A Comprehensive Review on Waste Water Treatment Technologies with Special Emphasize on Biological Treatments

Life Sciences-Microbiology


  • Jagruti Patel Dept of Biological & Environmental Science, N. V. Patel College of pure and applied sciences, Vallabh Vidhyanagar-38820 (Gujarat), India.
  • Rita N. Kumar Dept of Biological & Environmental Science, N. V. Patel College of pure and applied sciences, Vallabh Vidhyanagar-38820 (Gujarat), India.
  • J.I. Nirmal Kumar P. G. Dept of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Vallabh Vidhyanagar-388120 (Gujarat), India.




Industrial wastewater, sources, treatments, microorganisms, treatability studies


Rapid urbanization is essential for growth and economic viability at global level, promoting the extensive industrialization. Rapid industrialization also comes with more water demand with higher water pollution. Industrial wastewater may contain heavy metal, carcinogens, mutagens and radioactive materials which must be prevented to be incorporated into the food chain. Therefore, treatments of wastewater for removal of these toxicants are a necessary and unavoidable measure. There are various modes of treatments for removal of toxicants depending on the type of contaminants. It includes physical, chemical and biological treatment alone or in combination. Here a review is carried to identify major sources of industrial wastewaters with their major pollutants. Various studies are also considered in the review for determination of the hazardous effect of wastewater on ecosystems and biological systems. Details about treatments of wastewater based on the sources were also included. More emphasis has been given on the role of microorganisms for removal of pollutants. Not limited to this, details of methods for biological removal contaminations and treatability studies are also discussed in detail. Based on the review it is found that generation of wastewater from industries must be pretreated with suitable methods before discharging into the environment to protect life on mother earth.


Jern NW. Industrial wastewater treatment. Imperial College Press; 2006.

Rozkošný M, Kriška M, Šálek J, Bodík I, Istenič D. Natural technologies of wastewater treatment: GWP CEE; 2014.

Dotro G, Langergraber G, Molle P, Nivala J, Puigagut J, Stein O, et al. Treatment wetlands. Biological Wastewater Treatment Series. IWA Publishing; 2017. p. 1-172.

Sperling Mv. Wastewater characteristics, treatment and disposal. BiologicalWastewater Treatment Series. IWA Publishing; 2007. p. 1-304.

Abdallh MN, Abdelhalim WS, Abdelhalim HS. Industrial wastewater treatment of food industry using best techniques. Int J Eng Sci Invent. 2016;5:15-28.

El-Bestawy E. Treatment of mixed domestic–industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol. 2008;35(11):1503-16. doi: 10.1007/s10295-008-0452-4, PMID 18726623.

Iloms E, Ololade OO, Ogola HJO, Selvarajan R. Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. IJERPH. 2020;17(3):1-18. doi: 10.3390/ijerph17031096.

Asiwal RS, Sar DSK, Singh S, Sahu M. Wastewater treatment by effluent treatment plants. SSRG Int J Civ Eng. 2016;3:29-35.

Dey PD. Handbook on decentralised wastewater treatment module. Delhi: National Institute Of Urban Affairs; 2017.

Doorn MRJ, Towprayoon S, Vieira SMM, Irving W, Palmer C, Pipatti R, et al. Chapter 6. Wastewater treatment and discharge. In: IPCC guidelines for national greenhouse gas Inventories2006. p. 1-28.

Bae MJ, Kim JS, Park YS. Evaluation of changes in effluent quality from industrial complexes on the Korean nationwide scale using a self-organizing map. Int J Environ Res Public Health. 2012;9(4):1182-200. doi: 10.3390/ijerph9041182, PMID 22690190.

Hina H, Nafees M, Ahmad T. Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Heliyon. 2021;7(2):e05972. doi: 10.1016/j.heliyon.2021.e05972, PMID 33644432.

Zhang L, Zhou Y, Cheng Y, Lu W, Liang Y. Effect of different types of industrial wastewater on the bacterial community of urban rivers. J Freshw Ecol. 2021;36(1):31-48. doi: 10.1080/02705060.2021.1871978.

Shah H, Ruparelia J. Comparative studies for the treatment of industrial effluents employing advanced processes: towards enhancement of environmental performance. Discov Water. 2022;2:1-14.

Shah MP. Industrial waste water treatment by environmental bioremediation. Austin J Biotechnol Bioeng. 2017;4(2):01-2. doi: 10.26420/austinJbiotechnolbioeng.2017.1076.

Schellenberg T, Subramanian V, Ganeshan G, Tompkins D, Pradeep R. Wastewater discharge standards in the evolving context of urban sustainability–the case of India. Front Environ Sci. 2020;8:1-23.

O’Keeffe J. Wastewater-based epidemiology: current uses and future opportunities as a public health surveillance tool. Environ Health Rev [review]. 2021;64(3):44-52. doi: 10.5864/d2021-015.

Ojha N, Karn R, Abbas S, Bhugra S. Bioremediation of industrial wastewater: a review. IOP Conf Ser.: Earth Environ Sci. 2021;796(1):1-31. doi: 10.1088/1755-1315/796/1/012012.

Shah MP. Environmental bioremediation of industrial effluent. J Mol Biol Biotechnol. 2017;2:1-3.

Seif H, Malak M. Textile wastewater treatment. Sixth International Water Technol Conference; 2001. p. 608-14.

Sperling Mv. Basic principles of wastewater treatment. Biological Wastewater Treatment Series. IWA Publishing; 2017. p. 1-210.

Muthukumaran N, Ambujam NK. Wastewater treatment and management in urban areas – A case study of Tiruchirappalli city, Tamil Nadu, India. In: Proceedings of the third international conference on environment and health, Chennai; 2003. p. 15-7.

Ospanov K, Kuldeyev E, Kenzhaliyev B, Korotunov A. Wastewater treatment methods and sewage treatment facilities in Almaty, Kazakhstan. J Ecol Eng. 2022;23(1):240-51. doi: 10.12911/22998993/143939.

Nihalani SA. Treatability study for castor oil unit. Int J Recent Res Aspects. 2015;2:28-32.

van Straalen NM, Feder ME, Sayler GS. Guest comment: environmental genomics focus issue. Environ Sci Technol. 2012;46(1):1-2. doi: 10.1021/es204242a. PMID 22208704.

Dhote J, Ingoleb S, Chavhana A. Review on wastewater treatment technologies. Int J Eng Res Technol. 2012;1:1-10.

Wilas J, Draszawka-Bołzan B, Daniszewski P, Cyraniak E. Wastewater treatment technologies. World News Nat Sci. 2016;2016(4):33-43:33-43.

Abou-Elela SI, El-Gohary F. Treatability studies of textile wastewater. Environ Technol Lett. 1988; February:179-88.

Abusam A, Shahalam AB. Wastewater reuse in Kuwait: opportunities and constraints. WIT Transactions on Ecology and the Environment. 2013;1:745-54. doi: 10.2495/SC130632.

Gadipelly C, Pérez-González A, Yadav GD, Ortiz I, Ibáñez R, Rathod VK, et al. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res. 2014;53(29):11571-92. doi: 10.1021/ie501210j.

Mohsen MS, Jaber JO. Potential of industrial wastewater reuse. Desalination. 2003;152(1-3):281-9. doi: 10.1016/S0011-9164(02)01075-5.

Shakir E, Zahraw Z, Al-Obaidy AHMJ. Environmental and health risks associated with reuse of wastewater for irrigation. Egypt J Petrol. 2017;26(1):95-102. doi: 10.1016/j.ejpe.2016.01.003.

Igiri BE, Okoduwa R SI, Idoko G, Akabuogu EP, Adeyi AO, Ejiogu IK. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology. 2018; 2568038:1-16.

Al-Jabri H, Das P, Khan S, Thaher M, AbdulQuadir M. Treatment ofWastewaters by microalgae and the potential applications of the produced biomass—a review. Water. 2021;13:1-26.

Kulandaivel S, Srivaishnavi P, Kaleeswari P, Mohanapriya P. Degradation and adsorption of industrial effluents by consortium of microbes isolated from agro forestry soil. Int J Curr Microbiol Appl Sci. 2014;3:883-94.

Ali A, Naseem F. Frequency distribution of bacteria isolated from different industrial effluents. Daffodil Int Uni J Sci Technol. 2012;7(1):28-33. doi: 10.3329/diujst.v7i1.9644.

Devda V, Chaudhary K, Varjani S, Pathak B, Patel AK, Singhania RR et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered. 2021;12(1):4697-718. doi: 10.1080/21655979.2021.1946631, PMID 34334104.

Qin J, Oo MH, Dutková G, Tao E, Kekre KA, Cashion B et al. Pilot study on treatment of wastewater from an ethylene plant with membrane Bioreactor Technology. TOCENGJ. 2008;2(1):119-24. doi: 10.2174/1874123100802010119.

Mittal A. The differences between aerobic and anaerobic biological treatment processes and subsequently focuses on select aerobic biological treatment processes/technologies. Water Today. 2011:32-44.

Naidoo S, Olaniran AO. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health. 2013;11(1):249-70. doi: 10.3390/ijerph110100249, PMID 24366046.

Sghaier I, Chouchane, Ouzari NM, Mosbah A, Jaouani A, et al. Recent advances in textile wastewater treatment using microbial consortia. J Text Eng Fashion Technol. 2019;5:134-46.

Abo-Elela SI, El-Gohary FA, Wahaab RSA, Ali HI. Treatability studies of textile wastewater. Environ Technol Lett. 1988:179-88.

Surti HS. Physico-Chemical and Microbial Analysis of Waste Water from different Industry and Cod Reduction Treatment of Industrial Waste Water by using Selective microorganisms. IntJCurrMicrobiolAppSci. 2016;5(6):707-17. doi: 10.20546/ijcmas.2016.506.077.

Castellanos-Estupiñan M, Carrillo-Botello A, Rozo-Granados L, Becerra-Moreno D, García-Martínez J, Urbina-Suarez N, et al. Removal of nutrients and pesticides from agricultural runoff using microalgae and cyanobacteria. Water. 2022;14(4):558. doi: 10.3390/w14040558.

Narayanan K, Getachew A. Investigating suitability of treated wastewater for agriculture in Hawassa, Sidama region, Ethiopia. Int J Agril Res Innov & Tech. 2021;10(2):59-65. doi: 10.3329/ijarit.v10i2.51578.

Lin AY-C, Yu TH, Lin CF. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere. 2008;74(1):131-41. doi: 10.1016/j.chemosphere.2008.08.027, PMID 18829065.

Mateo-Sagasta J, Zadeh SM, Turral H. Water pollution from agriculture:a global review – Executive summary. Rome: Food and Agriculture Organization of the United Nations; 2017.

Rahimi MH, Kalantari N, Sharifidoost M, Kazemi M. Quality assessment of treated wastewater to be reused in agriculture. Glob J Environ Sci Manag. 2018;4:217-30.

van Ginneken M, Oron G. Risk assessment of consuming agricultural products irrigated with reclaimed wastewater: an exposure model. Water Resour Res. 2000;36(9):2691-9. doi: 10.1029/2000WR900106.

Bui HN, Chen YC, Pham AT, Ng SL, Lin K-YA, Nguyen NQV, et al. Life cycle assessment of paper mill wastewater: a case study in Viet Nam. Water Sci Technol. 2022;85(5):1522-37. doi: 10.2166/wst.2022.049, PMID 35290229.

Haq I, Raj A. Pulp and paper mill wastewater: ecotoxicological effects and bioremediation approaches for environmental safety; 2020. p. 333-56.

Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L, Haghighat F, et al. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. BioResources. 2016;11(3):7953-8091. doi: 10.15376/biores.11.3.Hubbe.

Rajni S, Satish K, Chhaya S. Tertiary treatment option for pulp and paper mill wastewater to achieve effluent recycling. Indian Pulp & Paper Technical Association [journal]. 2011;23:154-9.

Altieri VG, De Sanctis M, Sgherza D, Pentassuglia S, Barca E, Di Iaconi C. Treating and reusing wastewater generated by the washing operations in the non-hazardous plastic solid waste recycling process: advanced method vs. conventional method. J Environ Manage. 2021;284:112011. doi: 10.1016/j.jenvman.2021.112011, PMID 33515837.

Liberatore L, Vecchio AD, Scamosci E, Morgante A, Taddeo R. Characterization of A wastewater deriving from A plastic regeneration process. Fresenius Environ Bull. 2009;18:565-70.

Ogundairo TO, Olukanni DO, Akinwumi II, Adegoke DD. A review on plastic waste as sustainable resource in civil engineering applications. IOP Conf Ser.: Mater Sci Eng. 2021;1036(1):012019. doi: 10.1088/1757-899X/1036/1/012019.

Prata JC, Silva ALP, da Costa JP, Mouneyrac C, Walker TR, Duarte AC, et al. Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. Int J Environ Res Public Health. 2019;16(13):2411. doi: 10.3390/ijerph16132411, PMID 31284627.

Aniyikaiye TE, Oluseyi T, Odiyo JO, Edokpayi JN. Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int J Environ Res Public Health. 2019;16(7):1235. doi: 10.3390/ijerph16071235, PMID 30959965.

Mohtashami R, Shang JQ. Treatment of automotive paint wastewater in continuous-flow electroflotation reactor. J Cleaner Prod. 2019;218:335-46. doi: 10.1016/j.jclepro.2019.01.326.

Mostafa MK, Peters RW. Reuse paint wastewater in the manufacture of cement bricks and tiles. J Mater Cycles Waste Manag. 2017;19(2):840-50. doi: 10.1007/s10163-016-0485-0.

R. A. O, O. S. O. Preliminary assessment of effects of paint industry effluents on local groundwater regime in Ibadan, Nigeria. Int J Eng Res. 2015;4(10):518-22. doi: 10.17950/ijer/v4s10/1001.

Riveros R. Chemical treatment and reuse applications for latex paint industry wastewater. Desalin Water Treat. 2018;103:290-5. doi: 10.5004/dwt.2018.21932.

Shazly MAE, Hasanin EA, Kamel MM. Appropriate technology for industrial wastewater treatment of paint industry. Am Eurasian J Agric Environ Sci. 2010;8:597-601.

Chiang HL, Choa CG, Chen SY, Tsai MC. The reuse of biosludge as an adsorbent from a petrochemical wastewater treatment plant. J Air Waste Manag Assoc. 2003;53(9):1042-51. doi: 10.1080/10473289.2003.10466259, PMID 13678362.

Sivarajasekar N, Balasubramani K. A short account on petrochemical industry effluent treatment. Int J Petrochem Sci Eng. 2018;3.

Yang C. Petrochemical wastewater and its treatment. Centria University Of Applied Sciences; 2020.

Abdallat GA, Salameh E, Shteiwi M, Bardaweel S. Pharmaceuticals as emerging pollutants in the reclaimed wastewater used in irrigation and their effects on plants, soils, and groundwater. Water. 2022;14(10):1560. doi: 10.3390/w14101560.

Acharya RJ, Vyas DDS, Shah MP. Treatability study of Fenton activated carbon catalytical oxidation for pharmaceutical waste water Tratment. Int J Adv Res Innov Ideas Educ. 2016;2:2045-57.

Brahmbhatt JI, Patel PRL. Treatability study of pharmaceutical wastewater by hydrodynamic cavitation process. Int J Eng Res Gen Sci. 2015;3:74-8.

Fawzy ME, Abdelfatta I, Abuarab ME, Mostafa E, Aboelghait KM, El-Awady MH. Sustainable approach for pharmaceutical wastewater treatment and reuse: case study. J Environ Sci Technol. 2018;11(4):209-19. doi: 10.3923/jest.2018.209.219.

Guo Y, Qi PS, Liu YZ. A review on advanced treatment of pharmaceutical wastewater. IOP Conf Ser.: Earth Environ Sci. 2017;63:012025. doi: 10.1088/1755-1315/63/1/012025.

Parmar N, Upadhyay K. Treatability study of pharmaceutical wastewater by coagulation process. Int J ChemTech Res. 2013;5:2278-83.

Azanaw A, Birlie B, Teshome B, Jemberie M. Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering. 2022;6:100230. doi: 10.1016/j.cscee.2022.100230.

Ćurić I, Dolar D, Bošnjak J. Reuse of textile wastewater for dyeing cotton knitted fabric with hybrid treatment: coagulation/sand filtration/UF/NF-RO. J Environ Manage. 2021;295:113133. doi: 10.1016/j.jenvman.2021.113133, PMID 34182340.

Marrot B, Roche N. Wastewater treatment and reuse in textile industries, a review. Res Adv Water Res. 2002;3:41-53.

Al-Musharafi SK, Mahmoud IY, Al-Bahry SN. Heavy metal pollution from treated sewage effluent. APCBEE Procedia. 2013;5:344-8. doi: 10.1016/j.apcbee.2013.05.059.

Barakat MA. New trends in removing heavy metals from industrial wastewater. Arab J Chem. 2011;4(4):361-77. doi: 10.1016/j.arabjc.2010.07.019.

Li P, Jiang H, Barr A, Ren Z, Gao R, Wang H, et al. Reusable polyacrylonitrile‐sulfur extractor of heavy metal ions from wastewater. Adv Funct Materials. 2021;31(51):2105845. doi: 10.1002/adfm.202105845.

Singh DM, Mantha DN, Verghese. P DS. Techniques for recovery and reuse of heavy metals from industry effluents. Glob J Res Anal. 2016;5:268-71.

Renu, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: a review. J Water Reuse Desalin. 2017;7(4):387-419. doi: 10.2166/wrd.2016.104.

Wang J. Reuse of heavy metal from industrial effluent water. IOP Conf Ser.: Earth Environ Sci. 2018;199:042002. doi: 10.1088/1755-1315/199/4/042002.

Setiawan Y, Taufik Rizaludin A, Nur Aini M, Saepuloh S. Chemical Treatment in Industrial Wastewater of Polyester Synthetic Fiber Made from Recycled Polyethylene Terephthalate Bottles: Minimize Environmental Impacts. IJEE;12(3):192-7. doi: 10.5829/IJEE.2021.12.03.02.

Aghalari Z, Dahms HU, Sillanpää M, Sosa-Hernandez JE, Parra-Saldívar R. Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Global Health. 2020;16(1):13. doi: 10.1186/s12992-020-0546-y, PMID 32013988.

Bartha C, Jipa M, Caramitu A-R, Voina A, Tókos A, Circiumaru G, et al. Behavior of microorganisms from wastewater treatments in extremely low-frequency electric field. Biointerface Res Appl Chem. 2022;12:5071-80.

Qadir G. Yeast a magical microorganism in the wastewater treatment. J Pharmacogn Phytochem. 2019;8:1498-500.

Romdhana MH, Lecomte D, Ladevie B, Sablayrolles C. Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Saf Environ Prot. 2009;87(6):377-86. doi: 10.1016/j.psep.2009.08.003.

Shah MP. Bioremediation-waste water treatment. J Bioremediat Biodegrad. 2018;09(1):1000427. doi: 10.4172/2155-6199.1000427.

Sharma A, Mishra M, Sheet S, Thite M. Role of microbes as cleaning degrading industrial wastes for environmental sustainability- A Review. Recent Res Sci Technol. 2013;5:21-5.

OB A, MD O, TD O, bi A. Microbial roles and dynamics in wastewater treatment systems: an overview. Int J Pure Appl Biosci. 2014;2:156-68.

Thenmozhi R, Uma RN. Treatability studies of dairy wastewater by upflow anaerobic sludge blanket reactor. Civ Environ Res. 2012;2:43-8.

Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17(1):145-55. doi: 10.1007/s10311-018-0785-9.

Mandeep, Shukla P. Microbial Nanotechnology for Bioremediation of Industrial Wastewater. Front Microbiol. 2020;11:590631. doi: 10.3389/fmicb.2020.590631. PMID 33224126.

Patel A, Patel J, Chauhan K. Shah M. Treatability study of black water. Int J Adv Res Sci Eng. 2016;5:395-9.

Fadaly E, El-Defrawy MM, El-Zawawy F, Makia D. Chemical and Microbiological Analyses of Certain Water Sources and Industrial Wastewater Samples in Egypt. Pakistan J of Biological Sciences. 2000;3(5):777-81. doi: 10.3923/pjbs.2000.777.781.

Chapter FarrajiH 7. Wastewater treatment by phytoremediation technologies. Wastewater Eng Types Characteristics Treat Technol IJSRpub. 2014:205-18.

Lakshmi KS, Sailaja VH, Reddy MA. Phytoremediation - A promising technique in waste water treatment. Int J Sci Res Manag. 2017. doi: 10.18535/ijsrm/v5i6.20.

Fonkou T, Agendia P, Kengne I, Akoa A, Nyy J. Potentials of water lettuce (Pistia stratiotes) in domestic sewage treatment with macrophytic lagoon systems in Cameroon. Proceedings of the international symposium on environmental pollution control and waste management. 2002;7:709-14.

Gaballah MS, Ismail K, Beltagy A, Zein Eldin AM, Ismail MM. Wastewater treatment potential of water lettuce (Pistia stratiotes) with modified engineering design. J Water Chem Technol. 2019;41(3):197-205. doi: 10.3103/S1063455X1903010X.

Niranjan PT. Treatability Studies for Hospital wastewater using Advanced Oxidation process. Int J Innov Res Sci Eng Technol. 2017;6:7624-31.

Oller I, Malato S, Sánchez-Pérez JA. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—a review. Sci Total Environ. 2011;409(20):4141-66. doi: 10.1016/j.scitotenv.2010.08.061, PMID 20956012.

Sillanpää M, Ncibi MC, Matilainen A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J Environ Manage. 2018;208:56-76. doi: 10.1016/j.jenvman.2017.12.009, PMID 29248788.

Scott JP, Ollis DF. Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Prog. 1995;14(2):88-103. doi: 10.1002/ep.670140212.

Chakrabortya B, Kundub P, Mukherjeea J, Mukherjee S. Treatability study of real life bakery wastewater in a suspended growth batch fed reactor. J Indian Chemical Soc. 2020;97:629-33.

Sayed G. Treatability study of waste water using activated carbon, sand filter and dual media filter. National Conference on Biodiversity: Status and Challenges in Conservation – ’FAVEO; 2013. p. 210-3.

Seema M, Nihalani A. Treatability study methodology & application. Int J Sci Environ Technol. 2015;4:1330-5.

Shah K, Chauhan LI, Galgale AD. Treatability study of pesticide-based industrial wastewater. J Environ Sci Eng. 2012;54(4):570-6. PMID 25151721.

D’Amato VA, Ghorpade A, Singer C, Liles DS, Lutes CC. The role of treatability studies in industrial wastewater treatment. Proc Water Environ Fed. 2007;2007(7):357-67. doi: 10.2175/193864707787781250.

Slavov AK. General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review. Food Technol Biotechnol. 2017;55(1):14-28. doi: 10.17113/ftb., PMID 28559730.

Kolpakova VP, Shevtsov MN, Yeremeyeva YN, Anapyanova SB. Treatment of wastewater of small sewerage facilities. IOP Conf Ser.: Earth Environ Sci. 2022;988(5):1-9. doi: 10.1088/1755-1315/988/5/052022.



How to Cite

Patel, J. ., N. Kumar, R. ., & Nirmal Kumar, J. . (2023). A Comprehensive Review on Waste Water Treatment Technologies with Special Emphasize on Biological Treatments: Life Sciences-Microbiology. International Journal of Life Science and Pharma Research, 13(2), L112-L124. https://doi.org/10.22376/ijlpr.2023.13.2.L112-L124



Review Articles