Ganoderma Lucidum - A Potential Medicinal Mushroom Against MDR Isolates from The Secondary Infections of Covid-19

Life Sciences-Microbiology

Authors

  • T. Pushpa Departmentof Microbiology, A.V.V.M. Sri Pushpam College (Autonomous) Poondi, Thanjavur-613503 https://orcid.org/0000-0002-7065-3440
  • G. Senthilkumar Departmentof Microbiology, A.V.V.M. Sri Pushpam College (Autonomous) Poondi, Thanjavur-613503
  • V. Ambikapathy Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous) Poondi, Thanjavur-613503 (Affiliated to Bharathidasan University Trichy-24, Tamil Nadu, India.)
  • A. Kanmani Indian BioTrack Research Institute, Thanjavur-613 005, Tamil Nadu, India.
  • P. Prakash Indian BioTrack Research Institute, Thanjavur-613 005, Tamil Nadu, India.
  • A. Panneerselvam Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous) Poondi, Thanjavur-613503 (Affiliated to Bharathidasan University Trichy-24, Tamil Nadu, India.)

DOI:

https://doi.org/10.22376/ijlpr.2023.13.2.L99-L111

Keywords:

Post Covid-19, Ganoderma lucidum, Antibiotic Sensitivity Assay, Bioactive Compounds, Antioxidant and Anti-Inflammatory.

Abstract

The severe acute respiratory syndrome produced by COVID-19 is a highly infectious and pathogenic viral infection. Many COVID-19 patients have secondary bacterial infections, which enhance disease and increase death, particularly when requiring invasive mechanical ventilation. One of the most important medicinal mushrooms, Ganoderma lucidum, has been used for food, feed, and medication since the dawn of humanity. The present investigation aims to discover the potential of the medicinal mushroom Ganoderma lucidum inhibited multidrug-resistant isolates from secondary infection of Covid-19 patients. Isolation and identification of urine samples from secondary infection of post-Covid-19 patients and evaluate the antibiotic sensitivity assay, as identification of bioactive compounds, anti-inflammatory and antioxidant activity from Ganoderma lucidum. Totally 6 clinical urine samples were collected from the age group 45 to 60; 3 were male, and 3 were female. In total, nine bacteria and 10 fungi were isolated and identified. As antibiotic sensitivity assays of ceftriaxone, fluoroquinolones, azithromycin and amphotericin, nystatin and fluconazole were performed by the disc diffusion method against bacteria and fungi, the zone of inhibition was maximal in Klebsiella pneumoniae and Fusarium oxysporum. The aqueous and ethanolic extracts of Ganoderma lucidum were analyzed for the bioactive compounds, viz., steroids, flavonoids, alkaloids and phenolic compounds. The effect of the anti-inflammatory activity of the aqueous extract was excellent. The activity of the DPPH assay was maximum in aqueous and ethanolic extracts of all concentrations (100 to 500 ml). Antibiotic resistance could probably rise due to the frequent prescription of broad-spectrum empiric antimicrobials to COVID-19 patients. Hence, Ganoderma lucidum can be exploited to prevent secondary infection in COVID-19 patients. 

References

WHO. Covid-19 Dashboard 2020. Available from:https://covid19.who.int/?gclid[cited22/11/2022].

Samaneh P, Elham K, Hamid T, Hamid M, Ramin S, Forogh Set al.Secondary bacterialinfection and clinicalcharacteristics in patientswith COVID-19 admitted to twointensive care units of an academichospital in Iranduring the firstwave of the pandemic. Front Cell InfectMicrobiol:2022.12.

Russell CD, Fairfield CJ, Drake TM, Turtle L, Seaton RA, Wootton DG. Co-infections, secondary infections, and antimicrobial use in patients hospitalized with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe. 2021;2(8):e354-65. doi: 10.1016/S2666-5247(21)00090-2. PMID 34100002.

Gao JJ, Min BS, Ahn EM, Nakamura N, Lee HK, Hattori M. New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem PharmBull (Tokyo).2002;50(6):837-40. doi: 10.1248/cpb.50.837, PMID 12045343.

Gao Y, Zhou S, Wen J, Huang M, Xu A. Mechanism of the antiulcerogenic effect of Ganoderma lucidum polysaccharides on in domethacin-induced lesions in the rat. Life Sci.2002;72(6):731-45. doi: 10.1016/s0024-3205(02)02301-9, PMID 12467913.

US, Department of Health and Human Services. 8600 Rockville Pike, Bethesda: National Institutes of Health – National Library of Medicine; 2021. p. MD20894.

Lorenzen K, Anke T. Basidiomycetes as a source for new bioactive natural products. CurrOrgChem.1998;2(4):329-64. doi: 10.2174/1385272802666220128213627.

Wasser SP. Reishi or Ling Zhi (Ganoderma lucidum). Encyclopedia of dietarysupplements2005.

Mizuno T, Wang G, Zhang J, Kawagishi H, Nishitoba T, Li J. Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substances and medicinal effects. Food RevInt.1995;11(1):151-66. doi: 10.1080/87559129509541025.

Ghoneum M. Enhancement of human natural killer cell activity by modified Arabinooxylane from rice bran. IntJ Immunother.1999;14:89-99.

Quereshi S, Pandey AK, Sandhu SS. Evaluation of antibacterial activity of different Ganoderma lucidum extracts. J SciRes.2010;3:9-13.

Celal B. Antioxidant and antimicrobial capacities of Ganoderma lucidumi Open Access; 2019.7(1):5‒7.

Kairat M, Nina B, Raushan B, Galeb AlM, KrupodorovaT. ORCID logo, Zhanar Narmuratova ORCID logo, Zhazira Saduyeva ORCID logo and Aigerim Zhakipbekova. Antioxidant and antimicrobial potential of Ganoderma lucidum and Trametes versicolor. TurkJ Biochem. 2021.

Ding H, Zhou M, Zhang RP, Xu SL. Ganoderma lucidum extract protects dopaminergic neurons by inhibiting the production of inflammatory mediators by activated microglial. Sheng Li XueBao.2010;62(6):547-54. PMID 21170502.

Chan WK, Lam DT, Law HK, Wong WT, Koo MW, Lau AS. Ganodermal ucidum mycelium and spore extracts as natural adjuvants for immunotherapy. J Altern Complement Med.2005;11:1047-57.

Konema EW, William MJ, Stephen DA, Schreeken B, Washington CW. Laboratory and clinical diagnosis of infectious diseases. In: Introduction to diagnostic microbiology. Philadelphia: JB Lippincott Publishers Company;1994. p. 1-19.

Jones NP, Arnason JT, Abou-Zaid M, Akpagana K, Sanchez-Vindas P, Smith ML. Antifungal activity of extracts from medicinal plants used by First Nations Peoples of eastern Canada. J Ethnopharmacol.2000;73(1-2):191-8. doi: 10.1016/s0378-8741(00)00306-8, PMID 11025156.

MuellerJH, HintonJ. A protein-freemedium for primaryisolation of the gonococcus and meningococcus. Exp Biol Med. 1941;48(1):330-3. doi: 10.3181/00379727-48-13311.

Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method.AmJClinPathol.1966;45(4):493-6. PMID 5325707.

Silva MRO, Almeida AC, Arruda FVF, Gusmao. Endophytic fungi from Brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. Formatex. 2011.1260-1266.

Harborne JB. Phytochemical Methods; A guide to modern techniques of plant Analysis. 2nded.London, New York;1973.

Boham BA, Kocipai AR. Flavanoids and condense tannins from leaves of Hawaiian Vaccinium reticulatum and V. Calicinium. PacSci.1994;48:458-63.

Obadoni BO, Ochuko PO. Phytochemical studies and comparativeefficacy of the crudeextracts of somehomeostaticplants in Edo and deltastates of Nigeria. GlobJ Pure Appl Sci. 2001;8:203-8.

Van-BurdenTP, RobinsonWC. Formation of complexes between proteins and tannin acid. J. Agric. Foods. Chem. 1981;1:77.

Chandra S, Chatterjee P, Dey P, Bhattacharya S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific Journal of Tropical Biomedicine. 2012;2(1):S178-80. doi: 10.1016/S2221-1691(12)60154-3.

Singh S, Singh RP. In vitromethods of assay of antioxidants: an overview. Food RevInt. 2008;24:392-415.

Brand-Williams W. Zuvelier ME. And Berset CLWT. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28:25-30.

ZebA, Ullah F. A simplespectrophotometricmethod for the determination of thiobarbituric acid reactive substances in friedfastfoods. J Anal Methods Chem. 2016-;2016:9412767. doi: 10.1155/2016/9412767, PMID 27123360.

Neuzillet Y, Naber KG, Schito G, GualcoL, Botto H. French results of the ARESC study: clinical aspects and epidemiology of antimicrobial resistance in female patients with cystitis. Implications for empiric therapy. Med Mal Infect2012.42. 2012;42(2):66-75. doi: 10.1016/j.medmal.2011.07.005, PMID 22264668.

Abduzaimovic A, Aljicevic M, Rebic V, Vranic SM, Abduzaimovic K, Sestic S. Antibioticresistance in urinaryisolates of Escherichia coli. Mater Sociomed. 2016;28(6):416-9. doi: 10.5455/msm.2016.28.416-419, PMID 28144190.

Schito GC, Naber KG, Botto H, Palou J, Mazzei T, Gualco L. The ARESC study: an international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int J Antimicrob Agents.2009;34(5):407-13. doi: 10.1016/j.ijantimicag.2009.04.012, PMID 19505803.

HootonTM. Clinical practice. Uncomplicated urinarytractinfection. N Engl J Med.2012;366(11):1028-37. doi: 10.1056/NEJMcp1104429, PMID 22417256.

Hawks worth DL. Mushrooms: the extent of the unexplored potential. IntJ Med Mushrooms. 2001;3:333-7.

Ho YW, Yeung JS, Chiu PK, Tang WM, Lin ZB, Man R Y. Ganoderma lucidum polysaccharide peptide reduced the production of pro inflammatory cytokines in activated rheumatoid synovial fibroblast. Mol Cell Biochem.2007;301(1-2):173-9. doi: 10.1007/s11010-006-9409-y, PMID 17219061.

Sharma N, Maiti SK, Sharma KK. Prevalence, etiology and antibiogram of microorganisms associated with sub clinical mastitis in buffaloes in Durg, Chhattisgarh State (India). IntJ Dairy Sci. 2007;2(2):145-51.

Sakagami H, Aoki T, Simpson A, Tanuma SI. Induction of immune potentiation activity by a protein-bound polysaccharide, PSK (review)[review]. Anticancer Res.1991;11(2):993-9. PMID 2064356.

Brizuela MA, García L, Pérez L, Mansur M. Basidiomycetes: a new source of secondary metabolites. RevIberoamMicol.1998;15(2):69-74. PMID 17655412.

Anke T. Basidiomycetes: a source for new bioactive secondary metabolitesBioactive metabolites from microorganisms. Prog Ind Microbiol. 1989;27:51-7.

Maziero R, Cavazzoni V, Bononi VLR. Screening of basidiomycetes for the production of exopolysaccharide and biomass in submerged culture. Rev Microbiol.1999;30(1):77-84. doi: 10.1590/S0001-37141999000100015.

Suay I, Arena lF, Asensio FJ, Basilio A, Cabello MA, Díez MT. Screening of basidiomycetes for antimicrobial activities. Antonie Leeuwenhoek. 2000;78(2):129-39. doi: 10.1023/a:1026552024021, PMID 11204765.

Lakshmi Priya J, Srinivasan V. Studies on the antibacterial activities of mushroom. nt. J Curr Microbiol App Sci.2013;2(6):184-9.

Kumiko, Oka A Ishihara, Nanase Sakaguchi, Shigeki Nishino, Roxana, Y., Parada Akira Nakagiri., and Hiroshi, Otani. Antifungal Activity of Volatile Compounds Produced by an Edible Mushroom Hypsizygus marmoreus against Phyto pathogenic Fungi. Journal of Phytopathology. 2015.163(11-12): 987-996.

Chelladurai G, Uma V. Screening for bioactive potential of edible mushroom extracts against tooth decay bacteria. World J PharmRes. 2017;6(8):4.

Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N. Invitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu. 2018;39(4):239-42. doi: 10.4103/ayu.AYU_27_18, PMID 31367147.

Ghosh MN, Banerjie RM, Mukherji SK. Capillary permeability-increasing property of hyaluronidase in rat. Indian J PhysiolPharmacol.1963;7:17-21. PMID 13947526.

Kavanagh F, Hervey A, Robibins WJ. Antibiotic substances from basidiomycetes. Agrocybedura. ProcNatlAcadSciUSA.1950;36:102-6.

Chen Q, Gao J, Jamieson C, Liu J, Ohashi M, Bai J. Enzymatic Intermolecular Hetero-Diels–Alder Reaction in the Biosynthesis of Tropolonic Sesquiterpenes. J AmChemSoc. 2019;141(36):14052-6. doi: 10.1021/jacs.9b06592.

Liu M, Wang WG, Sun HD, Pu JX. Diterpenoids from Isodon species: an update. Nat Prod Rep. 2017;34(9):1090-140. doi: 10.1039/c7np00027h, PMID 28758169.

Hill RA, Connolly JD. Triterpenoids. Nat Prod Rep. 2020;37(7):962-98. doi: 10.1039/c9np00067d, PMID 32055816.

Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol. 2018;79:116-24.

Cressey P, Reeve J. Metabolism of cyanogenic glycosides: a review. Food Chem Toxicol. 2019;125:225-32. doi: 10.1016/j.fct.2019.01.002, PMID 30615957.

LiY, JiangJG. Health functions and structure–activity relationships of natural anthraquinones from plants. Food Funct. 2018;9(12):6063-80.

Sillapapongwarakorn S, Yanarojana S, Pinthong D, Thithapandha A, Ungwitayatorn J, Supavilai P. Molecular docking based screening of triterpenoids as potential G-quadruplex stabilizing ligands with anti-cancer activity. Bioinformation. 2017;13(9):284-92. doi: 10.6026/97320630013284. PMID 29081607.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol.2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001, PMID 16978905.

Vishwakarma P, Singh P, Tripathi NN. In-vitro antioxidant activity and nutritional value of four wild oyster mushroom collected from North-Eastern Part of Uttar Pradesh. Mycosphere. 2017;8(4):592-602.

Sanchez-Moreno C.Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci Technol Int.2002;8(3):121-37. doi: 10.1177/1082013202008003770.

Published

2023-03-01

How to Cite

Pushpa, T., Senthilkumar, G. ., Ambikapathy, V., Kanmani, A., Prakash, P. ., & Panneerselvam, A. (2023). Ganoderma Lucidum - A Potential Medicinal Mushroom Against MDR Isolates from The Secondary Infections of Covid-19: Life Sciences-Microbiology. International Journal of Life Science and Pharma Research, 13(2), L99-L111. https://doi.org/10.22376/ijlpr.2023.13.2.L99-L111

Issue

Section

Research Articles