



## Fungal Endophytes as Growth Promoters and Inducers of Resistance in Tomato (*Lycopersicon esculentum* Mill.) against *Alternaria solani*

Hulimavu Shivanna Sujatha, Mahadevamurthy Murali and Kestur Nagaraj Amruthesh \*

Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India

**Abstract:** Bio control strategies are gaining importance presently due to adverse effects caused by chemical pesticides on the environment. During our study, a total of 78 fungal endophytes were isolated from five medicinally important plants and evaluated for their efficacy in inducing resistance against the early blight pathogen caused by *Alternaria solani*. Among the isolates evaluated, only five endophytes were able to antagonize *A. solani* with a maximum inhibition of 58.53% offered by ENSM-08. All the antagonistic endophytes were molecularly identified based on ITS1 and ITS4 regions and sequence analysis was submitted to GenBank, NCBI to acquire accession numbers. In addition, seed treatment with the conidial suspension of the antagonistic fungal endophytes were able to enhance seed, vegetative and reproductive growth parameters in tomatoes with the highest enhancement observed upon the application of *Pestalotiopsis microspora*- ENSM-08. Also, seed treatments with select endophytes were also able to induce resistance in tomato plants against the early blight pathogen with a maximum protection of 70.25% observed in *P. microspora*- ENSM-08 treated plants. The results of the study validate the application of fungal endophytes as inoculants for sustainable agriculture.

**Keywords:** Endophytic fungi; early blight disease; *Lycopersicon esculentum*; *Alternaria solani*; *Pestalotiopsis* sp.

---

\*Corresponding Author

Kestur Nagaraj Amruthesh , Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India



Received On 10 March 2021

Revised On 17 March 2021

Accepted On 21 March 2021

Published On 28 March 2021

---

**Funding** This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

**Citation** Hulimavu Shivanna Sujatha, Mahadevamurthy Murali and Kestur Nagaraj Amruthesh \* , Fungal Endophytes as Growth Promoters and Inducers of Resistance in Tomato (*Lycopersicon esculentum* Mill.) against *Alternaria Solani*.(2021).Int. J. Life Sci. Pharma Res. 11 (2), L227-235 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.2.L227-235>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)



Copyright @ International Journal of Life Science and Pharma Research, available at [www.ijlpr.com](http://www.ijlpr.com)

## I. INTRODUCTION

The ever-growing population has instigated a question to the researchers on how to supply food with changing environmental conditions that have led to leakage in crop yield production.<sup>1, 2</sup> Currently, better management strategies for both biotic and abiotic stress inferred to plants apart from using non-environmental friendly chemicals are the talk of the hour. To date, microorganisms are considered to be best suited for the role of biocontrol agent's viz., plant growth-promoting rhizobacteria, fungi, arbuscular mycorrhizae, etc. as they have shown a positive impact on plants with respect to growth as well as induction of resistance against biotic and abiotic stress.<sup>3, 4</sup> Among the plant stress, fungal pathogens are the principal source affecting crop yield in several plants globally.<sup>5-7</sup> Endophytes (both fungi and bacteria) are the microorganisms that inhabit inter/ intra cellularly within the host forming systemic or local associations showing mutuality to that of a symbiotic relationship without causing apparent disease symptoms.<sup>8-11</sup> These endophytes are often known to promote plants' growth, recycle nutrients, fitness and improve their ability to cope with stress.<sup>12-15</sup> Among the different forms of endophytes, myco-endophytes have been least explored compared to that of bacterial forms irrespective of their application in the scientific field. Also, fungal endophytes possess potential biocontrol properties and are important to isolate and screen potential endophytes under *in-vitro* conditions followed by *in-vivo* studies under different agro-climatic conditions.<sup>16-18</sup> Apart from these, endophytes have also been noted to provide defense in plants against the invading herbivory<sup>19</sup>. Biocontrol in plants through fungal endophytes is through recycling of nutrients, antibiosis, production of lytic enzymes, volatile substances, antagonism, mycoparasitism or just competing with the pathogen for nutrients and ecological niches.<sup>20</sup> These actions from the fungal endophytes reduce the infection in plants through disruption in the invading pathogens' life cycle through reduced sporulation and colonization in host tissues, thereby affecting survivability.<sup>21</sup> To date, several reports on the control of phytopathogens, nematodes, and insects through the application of fungal endophytes apart from the early emergence of seedlings and plant growth have been reported.<sup>22, 23, 16, 17, 24-26, 15</sup> Tomato (*Lycopersicon esculentum* Mill.) is a known, nutritionally valued, important vegetable crop globally as it possesses a rich source of vitamins, minerals and shows antioxidant properties.<sup>28</sup> It shows an important role in metabolic activities and maintains good health.<sup>29</sup> It is well known that every plant is prone to diseases and tomato is not a part. The plant is prone to many bacterial, viral and fungal infections, which lead to a reduction in crop yield. One of the major diseases of tomato is the early blight, caused by *Alternaria solani* (Ellis & Martin), as it affects leaves, stems and fruits, resulting in the reduction of the fruit's quality and quantity.<sup>30</sup> The use of chemical fertilizers to control the disease is expensive. Its repeated usage develops the resistance in pathogens against the chemicals apart from deteriorating the environment and soil fertility.<sup>31</sup> Hence to reduce the risk, biological control method using the application of endophytic fungi isolated from some medicinal plants are used to evaluate its efficacy in inducing resistance against the early blight pathogen and plant growth in tomato.

## 2. MATERIALS AND METHODS

### 2.1 Collection of the seed sample

Tomato seed samples susceptible (PKM1) to the early blight

pathogen were collected from the Local Sri Venkateshwara traders. The collected seed sample was washed thoroughly under tap water and surface sterilized using sodium hypochlorite solution (2 min) followed by 2-3 rinses with sterile distilled water ( $\text{SH}_2\text{O}$ ) and used throughout the study.

### 2.2 Isolation and identification of *Alternaria solani*

The early blight disease-infected tomato plants (leaves and stem) were collected from agricultural fields and subjected to pathogen isolation. The collected samples were washed with tap water and subjected to surface sterilization using sodium hypochlorite solution (1%) followed by 2-3 washes with sterile distilled water ( $\text{SH}_2\text{O}$ ). The sterilized samples were incised into small pieces (1-2 cm) and placed on Petri dishes containing three layers of moistened blotter discs (previously sterilized) and incubated for seven days at  $25 \pm 2^\circ\text{C}$ . The incubated samples were visualized under a stereomicroscope. The fungal colonies showing typical sporulating structures of *A. solani* were subcultured on Petri plates with potato dextrose agar (PDA) medium aseptically supplemented with chloramphenicol (200  $\mu\text{g L}^{-1}$ ) and incubated for seven days. The isolated pathogen was further identified based on morphological, cultural and conidial characters. Besides, molecular identification of the pathogen was carried out by extracting genomic DNA by CTAB method.<sup>32</sup> and subjecting to amplification using universal primer sets (ITS-1 and ITS-4) in an Eppendorf's Thermal Cycler (Germany) following the conditions as mentioned in previous studies.<sup>33</sup> The PCR amplified products were electrophoretically detected on agarose gel [1.5% (w/v)] containing 0.5  $\mu\text{g mL}^{-1}$  of ethidium bromide and were subjected to sequencing. The obtained sequence analysis was deposited to GenBank, NCBI and Accession number was acquired).

### 2.3 Pathogenicity of *A. solani*

The susceptible (PKM-1) tomato plants (30-day old) grown under greenhouse conditions were challenged inoculated with the conidial suspension of *A. solani* ( $5 \times 10^4$  conidia  $\text{mL}^{-1}$ ) until runoff. They were monitored daily for the development of typical symptoms of early blight viz., black or brown lesions that enlarge with time surrounded by yellow halo up to 15 days post-inoculation. Also, detached leaf assay was performed on leaves collected from healthy plants as mentioned above. The collected leaves were placed on moistened sterile blotter discs in Petri dishes and were pricked with a sterile needle. To the pricked region, 100  $\mu\text{L}$  of conidial suspension of the pathogen (100  $\mu\text{L}$ ) was injected and subjected to incubation for seven days  $25 \pm 2^\circ\text{C}$ . The development of sporulation on the injected leaves confirmed the pathogenicity. Plants (mock-inoculated) and leaves (injected) with  $\text{SH}_2\text{O}$  served as control.

### 2.4 Selection of medicinal plants

A total of five locally available medicinal plants viz., *Solanum macranthum*, *Dillenia indica*, *Simarouba glauca*, *Cissus quadrangularis* and *Crescentia alata* were selected based on their ethnopharmacology for the isolation of endophytes from their leaf tissues. All the selected plants were identified with the help of a Taxonomist, Department of Studies in Botany, University of Mysore, Mysuru and validated with Flora of Presidency of Madras.<sup>34</sup> The healthy leaves of each

plant were collected and immediately processed for isolation of endophytic fungi.

## 2.5 Isolation and identification of endophytic fungi

The collected healthy leaves were washed thoroughly, followed by sterilization with ethanol (70% for 2 min), NaOCl (4% for 2 min) and final washes with Sterilized H<sub>2</sub>O to remove sterilants' traces. The sterilized leaf samples were cut into small pieces (1x1 cm) and placed on Petri plates

containing PDA medium and incubated for 2 to 3 weeks at 25 ± 2 °C. The effectiveness of surface sterilization was authenticated by the imprint method, according to Sculz et al<sup>35</sup> A total of 200 segments from each plant were screened to isolate endophytic fungi. The incubated Petri plates were visualized to develop any fungal colonies and colonization frequency (CF) of developed colonies were calculated.<sup>36</sup> The emerging fungal colonies were subcultured onto Petri plates containing PDA to obtain pure cultures and identified on their morphological and cultural characters.

$$\text{Colonization Frequency (\%)} = \frac{\text{Number of Segments Colonized by fungus}}{\text{Total number of segments}} \times 100$$

## 2.6 In vitro antagonism of endophytic fungi

The dual culture technique was used to determine all the isolated endophytic fungi' antagonistic activity against *A. solani*. In brief, about 6 mm discs of each of the isolated endophytic fungi and the pathogen were placed individually against each

other 1 cm apart from the periphery of the 90 cm Petri plates containing PDA medium.<sup>38</sup> The Petri plates on PDA medium containing 6 mm discs of pathogen and the agar plug served as control. Each of the inoculated plates was subjected to incubation at 25 ± 2 °C for seven days and the percent inhibition was calculated.

$$\text{Inhibition Percentage (I)} = \frac{R1 - R2}{R1} \times 100$$

Where R1 is the colony radius of *A. solani* in control and R2 is the colony radius of *A. solani* towards endophytic fungus.

## 2.7 Evaluation of antagonistic endophytic fungi for pathogenicity and its molecular identification

Pathogenicity of the antagonistic endophytic fungi was determined according to Koch's postulates (<https://phytopath.ca/wp-content/uploads/2014/09/What-are-Koch.pdf>). The genomic DNA isolated (CTAB method) from each antagonistic and non-pathogenic endophytic fungi were further identified based on molecular characterization. The isolated genomic DNA was amplified using universal primer sets (ITS-1 and ITS-4) as mentioned above and the obtained sequences were deposited at GenBank, NCBI to acquire accession numbers.

## 2.8 Preparation of inducer and seed treatment

Each of the antagonistic and non-pathogenic endophytic fungi grown on Petri plates containing PDA medium (10 day-olds) was amended with 10 mL of Sterile H<sub>2</sub>O. The conidia produced were dislodged aseptically from the culture medium using a sterile scalpel and brush and the concentration was maintained at 1x10<sup>8</sup> CFU mL<sup>-1</sup> using

Haemocytometer.<sup>1</sup> The surface-sterilized seeds (PKM-I) were treated with conidial suspension (1x10<sup>8</sup> CFU mL<sup>-1</sup>) of each of the selected endophytic fungi by keeping it in a rotary shaker (100 rpm) for 3 and 6 h, respectively at 25 ± 2 °C. After treatment, the seeds were air-dried aseptically and used for further studies. The susceptible seeds treated with H<sub>2</sub>O served as control.

## 2.9 Effect of seed treatment with inducers in tomato

### 2.9.1 Seed germination and seedling vigor

The inducer treated and untreated tomato seeds were equidistantly placed on Petri dishes containing three layers of moistened sterile blotter discs to evaluate seed germination. A set of seeds from all the treatments was subjected to between paper methods to evaluate seedling vigor.<sup>38</sup> The treatments were incubated for 14-days at 25 ± 2 °C and percent seed germination and seedling vigor were calculated accordingly. Each experiment consisted of four replicates of 400 seeds each.

$$\text{Percent Seed Germination} = \frac{\text{Total number of seeds germinated}}{\text{Total number of seeds plated}} \times 100$$

$$\text{Vigor index} = [\text{Mean Root Length (cm)} + \text{Mean Shoot Length (cm)}] \times \text{Per cent seed}$$

### 2.9.2 Evaluation of plant growth parameters

The efficacy of seed treatment on vegetative and reproductive growth parameters was evaluated under greenhouse conditions. The treated and control seeds were sown in earthen pots containing sterilized potting medium (2:1:1 of soil: sand: farmyard manure) and maintained under greenhouse conditions with regular watering (with 85% relative humidity and 25 ± 2 °C). Each of the treatments consisted of four replicates of 10 plants. At the end of 45

days of sowing, the plants were uprooted carefully without damage to assess the vegetative growth parameters (plant height, shoot fresh and dry weight). In another set of plants, the days for flowering were recorded and the fruit weight was taken for the first harvest.

### 2.9.3 Disease protection

The three-week-old tomato plants (both treated and untreated) grown under greenhouse conditions were

challenge inoculated with the conidial suspension of *A. solani* ( $5 \times 10^4$  CFU mL $^{-1}$ ) by hand spray till runoff.<sup>39</sup> Each of the treatments consisted of four replicates of 10 plants. The challenge inoculated plants were maintained under greenhouse conditions and were observed daily for the

development of early blight disease symptoms. Each plant was observed daily for the development of early blight disease symptoms. At the end of 21-days of post-inoculation, percent disease protection was calculated.

$$\text{Disease Protection (\%)} = \frac{\text{Number of infected plants}}{\text{Total number of plants evaluated}} \times 100$$

### 3. STATISTICAL ANALYSIS

The data obtained from different experiments were statistically analyzed separately and subjected to analysis of variance (ANOVA) using the SPSS version. The effect of treatment was determined by F value ( $p \leq 0.05$ ). Mean values were separated by Tukey's honest significant difference (HSD) test.

## 4. RESULTS

### 4.1 Isolation and identification of endophytic fungi

A total of one thousand leaf segments ( $200 \times 5$  plants) of medicinal plants were screened for isolation of endophytic fungi. The results of the screening revealed a total of 78 endophytic fungi were associated with the plant tissue.) with an isolation rate ranging between 5 to 11% (Table 1). The isolated endophytic fungi were classified into thirteen genera of *Chaetomium* sp., *Penicillium* sp., *Helminthosporium* sp., *Fusarium* sp., *Curvularia* sp., *Xylaria* sp., *Corynascus* sp., *Alternaria* sp., *Colletotrichum* sp., *Pestalotiopsis* sp., *Acremonium* sp., *Aspergillus* sp., *Trichoderma* sp., apart from *Mycelia sterilia*. The highest isolation rate (11%) of fungal endophytes was noticed in *Solanum macranthum* followed by 8.5% observed in *Crescentia alata*. It was also observed that, among the isolated endophytic fungi, *Aspergillus* sp., was found to be the dominant fungi (89.74%) while *Colletotrichum* sp. was the least (6.41%) associated among the plants evaluated (Table 1).

### 4.2 In vitro antagonism of endophytic fungi

All the isolated endophytes were screened for their antagonistic nature towards the growth of *A. solani* by the dual culture method. From the results of the study, it was observed that five endophytic fungi were able to antagonize the test pathogen, while others did not (Fig. 1). The maximum (58.53%) and minimum (41.46%) percent inhibition was observed against *Pestalotiopsis* sp. ENSM-08 and *C. sepedonium* ENSG-45, respectively (Table 2). Further, only the antagonistic endophytic fungi were carried forward for subsequent studies.

### 4.3 Evaluation of antagonistic endophytic fungi for pathogenicity and its molecular identification

The pathogenicity test for the antagonistic endophytic fungi in tomato plants revealed that all the endophytes were non-pathogenic in nature (Table 2). Further, PCR amplification with a universal set of primers (ITS-1 and ITS-4) of the selected fungi showed bands ranging from 500 to 600 base pairs. The amplified product was subjected for sequencing and the obtained data were analyzed with GenBank database for identifying the similarity using nBLAST and results confirmed the isolates ENSM-08, ENSM-15, ENDI-36, ENSG-42 and ENSG-45 as *Pestalotiopsis microspora*, *Penicillium*

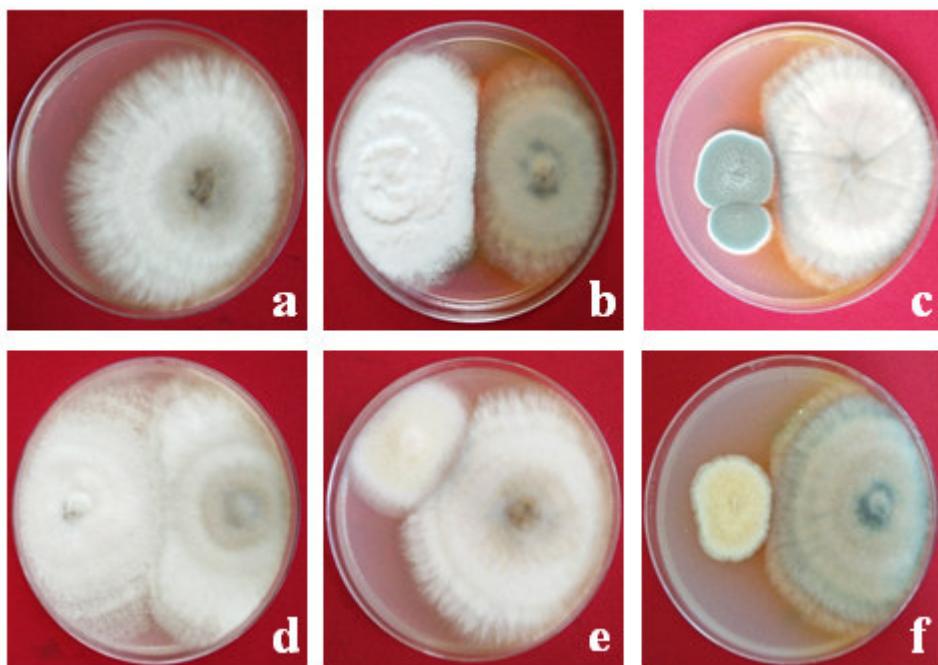
*griseofulvum*, *Colletotrichum* sp., *Fusarium* sp. and *Corynascus sepedonium*, respectively. Also, the obtained sequence was submitted to GenBank, NCBI, and accession numbers were acquired (.

### 4.4 Effect of seed treatment with inducers in tomato

#### 4.4.1 Seed germination and seedling vigor

The seed treatment of selected endophytes significantly enhanced the seed growth parameters compared to untreated seeds at both the time points evaluated except for ENSG-42 and ENSG-45 treatments (Table 3). Among the five endophytes evaluated for seed treatment, *Pestalotiopsis* sp. treated seeds for 3 h offered the highest seed germination 85.50%, and seedling vigor 1072.43 compared to all other treatments followed by treatment with *Penicillium griseofulvum* and *Colletotrichum* sp., respectively (Fig. 2). Likewise, no significant enhancement in seed germination and vigor was noticed between the treatments but in some treatments, the seed growth parameters decreased with an increase with the duration of the treatment. The untreated control plants showed 75.0% of seed germination and 752.32 seedling vigor. From the results, it was noted that, as the seed treatment with inducers for 3 h was effective compared to 6 h treatments, further studies were carried upon 3 h seed treatment.

#### 4.4.2 Evaluation of plant growth parameters


The vegetative and reproductive growth parameters evaluated in tomato plants maintained under greenhouse conditions, raised upon inducer treatment showed significant ( $p \leq 0.05$ ) enhancement in all the test parameters compared to control plants. Among the endophytic inducers evaluated, *Pestalotiopsis* sp. treated plants showed the highest record in plants' height (70.40 cm), fresh (54.13 g) and dry weight (4.12 g) of shoot followed by plants treated with *P. griseofulvum*. In addition, *Pestalotiopsis* sp. treated plants also showed early flowering (earlier by 10 days) and a maximum number of fruits and its weight compared to all other endophytic treatments (Table 4).

### 4.5 Disease protection

The effect of endophytic fungal treatment in tomato plants upon challenge inoculation with the pathogen *A. solani* was evaluated after 21-days of post-inoculation. The results of the study revealed that all the treatments were able to induce disease resistance significantly upon their treatment. During the examination of plants, it was observed that *P. microspora* seed treatment effectively induced disease resistance with 70.25% protection followed by the treatment of *P. griseofulvum* which offered 65.5% protection against the invading pathogen. The  $\text{SH}_2\text{O}$  treated plants showed a disease incidence of 98.75% (Table 5).

**Table 1. Fungal endophytes associated with selected medicinal plants**

| Endophytes                  | S. macranthum | D. indica | S. glauca | C. quadrangularis | C. alata   | Colonization Rate (%) | Dominant Fungi (%) |
|-----------------------------|---------------|-----------|-----------|-------------------|------------|-----------------------|--------------------|
| <i>Chaetomium</i> sp.       | 2             | 1         | -         | -                 | -          | 1.5                   | 19.23              |
| <i>Penicillium</i> sp.      | 3             | 1         | 2         | 3                 | 1          | 5                     | 64.10              |
| <i>Helminthosporium</i> sp. | -             | 2         | -         | 1                 | -          | 1.5                   | 19.23              |
| <i>Fusarium</i> sp.         | 4             | 1         | 1         | 3                 | 2          | 5.5                   | 70.51              |
| <i>Curvularia</i> sp.       | 2             | 1         | -         | 1                 | -          | 2                     | 25.64              |
| <i>Xylaria</i> sp.          | 1             | -         | -         | 1                 | 2          | 2                     | 25.64              |
| <i>Corynascus</i> sp.       | -             | 2         | 1         | 1                 | 1          | 2.5                   | 32.05              |
| <i>Alternaria</i> sp.       | -             | 1         | 2         | -                 | 3          | 3                     | 38.61              |
| <i>Colletotrichum</i> sp.   | -             | -         | -         | -                 | 1          | 0.5                   | 6.41               |
| <i>Pestalotiopsis</i> sp.   | 2             | 1         | -         | -                 | -          | 1.5                   | 19.23              |
| <i>Acremonium</i> sp.       | 1             | -         | -         | 1                 | 1          | 1.5                   | 19.23              |
| <i>Aspergillus</i> sp.      | 4             | 4         | 1         | 2                 | 3          | 7                     | 89.74              |
| <i>Trichoderma</i> sp.      | -             | -         | 2         | 1                 | -          | 1.5                   | 19.23              |
| Sterile mycelia             | 3             | -         | 1         | 1                 | 3          | 4                     | 51.28              |
| Total No. of isolates       | 22            | 14        | 10        | 15                | 17         | 7.8                   |                    |
| <b>Isolation Rate (%)</b>   | <b>11</b>     | <b>7</b>  | <b>5</b>  | <b>7.5</b>        | <b>8.5</b> |                       |                    |



a-*Alternaria solani* b- *Pestalotiopsis microspora*; c- *Penicillium griseofulvum*; d- *Colletotrichum* sp. ; e- *Fusarium* sp.; f- *Corynascus sepdonium*

**Fig 1. Antagonistic nature of fungal endophytes against *A. solani***

**Table 2. In vitro antagonism and pathogenicity of fungal endophytes**

| Endophytic Fungi | Code                              | *Antagonism (%)            | #Pathogenicity |
|------------------|-----------------------------------|----------------------------|----------------|
| ENSM-08          | <i>P. microspora</i> ENSM-08      | 58.33 ± 0.53 <sup>a</sup>  | -              |
| ENSM-15          | <i>P. griseofulvum</i> ENSM-15    | 48.78 ± 0.74 <sup>b</sup>  | -              |
| ENDI-36          | <i>Colletotrichum</i> sp. ENDI-36 | 46.34 ± 0.62 <sup>bc</sup> | -              |
| ENSG-42          | <i>Fusarium</i> sp. ENSG-42       | 43.90 ± 0.53 <sup>c</sup>  | -              |
| ENSG-45          | <i>C. sepdonium</i> ENSG-45       | 41.46 ± 1.2 <sup>cd</sup>  | -              |

Values are means of four independent replicates (n=4) and ± indicate standard errors. Mean values followed by the same letter(s) within the same column are not significantly ( $p \leq 0.05$ ) different according to Tukey's HSD. \*Antagonistic to *A. solani*; #Pathogenic to susceptible tomato plants. '+' indicates positive and '-' indicates negative for the experiments.

**Table 3. Effect of seed treatment with fungal endophytes on seed germination and seedling vigor**

| Endophytes | Seed Treatment in hours | Seed Germination (%)     | Seedling Vigour             |
|------------|-------------------------|--------------------------|-----------------------------|
| ENSM-08    | 3                       | 85.50±0.64 <sup>a</sup>  | 1072.43 ±0.25 <sup>a</sup>  |
|            | 6                       | 84.0±0.40 <sup>ab</sup>  | 1031.03 ±9.23 <sup>b</sup>  |
| ENSM-15    | 3                       | 83.0±0.57 <sup>bc</sup>  | 951.41± 2.21 <sup>c</sup>   |
|            | 6                       | 82.0±0.70 <sup>bcd</sup> | 916.32± 2.08 <sup>d</sup>   |
| ENDI-36    | 3                       | 81.0±0.40 <sup>cd</sup>  | 892.92 ±3.82 <sup>e</sup>   |
|            | 6                       | 80.0±0.70 <sup>de</sup>  | 885.20±5.07 <sup>e</sup>    |
| ENSG-42    | 3                       | 78.25±0.47 <sup>ef</sup> | 817.07± 1.78 <sup>f</sup>   |
|            | 6                       | 77.0±0.40 <sup>fg</sup>  | 802.07 ± 1.10 <sup>g</sup>  |
| ENSG-45    | 3                       | 76.75±0.47 <sup>fg</sup> | 769.32 ± 3.94 <sup>h</sup>  |
|            | 6                       | 76.0±0.40 <sup>fg</sup>  | 761.07 ± 1.72 <sup>hi</sup> |
| Control    |                         | 75.0±0.40 <sup>g</sup>   | 752.32±2.4 <sup>i</sup>     |

Values are means of four independent replicates (n=4) and ± indicate standard errors. Mean values followed by the same letter(s) within the same column are not significantly ( $p \leq 0.05$ ) different according to Tukey's HSD.



a - Control; b – ENDI-36; c-ENSM-08; d- ENSG-42; e- ENSG-45; f- ENSM-15

**Fig 2: Effect of seed treatment with fungal endophytes on seedling vigour of tomato under in vitro conditions.**

| Table 4. Effect of seed treatment with fungal endophytes on vegetative and reproductive growth parameters in tomato |                         |                          |                          |                                   |                        |                         |
|---------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|--------------------------|-----------------------------------|------------------------|-------------------------|
| Treatments                                                                                                          | Shoot Length (cm)       | Shoot Fresh Weight (gm)  | Shoot Dry Weight (gm)    | Flowering (in days)               | Fruit/plant            | Mean fruit weight (gm)  |
| ENSM-08                                                                                                             | 70.40±0.77 <sup>a</sup> | 54.13±0.83 <sup>a</sup>  | 4.12±0.56 <sup>a</sup>   | 52±0.40 <sup>e</sup>              | 32±0.40 <sup>a</sup>   | 49.15±0.63 <sup>a</sup> |
| ENSM-15                                                                                                             | 59.15±0.82 <sup>b</sup> | 48.29±0.53 <sup>b</sup>  | 3.77±0.17 <sup>ab</sup>  | 54±0.40 <sup>d</sup> <sup>e</sup> | 28±0.81 <sup>b</sup>   | 47.21±0.36 <sup>b</sup> |
| ENDI-36                                                                                                             | 52.05±0.72 <sup>c</sup> | 45.50±0.89 <sup>bc</sup> | 3.54±0.17 <sup>cd</sup>  | 56±0.40 <sup>cd</sup>             | 26±0.40 <sup>c</sup>   | 45.20±1.04 <sup>b</sup> |
| ENSG-42                                                                                                             | 50.77±0.56 <sup>c</sup> | 43.13±1.27 <sup>cd</sup> | 3.30±0.12 <sup>bcd</sup> | 58±0.81 <sup>bc</sup>             | 24±0.40 <sup>d</sup>   | 44.14±0.65 <sup>c</sup> |
| ENSG-45                                                                                                             | 45.12±0.72 <sup>d</sup> | 41.60±0.65 <sup>d</sup>  | 3.00±0.96 <sup>cd</sup>  | 59±0.70 <sup>a</sup>              | 23±0.40 <sup>d</sup>   | 41.20±0.99 <sup>c</sup> |
| Control                                                                                                             | 32.80±0.82 <sup>e</sup> | 28.12±0.64 <sup>e</sup>  | 2.94±0.14 <sup>d</sup>   | 62.0±0.71 <sup>a</sup>            | 19.0±0.40 <sup>e</sup> | 38.03±0.90 <sup>d</sup> |

Values are means of four independent replicates (n=4) and ± indicate standard errors. Mean values followed by the same letter(s) within the same column are not significantly ( $p \leq 0.05$ ) different according to Tukey's HSD.

**Table 5. Efficacy of seed treatment with fungal endophytes on induction of resistance in tomato plants against early blight disease**

| Endophytes | Disease Protection (%)   | Disease Incidence (%)    |
|------------|--------------------------|--------------------------|
| ENSM-08    | 70.25±0.47 <sup>a</sup>  | 29.75±0.47 <sup>e</sup>  |
| ENSM-15    | 65.50±0.64 <sup>b</sup>  | 34.50±0.64 <sup>d</sup>  |
| ENDI-36    | 62.00±0.40 <sup>c</sup>  | 38.0±0.40 <sup>c</sup>   |
| ENSG-42    | 60.25±0.47 <sup>cd</sup> | 39.75±0.85 <sup>bc</sup> |
| ENSG-45    | 58.75±0.47 <sup>d</sup>  | 41.25±0.47 <sup>b</sup>  |
| Control    | 1.25±0.25 <sup>e</sup>   | 98.75±0.47 <sup>a</sup>  |

Values are means of four independent replicates (n=4) and ± indicate standard errors. Mean values followed by the same letter(s) within the same column are not significantly ( $p \leq 0.05$ ) different according to Tukey's HSD

## 5. DISCUSSION

Biocontrol strategies through the application of microorganisms are gaining importance from the present-day usage of chemical pesticides as they are causing severe damage to the soil. Among the microorganisms of importance, endophytic fungi are gradually gaining importance in biocontrol strategies as they are previously known to produce many secondary metabolites of importance to human welfare in various fields.<sup>40,13,11,15</sup> Hence, in the study endophytic fungi isolated from some of the medicinally important plants and screened for their effectiveness against the induction of resistance against the early blight disease and plant growth promotion in tomato. A total of five medicinal plants namely *S. macranthum*, *D. indica*, *S. glauca*, *C. quadrangularis* and *C. alata* were collected from the Mysore region and 78 endophytic fungi were isolated following the imprint method. All the isolated endophytes were identified up to their generic level based on morphological, cultural, and conidial characters. Similarly, many researchers have used the same method in order to isolate endophytic fungi from many medicinally important plants.<sup>41-44,17,7</sup> Further, all the isolates were evaluated for their antagonistic nature against the early blight pathogen *A. solani* by the dual culture method. From the results, it was noted that only five endophytic fungi revealed against the test pathogen with a maximum inhibition of 58.33% offered by *P. microspora*. It has been observed from the literature that many endophytic fungi have offered antagonistic nature towards phytopathogens viz., *Alternaria solani*, *A. alternata*, *Colletotrichum capsici*, *Fusarium solani* and *Pythium aphanidermatum*, *Phytophthora infestans*, etc. with a varied percentage of inhibition which was evaluated by dual culture method<sup>44,45,14</sup>. The antagonistic nature towards the pathogen offered by endophytes is attributed towards the production of antibiotics/ biologically active metabolites or through secretion of hydrolytic enzymes at the cell wall.<sup>41,42,15</sup> It has been observed that even though the endophytes are known for their mutualism to that of a symbiotic relationship with the host plants. There are reports that, even though they are endophytes some of them are known to cause pathogenicity upon application to other hosts.<sup>46</sup> and hence pathogenicity of the isolated endophytes should be conducted before their application to any other plants. From the study it was noted that all the antagonistic endophytes were non-pathogenic to tomato plants. Parallel studies have been conducted by<sup>47</sup> wherein, the isolated endophytic fungi were checked for their pathogenicity and also before application as biocontrol agents.<sup>48</sup> After confirmation of both antagonistic and pathogenicity of the selected endophytes, they were identified based on ITS regions (ITS1 and ITS4) which are employed as a regular tool for the identification of fungi studies of.<sup>43</sup> The antagonistic and non-pathogenic fungal endophytes were further evaluated for their effectiveness against plant growth and induction of resistance against early blight disease in tomato upon seed treatment. From the results of seed, vegetative and reproductive plant growth parameters studies it was observed that all the endophytes were able to significantly enhance the test parameters except ENSG-42 and ENSG-45. In corroboration with the findings of the study, seed treatment with conidial suspension of endophytic fungi isolated from medicinal plants was able to enhance seed germination, seedling vigor, vegetative and reproductive plant growth parameters in sorghum and turmeric plants.<sup>14,7</sup> The beneficial nature towards the

enhancement in seed, vegetative and reproductive plant growth parameters from microbial endophytes is mainly correlated to the production of plant hormones and antimicrobial compounds, therefore, helping the plants in nutritional improvement which positively impacts plant growth.<sup>49,50,17,15</sup> In addition to plant growth-promoting studies, the application of fungal endophytic seed treatment was also able to induce disease resistance against the early blight pathogen in tomato. It was observed that a maximum of 70.25% disease protection was observed in tomato plants upon application of *P. microspora* compared to other isolates evaluated. In agreement with the results of the present study<sup>16,14</sup> have reported the potential disease protection against *Rhizoctonia solani* and *Pythium aphanidermatum* in potato and turmeric plants upon the application of endophytes. In addition, endophytes isolated from a different host (tomato, mangrove, star arise, and agarwood) apart from their application plant (cucumber) have also helped in the induction of resistance against the invading pathogen *Fusarium oxysporum* f.sp. *cucumerinum* the causal agent of wilt disease.<sup>26</sup> The mechanism of induced resistance offered by these endophytic fungi involves antagonism, mycoparasitism, competition apart from the production of hormones/bioactive metabolites that induce increased immunity of the host eventually resulting in protection against the invading pathogens.<sup>17,15,7</sup>

## 6. CONCLUSION

The present work reveals the efficacy of the fungal endophytes isolated from medicinal plants as plant growth promoters and also as biocontrol agents against the early blight pathogen in tomatoes. In the study, a total of 78 fungal endophytes were isolated from five different medicinal plants out of which five isolates were found antagonistic against *A. solani*, the causal agent of early blight disease in tomatoes. In addition, all the endophytic fungi were able to enhance vegetative and reproductive plant growth parameters compared to control plants apart from inducing resistance against the early blight pathogen under greenhouse conditions. The results of the study validate the application of fungal endophytes as inoculants for sustainable agriculture.

## 7. ACKNOWLEDGEMENTS

The authors thank the department of studies of Botany, the University of Mysore for providing laboratory facilities and grateful to the Institution of Excellence (IOE), University of Mysore, for providing research facilities. The authors are also thankful to Gov. of Karnataka, VGST-CISEE program on "Center for Innovative Studies on Herbal Drug Technology" sanctioned to Professor K.N. Amruthesh as program Coordinator.

## 8. AUTHORS CONTRIBUTION STATEMENT

Ms. Sujatha H.S. conducted experiments and gathered data. Dr. Murali M analysed these data and design this manuscript. Prof. K.N. Amruthesh discussed the methodology and results, suggested for necessary inputs to finalise the manuscript

## 9. CONFLICT OF INTEREST

Conflicts of interest declared none.

## 10. REFERENCES

1. Murali M, Sudisha J, Amruthesh KN, Ito SI, Shetty HS. Rhizosphere fungus *Penicillium chrysogenum* promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. *Plant Biol (Stuttg)*. 2013 Jan;15(1):111-8. doi: [10.1111/j.1438-8677.2012.00617.x](https://doi.org/10.1111/j.1438-8677.2012.00617.x), PMID [22672261](https://pubmed.ncbi.nlm.nih.gov/22672261/).
2. Gowtham HG, Singh B, Murali M, Shilpa N, Prasas M, Aiyaz M, Amruthesh KN, Niranjana SR. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium *Bacillus subtilis* Rhizo SF. *Microbiol Res*. 2020 Apr 1;48:234. PMID [126422](https://pubmed.ncbi.nlm.nih.gov/32422/).
3. Brijesh Singh S, Gowtham HG, Murali M, Hariprasad P, Lakshmeesha TR, Narasimha Murthy KN, Amruthesh KN, Niranjana SR. Plant growth promoting ability of ACC deaminase producing rhizobacteria native to sunflower (*Helianthus annuus* L.). *Biocatal Agric Biotechnol*. 2019 Mar 1;18. doi: [10.1016/j.bcab.2019.101089](https://doi.org/10.1016/j.bcab.2019.101089), PMID [101089](https://pubmed.ncbi.nlm.nih.gov/31089/).
4. Naziya B, Murali M, Amruthesh KN. Plant Growth-Promoting Fungi (PGPF) instigate plant growth and induce disease resistance in *Capsicum annuum* L. upon infection with *Colletotrichum capsici* (Syd.) Butler & Bisby. *Biomolecules*. 2019 Jan;10(1):10(1):4. doi: [10.3390/biom10010041](https://doi.org/10.3390/biom10010041), PMID [31888106](https://pubmed.ncbi.nlm.nih.gov/31888106/).
5. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. *J Plant Physiol*. 2011 Jan 1;168(1):51-62. doi: [10.1016/j.jplph.2010.06.014](https://doi.org/10.1016/j.jplph.2010.06.014), PMID [20674079](https://pubmed.ncbi.nlm.nih.gov/20674079/).
6. Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, de Cock AWAM, Dissanayake AJ, Glockling SL, Goonasekara ID, Gorczak M, Hahn M, Jayawardena RS, van Kan JAL, Laurence MH, Lévesque CA, Li X, Liu J, Maharachchikumbura SSN, Manamgoda DS, Martin FN, McKenzie EHC, McTaggart AR, Mortimer PE, Nair PVR, Pawłowska J, Rintoul TL, Shivas RG, Spies CFJ, Summerell BA, Taylor PWJ, Terhem RB, Udayanga D, Vaghefi N, Walther G, Wilk M, Wrzosek M, Xu J, Yan J, Zhou N. One stop shop: backbones trees for important phytopathogenic genera: I (2014). *Fungal Divers*. 2014 Jul;67(1):21-125. doi: [10.1007/s13225-014-0298-1](https://doi.org/10.1007/s13225-014-0298-1).
7. Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS. Diversity, Plant growth-Promoting traits, and biocontrol potential of fungal endophytes of *Sorghum bicolor*. *Plant Pathol*. 2020 May;69(4):642-54. doi: [10.1111/ppa.13151](https://doi.org/10.1111/ppa.13151).
8. Schulz B, Haas S, Junker C, Andree N, Schobert M. Fungal endophytes are involved in multiple balanced antagonisms. *Curr Sci*. 2015 Jul 10:39-45.
9. Hema P, Murali M, Thriveni MC, Prathibha M, Jayaramu SC, Amruthesh KN. Phytochemical analysis and antibacterial activity of endophytic fungi isolated from *Basella rubra* L.- A medicinal plant. *J Pure Appl Microbiol*. 2015. Dec 1;9(4):2971-8.
10. Murali M, Hema P, Thriveni MC, Manjula S, Prathibha M, Jayaramu SC, Amruthesh KN. Antibacterial potential of fungal endophytes isolated from *Boerhaavia diffusa* L. *J Appl Pharm Sci*. 2016 Oct;6:216-21.
11. Murali M, Mahendra C, Hema P, Rajashekhar N, Nataraju A, Sudarshana MS, Amruthesh KN. Molecular profiling and bioactive potential of an endophytic fungus *Aspergillus sulphureus* isolated from *Sida acuta*: A medicinal plant. *Pharm Biol*. 2017 Jan 1;55(1):1623-30. doi: [10.1080/13880209.2017.1315435](https://doi.org/10.1080/13880209.2017.1315435), PMID [28424024](https://pubmed.ncbi.nlm.nih.gov/28424024/).
12. Sturz AV, Nowak J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. *Appl Soil Ecol*. 2000 Oct 1;15(2):183-90. doi: [10.1016/S0929-1393\(00\)00094-9](https://doi.org/10.1016/S0929-1393(00)00094-9).
13. Clay K, Shearin ZRC, Bourke KA, Bickford WA, Kowalski KP. Diversity of fungal endophytes in non-native *Phragmites australis* in the Great Lakes. *Biol Invasions*. 2016 Sep;18(9):2703-16. doi: [10.1007/s10530-016-1137-y](https://doi.org/10.1007/s10530-016-1137-y).
14. Vinayarani G, Prakash HS. Fungal endophytes of turmeric (*Curcuma longa* L.) and their biocontrol potential against pathogens *Pythium aphanidermatum* and *Rhizoctonia solani*. *World J Microbiol Biotechnol*. 2018 Mar;34(3):49. doi: [10.1007/s11274-018-2431-x](https://doi.org/10.1007/s11274-018-2431-x), PMID [29541936](https://pubmed.ncbi.nlm.nih.gov/29541936/).
15. Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. *Front Bioeng Biotechnol*. 2020 May 15;8:467. doi: [10.3389/fbioe.2020.00467](https://doi.org/10.3389/fbioe.2020.00467), PMID [32500068](https://pubmed.ncbi.nlm.nih.gov/32500068/).
16. Lahlali R, Hijri M. Screening, identification and evaluation of potential biocontrol fungal endophytes against *Rhizoctonia solani* AG3 on potato plants. *FEMS Microbiol Lett*. 2010 Oct 1;311(2):152-9. doi: [10.1111/j.1574-6968.2010.02084.x](https://doi.org/10.1111/j.1574-6968.2010.02084.x), PMID [20738401](https://pubmed.ncbi.nlm.nih.gov/20738401/).
17. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee IJ, Hussain A. Plant growth promoting endophytic fungi *Aspergillus fumigatus* TSI and *Fusarium proliferatum* BRL1 produce gibberellins and regulates plant endogenous hormones. *Symbiosis*. 2018 Oct;76(2):117-27. doi: [10.1007/s13199-018-0545-4](https://doi.org/10.1007/s13199-018-0545-4).
18. Abro MA, Sun X, Li X, Jatoi GH, Guo LD. Biocontrol potential of fungal endophytes against *Fusarium oxysporum* f. sp. *cucumerinum* causing wilt in cucumber. *Plant Pathol J*. 2019 Dec;35(6):598-608. doi: [10.5423/PPJ.OA.05.2019.0129](https://doi.org/10.5423/PPJ.OA.05.2019.0129), PMID [31832040](https://pubmed.ncbi.nlm.nih.gov/31832040/).
19. Santangelo JS, Kotanen PM. Nonsystemic fungal endophytes increase survival but reduce tolerance to simulated herbivory in subarctic *Festuca rubra*. *Ecosphere*. 2016 May;7(5):e01260. doi: [10.1002/ecs2.1260](https://doi.org/10.1002/ecs2.1260).
20. Yan JF, Broughton SJ, Yang SL, Gange AC. Do endophytic fungi grow through their hosts systemically? *Fungal Ecol*. 2015 Feb 1;13:53-9. doi: [10.1016/j.funeco.2014.07.005](https://doi.org/10.1016/j.funeco.2014.07.005).
21. Busby PE, Ridout M, Newcombe G. Fungal endophytes modifiers of plant disease. *Plant Mol Biol*. 2016 Apr 1;90(6):645-55. doi: [10.1007/s11103-015-0412-0](https://doi.org/10.1007/s11103-015-0412-0), PMID [26646287](https://pubmed.ncbi.nlm.nih.gov/26646287/).
22. Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. *Am Nat*. 2002 Oct;160:Suppl 4:S99-S127. doi: [10.1086/342161](https://doi.org/10.1086/342161), PMID [18707456](https://pubmed.ncbi.nlm.nih.gov/18707456/).
23. Bacon CW, Hinton DM. bacterial endophytes: the endophytic niche, its occupants, and its utility. In *Plant-associated Bacteria* 2007. Dordrecht: Springer. p. 155-94.
24. Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. *Annu Rev*

Phytopathol. 2011 Sep 8;49:291-315. doi: [10.1146/annurev-phyto-080508-081831](https://doi.org/10.1146/annurev-phyto-080508-081831), PMID 19400639.

25. Sekar S. Plant growth promoter and biocontrol mechanism of endophytic fungi *Botrytis* sp. Braz J Biol Sci. 2015 Dec 31;2(4):221-33.

26. Suma A, Yadav AN, Verma P. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In microbial inoculants in sustainable agricultural productivity 2016. New Delhi: Springer. p. 117-43.

27. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK. Agriculturally and industrially important fungi: current developments and potential biotechnological applications. Fungal Biology. 2019;(1-64). doi: [10.1007/978-3-030-14846-1\\_1](https://doi.org/10.1007/978-3-030-14846-1_1).

28. Willcox JK, Catignani GL, Lazarus S. Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr. 2003;43(1):1-18. doi: [10.1080/10408690390826437](https://doi.org/10.1080/10408690390826437), PMID 12587984.

29. Sgherri C, Kadlecová Z, pardossi A, Navari-Izzo F, Izzo R. Irrigation with diluted seawater improves the nutritional value of cherry tomatoes. J Agric Food Chem. 2008 May 14;56(9):3391-7. doi: [10.1021/jf0733012](https://doi.org/10.1021/jf0733012), PMID 18393430.

30. Kumar V, Singh G, Tyagi A. Evaluation of different fungicides against *Alternaria* leaf blight of tomato (*Alternaria solani*). Int J Curr Microbiol Appl Sci. 2017;6(5):2343-50. doi: [10.20546/ijcmas.2017.605.262](https://doi.org/10.20546/ijcmas.2017.605.262).

31. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. *Trichoderma*-plant-pathogen interactions. Soil Biol Biochem. 2008 Jan 1;40(1):1-10. doi: [10.1016/j.soilbio.2007.07.002](https://doi.org/10.1016/j.soilbio.2007.07.002).

32. Weiland JJ. Rapid procedure for the extraction of DNA from fungal spores and mycelia. Fungal Genet Rep. 1997;44(1):60-3. doi: [10.4148/1941-4765.1290](https://doi.org/10.4148/1941-4765.1290).

33. Murali M, Amruthesh KN. Plant growth -promoting fungus *Penicillium oxalicum* enhances plant growth and induces resistance in pearl millet against downy mildew disease. J Phytopathol. 2015 Sep;163(9):743-54. doi: [10.1111/jph.12371](https://doi.org/10.1111/jph.12371).

34. Gamble JS. Flora of madaras Presidency. London: Adlard & Son; 1935.

35. Schulz-Schaeffer I. Schulz-Schaeffer I. Technik und die Dualitat von Ressourcen und Routinen. Z Soziol. 1999 Dec 1;28(6):409-28. doi: [10.1515/zfsoz-1999-0601](https://doi.org/10.1515/zfsoz-1999-0601).

36. Fisher PJ, Petrini O. Location of fungal endophytes in tissues of *Suaeda fruticosa*: a preliminary study. Trans Br Mycol Soc. 1987 Sep 1;89(2):246-9. doi: [10.1016/S0007-1536\(87\)80161-4](https://doi.org/10.1016/S0007-1536(87)80161-4).

37. Ghildiyal A, pandey A. Isolation of cold tolerant antifungal strains of *Trichoderma* sp. From glacial sites of Indian Himalayan region. Res J Microbiol. 2008;3(8):559-64. doi: [10.3923/jm.2008.559.564](https://doi.org/10.3923/jm.2008.559.564).

38. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple Criteria I. Crop Sci. 1973 Nov;13(6):630-3. doi: [10.2135/cropsci1973.0011183X001300060013x](https://doi.org/10.2135/cropsci1973.0011183X001300060013x).

39. Anupama N, Murali M, Jogaiah S, Amruthesh KN. Crude oligosaccharides from *Alternaria solani* with *Bacillus subtilis* enhance defense activity and induced resistance against early blight disease of tomato. Asian J Sci Technol. 2014 Jul;5(7):412-6.

40. Naik BS, Shashikala J, Krishnamurthy YL. Study on the diversity of endophytic communities from rice (*Oryza sativa* L.) and their antagonistic activities in vitro. Microbiol Res. 2009 Jan 1;164(3):290-6. doi: [10.1016/j.micres.2006.12.003](https://doi.org/10.1016/j.micres.2006.12.003), PMID 17433644.

41. Elad Y. Biological control of foliar pathogens by means of *Trichoderma harzianum* and potential modes of action. Crop Prot. 2000 Sep 12;19(8-10):709-14. doi: [10.1016/S0261-2194\(00\)00094-6](https://doi.org/10.1016/S0261-2194(00)00094-6).

42. Nalini MS, Sunayana N, Prakash HS. Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int J Biodivers. 2014 Oct;2014:1-9. doi: [10.1155/2014/494213](https://doi.org/10.1155/2014/494213).

43. Sunayana N, Nalini MS, Sampath Kumar KK, Prakash HS. Diversity studies on the endophytic fungi of *Vitex negundo* L. Mycosphere. 2014 Aug;5(4):578-90. doi: [10.5943/mycosphere/5/4/10](https://doi.org/10.5943/mycosphere/5/4/10).

44. Talapatra K, Das AR, Saha AK, Das P. In vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi. J Appl Biotechnol. 2017 Mar;5(02):068-71.

45. Myrchiang P, Dkhar MS, Devi HR. Studies on endophytic fungi associated with medicinally important aromatic plant *Artemisia nilagirica* (CB Clarke) Pamp. and their antagonistic activity against *Phytophthora infestans*. J Adv Lab Res Biol. 2014;5(4):112-9.

46. Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. Ecology and genomic insights into plant- Pathogenic and plant-non pathogenic endophytes. Annu Rev Phytopathol. 2017 Aug 4;55:61-83. doi: [10.1146/annurev-phyto-080516-035641](https://doi.org/10.1146/annurev-phyto-080516-035641), PMID 28489497.

47. Wheeler QD. The phylogenetic species concept (sensu Wheeler and Plantnick). Species concepts and phylogenetic theory: a debate. New York: Columbia University Press; 2000. p. 55-69.

48. Mimbaga MT, Gurung S, Maheshwari A. Screening of plant endophytes as biological control agents against root rot pathogens of pepper (*Capsicum annuum* L.). J Plant Pathol Microbiol. 2018;9(3).

49. You YH, Yoon H, Kang SM, Woo JR, Choo YS, Lee IJ, Shin JH, Kim JG. *Cadophora malorum* Cs-8-1 as a new fungal strain producing gibberellins isolated from *Calystegia soldanella*. J Basic Microbiol. 2013;53(7):630-4. doi: [10.1002/jobm.201200002](https://doi.org/10.1002/jobm.201200002), PMID 22961506.

50. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Honsi K, Kim MJ, Adnan M, Lee IJ. Endophytes *Aspergillus caesporosus* LK12 and *Phoma* sp. LK13 of *Moringa peregrina* produce gibberellins and improve rice plant growth. Journal of Plant Interactions. 2014 Jan 2;9(1):731-7. doi: [10.1080/17429145.2014.917384](https://doi.org/10.1080/17429145.2014.917384).