11250003.2013.830370.

Nayak G, Sahu A, Bhuyan SK, Bhuyan R, Kumar A, Kar D. Review on biomedical applications of marine algae-derived biomaterials. Univers J Public Health. 2022;10(1):15-24. doi: 10.13189/ujph.2022.100102.

Agarwal PK, Dangariya M, Agarwal P. Seaweed extracts: potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res. 2021; 58:102363. doi: 10.1016/j.algal.2021.102363.

Remya RR, Samrat AV, Kumar SS, Mohanavel V, Karthick A, Chinnaiyan VK et al. Bioactive potential of brown algae. Adsorption Sci Technol. 2022;2022: Article ID 9104835, 13 pages. doi: 10.1155/2022/9104835.

Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana L.M. et al. From marine origin to therapeutics: the antitumor potential of marine algae-derived compounds. Front Pharmacol. 2018; 9:777. doi: 10.3389/fphar.2018.00777, PMID 30127738.

Fayaz M, Namitha KK, Murthy KNC, Swamy MM, Sarada R, Khanam S Et al. Chemical Composition, Iron Bioavailability, and Antioxidant Activity of Kappaphycus alvarezzi (Doty). J Agric Food Chem. 2005;53(3):792-7. doi: 10.1021/jf0493627.

Cabrita MT, Vale C, Rauter AP. Halogenated compounds from marine algae. Mar Drugs. 2010;8(8):2301-17. doi: 10.3390/md8082301, PMID 20948909.

Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37(18):4311-30. doi: 10.1016/S0043-1354(03)00293-8, PMID 14511701.

Arumugam G, Rajendran R, Khaleelullah NS, Ramanathan S. Anti-candidal and anti-virulence efficiency of selected seaweeds against azole resistance Candida albicans. Biocatal Agric Biotechnol. 2019; 20:101195. doi: 10.1016/j.bcab.2019.101195.

Chakraborty K, Joseph D. Antioxidant potential and phenolic compounds of brown seaweeds Turbinaria conoides and Turbinaria ornata (class: Phaeophyceae). J Aquat Food Prod Technol. 2016;25(8):1249-65. doi: 10.1080/10498850.2015.1054540.

Chakraborty K, Dhara S. First report of substituted 2H-pyrenoids from brown seaweed Turbinaria conoides with antioxidant and anti-inflammatory activities. Nat Prod Res. 2020;34(24):3451-61. doi: 10.1080/14786419.2019.1578761, PMID 30835545.

World Health Organization. Lack of new antibiotics threatens global efforts to contain drug-resistant Infections; 2020. Available from: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drugresistant-Infections [cited 11/1/2023].

Huang ZH, Li SQ, Kou Y, Huang L, Yu T, Hu A. Risk factors for the recurrence of diabetic foot ulcers among diabetic patients: a meta-analysis. Int Wound J. 2019;16(6):1373-82. doi: 10.1111/in.13200, PMID 31489774.

Diabetic foot. In: Liapis CD, Balzer K, Benedetti-Valentini F, Fernandes E, Fernandes J, editors. Vascular surgery. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 501-21.

Banu A, Noorul Hassan MMN, Rajkumar J, Srinivasa S. Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study. Australas Med J. 2015;8(9):280-5. doi: 10.4066/AMJ.2015.2422, PMID 26464584.

Valentina J, Poonguzhali TV, Josmin Laali Nisha LL. Mosquito larvicidal and suicidal activity of seaweed extracts against Aedes aegypti, Anopheles stephensi and Culex. Int J Mosq Res. 2015;2(4):54-9.

Rhimou B, Hassane R, José M, Nathalie B. The antibacterial potential of the seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco. Afr J Biotechnol. 2010;9(38):6365-72.

Mehdinezhad N, Ghannadi A, Yegdaneh A. Phytochemical and biological evaluation of some Sargassum species from the Persian Gulf. Res Pharm Sci. 2016;11(3):243-9. PMID 27499794.

Obouayeba AP, Diarrassouba M, Soumahin EF, Kouakou TH. Phytochemical analysis, purification and identification of hibiscus Anthocyanins. J Pharm Chem Biol Sci. 2015;3(2):156-68.

Deyab M, Elkatony T, Ward F. Qualitative and quantitative analysis of phytochemical studies on brown seaweed, Dictyota dichotoma. Int J Eng Dev Res. 2016;4(2):674-78.

Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. ScientificWorldJournal. 2017; 2017:5873648. doi: 10.1155/2017/5873648, PMID 28386582.

Chitrikha Suresh TS, Poonguzhali TV, Anuradha V, Ramesh B, Suresh G. Aqueous extract of Turbinaria Conoides (J.Agardh) Kützing mediated fabrication of silver nanoparticles used against bacteria associated with a diabetic foot ulcer. Mater Today Proc. 2021;43(5):3038-43. doi: 10.1016/j.matpr.2021.01.376.

Elnabris KJ, Elmanama AA, Chihadeh WN. Antibacterial activity of four marine seaweeds collected from the coast of the Gaza Strip. Palestine Mesopot. J Mar Sci. 2013;28(1):81-92.

El Shafay SM, Ali SS, El-Sheekh MM. Antimicrobial activity of some seaweed species from the Red Sea against multidrug-resistant bacteria. Egypt J Aquat Res. 2016;42(1):65-74. doi: 10.1016/j.ejar.2015.11.006.

Ramesh C, Koushik S, Shunmugaraj T, Murthy MVR. Bioinvasive Seaweed Genus, Turbinaria in coral Reefs of Gulf of Mannar. J Life Sci Research. 2019;6(1):1-4. doi: 10.20448/journal.504.2019.61.1.4.

Rohfritsch A, Payri C, Stiger V, Bonhomme F. Molecular and morphological relationships between two closely related species, Turbinaria ornata and T. Conoides (Sargassaceae, Phaeophyceae). Biochem Syst Ecol. 2007;35(2):91-8. doi: 10.1016/j.bse.2006.09.002.

O’Keeffe E, Hughes H, McLoughlin P, Tan SP, McCarthy N. Antibacterial activity of seaweed extracts against plant pathogenic bacteria. J Bacteriol Mycol. 2019;6(3):1105.

Chakraborty K, Praveen NK, Vijayan KK, Rao GS. Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from the Gulf of Mannar. Asian Pac J Trop Biomed. 2013;3(1):8-16. doi: 10.1016/S2221-1691(13)60016-7, PMID 23570010.

Nawas PMA, Sujatha R. Phytochemical analysis and antibacterial potential of marine algae against human and aquatic pathogens. Int J Pharm Sci Rev Res. 2019;58(1):164-70.

Proestos C, Boziaris IS, Nychas G-JE, Komaitis M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 2006;95(4):664-71. doi: 10.1016/j.foodchem.2005.01.049.

Wadood A Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan. Biochem Anal Biochem;02(4). doi: 10.4172/2161-1009.1000144.

Saleh B, Al-Mariri A. Antimicrobial activity of the marine algal extracts against selected pathogens. J Agric Sci Technol. 2017; 19:1067-77.

Padmakumar K, Ayyakkannu K. Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from Southern coasts of India. Botanica Marina. Mar 1997;40(1-6):507-15. doi: 10.1515/botm.1997.40.1-6.507.

Caccamese S, Azzolina R. Screening for antimicrobial activities in marine algae from eastern Sicily. Planta Med. 1979;37(4):333-9. doi: 10.1055/s-0028-1097346, PMID 538107.

Pesando D, Caram B. Screening of marine algae from French Mediterranean coast for antibacterial and antifungal activity. Bot Mar. 1984; 27:381-6.

Manivannan K, Karthikai Devi G, Anantharaman P, Balasubramanian T. Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pac J Trop Biomed. 2011;1(2):114-20. doi: 10.1016/S2221-1691(11)60007-5, PMID 23569739.

Boonchum W, Peerapornpisal Y, Kanjanapothi D, Pekkoh J, Amornlerdpison D, Pumas C Et al. Antimicrobial and anti-inflammatory properties of various seaweeds from the gulf of Thailand. Int J Agric Biol. 2011; 13:100-4.

Ganapathy S, Lingappa S, Naidu K, Selvaraj U, Ramachandran S, Ponnusamy S Et al. Isolation and bioactive potential of fucoidan from marine macroalgae Turbinaria conoides. ChemistrySelect. 2019;4(48):14114-9. doi: 10.1002/slct.201903548.

Shibu A, Dhanam S. In vitro antifungal activity of Turbinaria conoides collected from Mandapam coast, Tamil Nadu, India Journal of Experimental Sciences. 2016; 7:27-30.

Ponnan A, Ramu K, Marudhamuthu M, Marimuthu R, Siva K, Kadarkarai M. Antibacterial, antioxidant and anticancer properties of Turbinaria Conoides (J. Agardh) Kurtz. Clin Photos. 2017; 3:1-10.

Zubair MS, Ardiana, Nugrahani AW. Antifungal Activity of Methanolic Extract of the Brown Seaweed Turbinaria ornata (Turner) J. Agardh, from Tomini Bay against Candida albicans. IOP Conf Ser.: Earth Environ Sci;253. doi: 10.1088/1755-1315/253/1/012020.

Published

2023-03-01

How to Cite

Chitrikha Suresh, T. ., Poonguzhali, T. V. ., Anuradha, V., Bharathi, S. ., Ramesh, B. ., & Suresh, G. . (2023). Antibacterial Potential of Marine Brown Algae Turbinaria Conoides Against Bacteria Associated with Diabetic Foot Ulcer: Life Sciences-Botany. International Journal of Life Science and Pharma Research, 13(2), L202-L210. https://doi.org/10.22376/ijlpr.2023.13.2.L202-L210

Issue

Section

Research Articles