

HPTLC Fingerprints of Alcoholic Extracts of *Phyllanthus* species collected from Various Parts of Eastern Ghats in Andhra Pradesh

S. Akkulanna¹ P. Malleswarareddy², R.R. Venkataraju¹* and B.R. Chaitanya Kumar²

¹Department of Botany, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India.

²Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India.

Abstract: The genus *Phyllanthus* L. consists of 750 to 850 species distributed in tropical and subtropical around the world while 51 species in India. Most of them have been used in traditional medicine since ancient times. *Phyllanthus* spp.. like *P. amarus*, *P. debilis*, *P. fraternus*, *P. urinaria* and *P. virgatus* are called bhumyamalaki, used in Ayurveda. More than 514 compounds have been isolated from *Phyllanthus*, the majority of which are lignins, triterpenoids, flavonoids, and tannins. Lignins like phyllanthin and hypophyllanthin have been shown hepatoprotective activity and tannins exhibit various biological activities. Corilagin, geranin, and gallic acid are another three most prevalent compounds in this genus. *P. amarus* shows high concentration of Phyllanthin than *P. fraternus*, *P. virgatus*, *P. maderaspatensis*, *P. urinaria*, and *P. debilis*. Our aim is to establish physical constants and fingerprint profile of *Phyllanthus* species collected from various parts of Eastern Ghats in Andhra Pradesh using high performance thin layer chromatography (HPTLC) technique. It is one of the fast growing techniques, used to analyze the phytochemical constituents. Leaves of thirteen *Phyllanthus* species were used to prepare methanolic extracts. Extracted samples used for carrying out HPTLC. Sample was spotted on TLC plate as triplicate and developed the plate with the mobile phase as Toluene: Ethyl acetate: Methanol (7: 2: 1). Dried TLC plate was then scanned under the UV at 366nm. All the *Phyllanthus* spp.. exhibits significant fractions of phyllanthin, niranthin, quercetin and phenolic compounds in alcoholic extracts. It can be used as a diagnostic tool for the correct identification of potential *Phyllanthus* spp.. and it is useful as a phytochemical marker and also a good estimator of genetic variability in the plant populations.

Keywords: *Phyllanthus* genus, HPTLC, Phytochemicals and secondary metabolites

***Corresponding Author**

R.R. Venkataraju , Department of Botany, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India.

Received On 21 August 2020

Revised On 02 November 2020

Accepted On 18 November 2020

Published On 03 March 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Sake akkulanna, P.Malleswarareddy, R.R. Venkataraju, B.Chaitanya Kumar , HPTLC Fingerprints Of Alcoholic Extracts Of *Phyllanthus* Genus collected From Various Parts Of Eastern Ghats In Andhra Pradesh.(2021).Int. J. Life Sci. Pharma Res.11(2), L74-83 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.2.L74-83>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Phyllanthus L. is the largest genus in the family of Phyllantaceae. *Phyllanthus* has been used for treatment of diabetes, intestinal parasites and liver disorder, kidney and bladder problems. The *Phyllanthus* spp.. Contain therapeutically important organic compounds such as lignans, alkaloids, flavonoids, polyphenols, ellagitannins and triterpenoids¹. More than 514 compounds have been isolated from *Phyllanthus*, the majority of which are lignins, triterpenoids, flavonoids, and tannins². Crude extracts of *Phyllanthus* spp..exhibits inhibitory effects on the hepatitis B virus (HBV). Previous reviews depicts the biological activities of *Phyllanthus* species, mostly from *P. amarus*, *P. emblica* L. and *P. niruri* L.^{3,4,5,6} Primarily contains lignin (e.g., phyllanthin and hypophyllanthin)^{7,8} geranin and 5 flavonoids (quercetin, astralgin, quercitrin, isoquercitrin and rutin). Due to the presence of potential poly phenolic compounds in *Phyllanthus*, the present study was focused on the quantitative screening of thirteen *Phyllanthus* species from different geographical regions in Andhra Pradesh. Natural products of plant origin are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities^{9,10}. The subject of phyto chemistry is concerned with the enormous variety of organic substances that are elaborated and accumulated by plants and deals with structures, biosynthesis, turnover, metabolism, natural distribution, and biological functions of these substances^{11,12}. Epidemiological and experimental studies suggest that medicinal herbs have great potential in the management of different types of cancers including lung, breast, colon, liver, prostate, skin, and ovarian carcinomas¹³. In this connection, medicinal plant extracts, and their purified compounds have significant growth inhibitory potential against various types of cancerous cells *in vitro* as well as *in vivo*¹⁴.Flavonoids have various pharmacological activities including anticancer, anti-inflammatory, antioxidant, anti-diabetic, and antiviral activities through various cell-signaling pathways¹⁵. Most of the flavonoids reported from *Phyllanthus* were flavonol and glycoside forms¹⁶. From the ethanolic extract of *P. urinaria*, two new acetylated flavonoid glycosides, along with the known isolates, quercetin and quercetin 3-O- α -L-rhamnopyranoside have been isolated¹⁷. A new flavone sulfonic acid was isolated from the methanolic extract of *P. urinaria*¹⁸.The isolated flavonoids from *P. urinaria* showed antioxidant, anti-inflammatory, anticancer, and anti-H. *Pylori* etc. activities¹⁹ Phenolic compounds are the major group of phytochemicals that include at least one aromatic ring, with one or more hydroxyl groups attached. Phytochemical investigation of ethanolic extract from whole plants of *P. urinaria* resulted in the isolation of nine compounds including trimethyl-3, 4-dehydrochebulate, methylgallate, and methyl brevifolincarboxylate²⁰. High performance thin layer chromatography is rational for expansion of chromatographic fingerprints to determine major active constituents of medicinal plants. The separation and resolution are much better, and the results are much more reliable and reproducible than TLC. Combined with digital scanning profiling, it has the main advantage of *in situ* qualitative and quantitative measurements by scanning densitometry. Besides, the colorful pictorial HPTLC image provides extra, intuitive visible colour and/or fluorescence parameters for parallel assessment on the same plate. It also revealed a

better separation of individual secondary metabolites. As a mega biodiversity nation, India is endowed with high species richness of medicinal plants²¹. Lignins and tannins exhibit various activities and are considered to be the biological active compounds of this genus. Corilagin, geraniin, and gallic acid are three most prevalent compounds in this genus, and the pharmacological researches mainly focus on phyllanthin, niranthin, and geraniin. Several analytical procedures involving HPLC have been described^{22,23,24}.Currently HPTLC is often used as an alternative to HPLC for the quantification of plant products because of its simplicity, accuracy, cost-effectiveness and rapidity^{25,26,27,28}. So, in this study we opted HPTLC for analysis of photochemical of *Phyllanthus* species.

2. MATERIALS AND METHODS

2.1 Materials

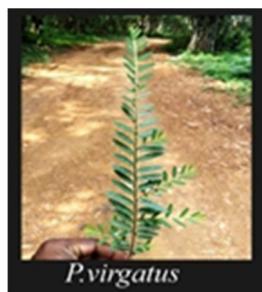
Toluene, Ethyl acetate, Methanol (HPLC grade) and prepared aluminum TLC plates were purchased from (Merck KGaA, Germany)

2.2 Study Area

The study area is primarily tropical deciduous vegetation found in Orissa, Telangana, Andhra Pradesh, Tamilnadu and some parts of the Karnataka States in isolated hill ranges of the Eastern Ghats in peninsular India. Eastern Ghats of Andhra Pradesh (the link between 13°30'19.07"N; 77°28'84.45" E) covers the hilly terrain of coastal Andhra with nine districts and three districts in the Telangana State. The intensive field studies were conducted in the forests of the Eastern Ghats in Andhra Pradesh yielded 13 *Phyllanthus* spp. among them seven herbaceous, two shrubs and four trees.

2.3 Plant material

Phyllanthus spp. was collected from different geographical regions in Eastern Ghats of Andhra Pradesh. Collected specimens were identified with the help of floras and preserved at Sri Krishnadevaraya University, Anantapur. (all the thirteen *Phyllanthus* species with their respective voucher numbers, habit, Latitude & Longitude and area of collection of specimen were listed in Table-I). Plant specimens were washed under the tap water and allowed them to shade dry for two weeks. 10g of each dried leaves with 200ml of alcohol used for the hot extraction process with the help of Soxhlet apparatus. *Phyllanthus* leaves were chosen for the evaluation of the phytochemical diversity. Methanolic extract of dried and powdered samples were subjected to HPTLC fingerprints.


2.4 Preparation of samples for HPTLC fingerprints

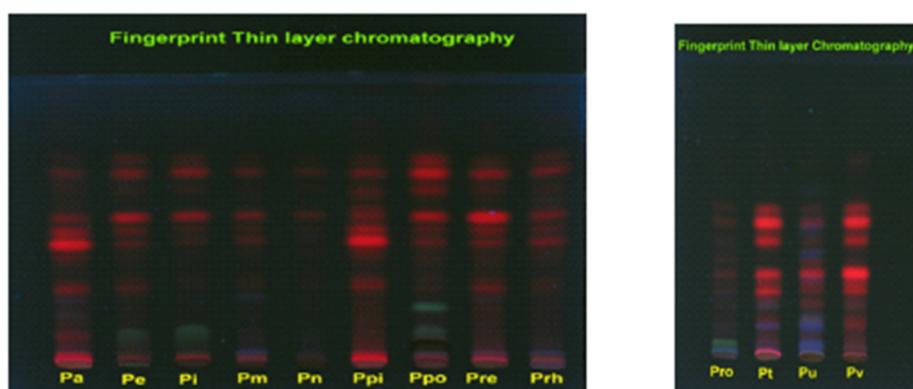
The powdered samples of leaves (1 gm each) of *Phyllanthus* were employed for the extraction of total photochemical in reflux condenser using 25 ml alcohol for 4 hours at 80°C. The alcohol extracts were evaporated to dryness in rotary vacuum evaporator and the residues obtained were re dissolved in methanol (10 ml each), which were used for the application on HPTLC plate for the development of fingerprints.

Table 1: List of *Phyllanthus* species code and geographical regions

Plant extract code	Name of Test species/code	Voucher specimen	Habit	Latitude & Longitude	Area
1.	<i>P.amarus</i> Schum & Thonn. (Pa)	SKU 50217	Herb	14°28'32.32"N; 78°43'08.32"E	Yvu garden (KDP Dist.)
2.	<i>P.emblica</i> L. (Pe)	SKU 50219	Tree	14°28'26.75"N; 78°43'06.56"E	Yvu garden (KDP Dist.)
3.	<i>P. indofesheri</i> Bennet (Pi)	SKU 50246	Tree	14°36'43"N; 77°38'42"E	S.K.U Campus (ATP Dist.)
4.	<i>P.maderaspatensis</i> L. (Pm)	SKU 50221	Herb	14°36'43"N; 77°38'42"E	S.K.U Campus (ATP Dist.)
5.	<i>P.narayanaswamii</i> Gamble (Pn)	SKU 50206	Herb	18°16'27"N; 82°19'26"E	Araku (VSKP Dist.)
6.	<i>P.pinnatus</i> (Wt.) Webster (Ppi)	SKU 50201	Shrub	15°00'38.82"N; 78°01'25.53"E	Bhugga (ATP Dist.)
7.	<i>P. polyphyllus</i> Willd. (Ppo)	SKU 50222	Tree	13°41'57"N; 79°20'21"E	Tirumala (CTR Dist.)
8.	<i>P. reticulatus</i> Poir. (Pre)	SKU 50223	Shrub	14°12'21.72"N; 78°07'43.35"E	Kalasamudram (ATP Dist.)
9.	<i>P. rheedei</i> Wt. (Prh)	SKU 50204	Herb	15°53'07.39"N; 78°49'34.22"E	Rollapenta (KNL District)
10.	<i>P.rotundifolius</i> Kl. Ex Willd. (Pro)	SKU 50224	Herb	17°43'21"E; 83°19'29"E	A.U. Campus (VSKP Dist.)
11.	<i>P.tenellus</i> Roxb. (Pt)	SKU 50225	Herb	13°42'46"N; 79°20'31"E	Tirumala (CTR Dist.)
12.	<i>P.urinaria</i> L. (Pu)	SKU 50207	Herb	15°07'46.70"N; 78°40'41.63"E	Ahobilam (KNL Dist.)
13.	<i>P.virgatus</i> Forst (Pv)	SKU 50202	Herb	14°14'39.70"N; 78°09'48.36"E	Kalasamudram (ATP Dist.)

Fig 1: Selected thirteen *Phyllanthus* spp. with their geographical structures

2.5 HPTLC instrumentation and general conditions for fingerprints

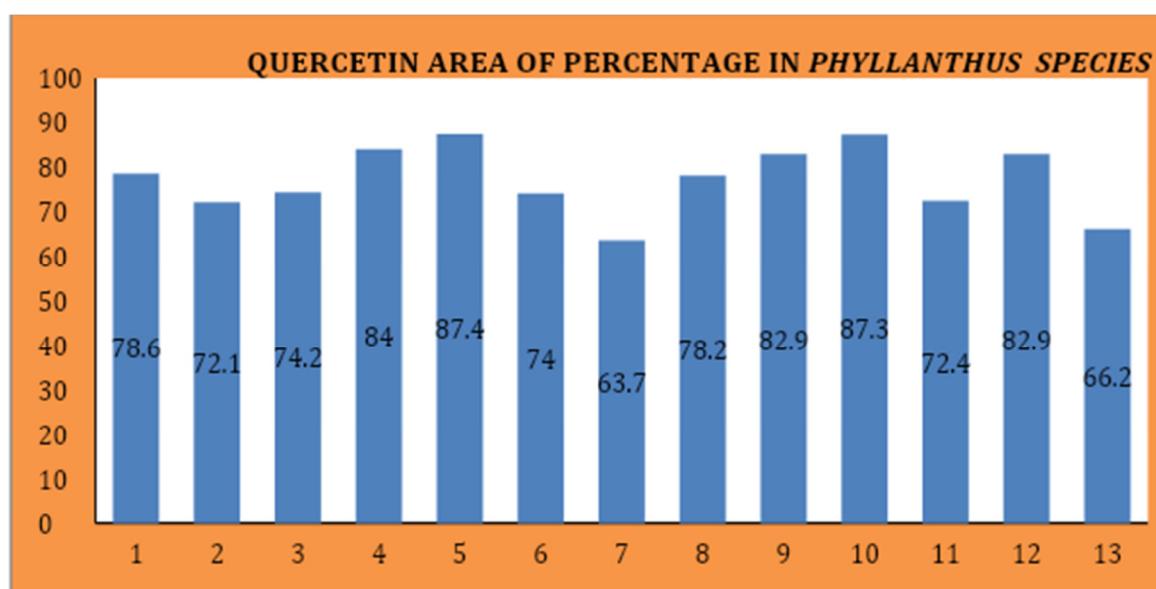

All the samples were spotted in the form of bands (width 4 mm) with a Camag Microlitre syringe on precoated silica gel aluminium plate 60F-254 (20 cm x 10 cm with 0.2 mm thickness, E. Merck, Germany) using a Camag Linomat V (Switzerland). A constant application rate of 150 nl/s was employed and space between two bands was 7.7 mm. The mobile phase consisted of Toluene: Ethyl acetate: Methanol (7: 2: 1) Linear ascending development was carried out in twin trough glass chambers, saturated with mobile phase. The optimized chamber saturation time for mobile phase was

15 min at room temperature²⁹. The chromatogram was developed up to 80 mm.

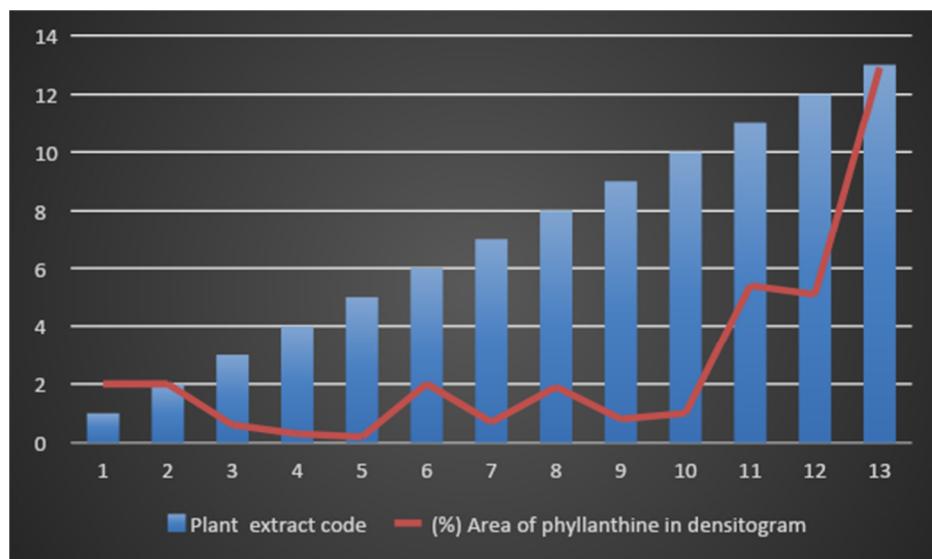
3. STATISTICAL ANALYSIS

All the instruments were operated by winCATS software (v. 1.4.3 CAMAG) resident in the system. All the data obtained was subjected to one way analysis of variance ANOVA. The significant difference among the means was compared by DUNCAN'S multiple range tests.

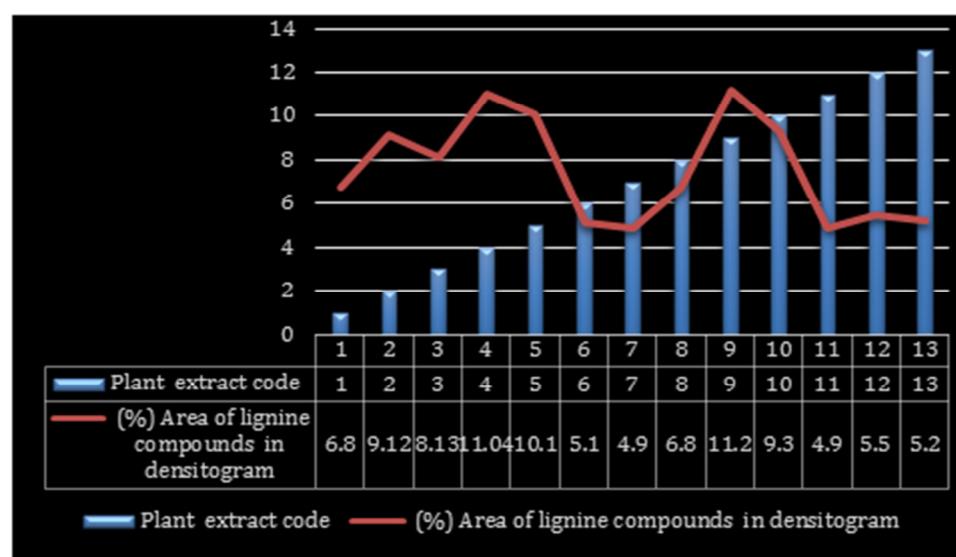
4. RESULTS AND DISCUSSION

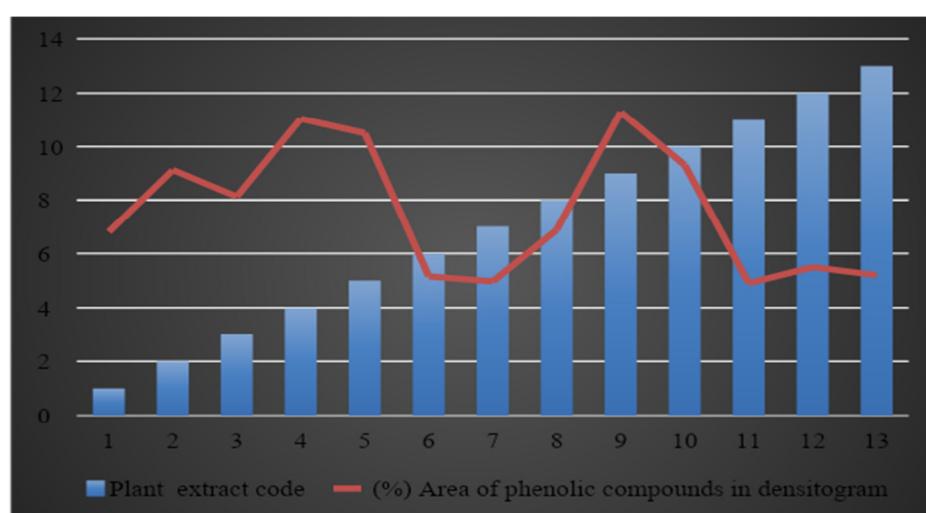

Fig 2. HPTLC Chromatograms of *Phyllanthus amarus* Schum & Thonn. (Pa), *P.emblica* L. (Pe), *P. indofesheri* Bennet (Pi), *P.maderaspatensis* L. (Pm), *P.narayanaswamii* Gamble (Pn), *P.pinnatus* (Wt.) Webster (Ppi), *P. polyphyllus* Willd. (Ppo), *P. reticulatus* Poir. (Pre), *P.rheedei* Wt. (Prh), *P.rotundifolius* Kl. ex Willd. (Pro), *P.tenellus* Roxb. (Pt), *P.urinaria* L. (Pu), *P.virgatus* Forst (Pv) alcohol extracts at UV 366 nm.

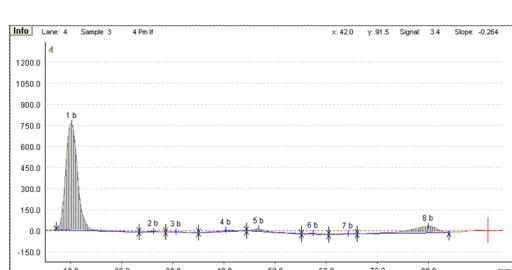
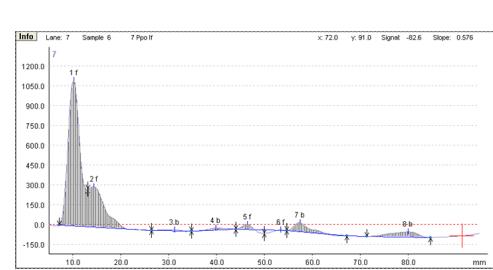
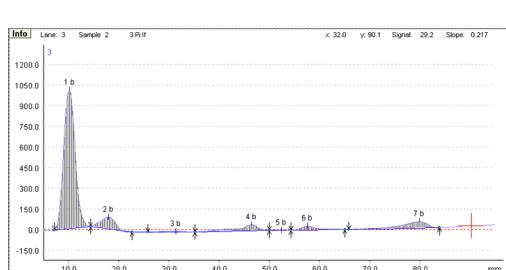
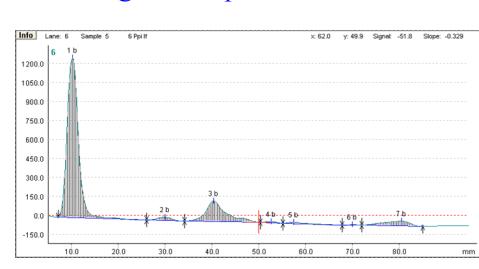
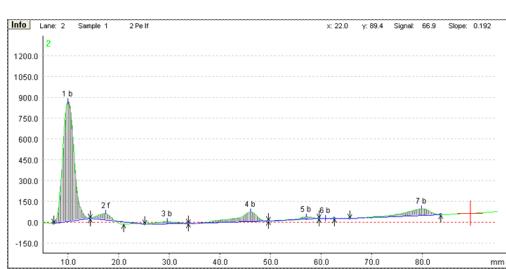
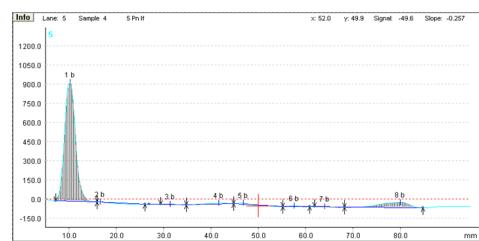
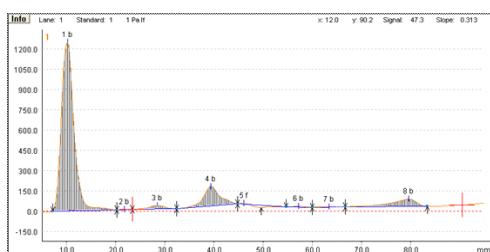
Authentication of *Phyllanthus* species at chemical and genetic level plays a crucial role in both research and commercial purpose. The HPTLC method reported here is suitable for the rapid screening of germplasm of *Phyllanthus* spp. for the determination of chemical profiles and quantification of the quercetin, phyllanthin, niranthin, and phenolic compounds. Earlier *Phyllanthus* species like *P.urinaria*, *P.fraternus*, *P.maderaspatensis*, *P.amarus*, *P.debilis* and *P.virgatus* extracts were used for quantification of phyllanthin and niranthin using HPLC technique. *P. amarus* is highly valued in the treatment for liver ailments. Some phytochemical compounds were unique to specific plants and its parts In *Phyllanthus*, lignans like phyllanthin and niranthin are potential therapeutic compounds which serve as hepatoprotective agents. Synthesis of these compounds varies in geographical regions with high concentration in high altitude while less in low altitude. An earlier report revealed that high concentration of Phyllanthin and niranthin were found in leaves than that of fruits, branches and roots of *P.niruri* and also found in methanolic extract of *P.amarus*, but was not found in *P.maderaspatensis*, *P.fraternus* and *P.virgatus*³⁰. HPTLC studies have shown that it is more resourceful than ordinary TLC


methods. HPTLC chromatograms (fig-2) of all extracts of 13 *Phyllanthus* spp. were found to be a significant amount of quercetin (flavonoid). Lignans like phyllanthin, niranthin and little amount of phenolic compounds. Methanolic extracts of thirteen plants were spotted on silica gel "G" plate as shown in TLC plate was developed using toluene: ethyl acetate: methanol (7: 2: 1) mobile phase shows various spots under UV (366nm). In this study we mainly focused on comparative quantification of quercetin (fig-3), phyllanthin (fig-4), Niranthin (fig-5) and phenolic composition (fig-6), of thirteen methanolic leaf extracts of *Phyllanthus* spp.. in which phyllanthin generally showed *R_f* value at 0.31³¹, quercetin generally showed *R_f* value at 0.02 and 0.65³² phenolic compounds *R_f* 0.97³³. Densitograms of thirteen plant extracts were shown (fig-7). When we cross verified them, we obtained different peak heights with approximately similar percent of peak areas at *R_f* value 0.02 and 0.65. In figure-3 we clearly given quercetin percentage of area in densitograms with their respective plant extract code. Among those *P. maderaspatensis* L. (Pm) Shows high percentage area of quercetin (84%) followed by *P.Polyphyllus*, *P.rheedei*, *P.tenellus* *P.urinaria* and *P.virgatus* exhibits 63.7%,

82.9%, 72.4%, 82.9% and 66.2% respectively. Plant extracts exhibit another common peak with R_f value at 0.31. This peak indicates phyllanthin in all thirteen species. *P.virgatus* shows with highest percentage of peak area 17.9% (fig-4). *P.reticulatus* shows with lowest percentage of peak area 0.2% followed by *P.polyphyllus* and *P.rheedei* showed least percent of peak area 0.7 and 0.8 respectively. Plant extracts exhibit another common peak with R_f value at 0.42. As we know that niranthin generally showed R_f value at 0.42³⁴. *P.pinnatus* (Wt.) shows with highest percentage of peak area 17.2% (fig-5). *P.amarus* (Pa) shows peak area 11.8%. *P.rotundifolius* (Pro) showed least percentage of peak area 0.1%. In the same way percentage of peak areas remaining plant extracts were reported (fig- 5) and phenolic compounds showed their peaks with R_f values 0.97. Their distribution in extracts of *Phyllanthus* species codes 1-13 was shown respectively (fig-6). The extracts of *P.rheedei*, *P.maderaspatensis*, and *P.narayanswamii* exhibited significant amount of phenolic compound composition i.e., 11.2%, 11.0% and 10.1% respectively. The extract of *P.Polyphyllus* Willd. (Ppo) exhibit least amount of phenol composition 4.9%. Flavonoids are naturally occurring compounds widely distributed as secondary metabolites in the plant kingdom. They are recognized for having beneficial clinical properties, such as antiinflammatory³⁵, cardioprotective³⁶, antiviral, antibacterial, and anticancer activities³⁷. Quercetin is one of the flavonoids


found in the fruits of medicinal plants, (*P. emblica*) as a traditional medicine for diabetes. *P. emblica* is referenced in "Rasayana," a branch of 5000-year-old Indian medical system "Ayurveda," which focuses on enhancing good health, preventing diseases by boosting the immune system, as well as rejuvenating and revitalizing the body and mind³⁸. It is still used extensively not only in India, but also in Iran, Iraq, Thailand, China, Italy, Germany, and other countries as a laxative, diuretic, astringent, and antiemetic. It is also used to treat other ailments, including anemia, jaundice, and tumors³⁹. Methanolic extracts of present work are good source of quercetin, so these extracts may useful as phyto medicine. Phyllanthin is one of the active principle compound present in *Phyllanthus* spp. Hence it is used as marker compound in herbal drug industry⁴⁰ to identify *Phyllanthus* species. Several analytical procedures involving quantitative and qualitative determination of *Phyllanthus* species by HPLC and HPTLC. The present study, Phyllanthin and niranthin were detected in alcoholic leaf extracts of thirteen *Phyllanthus* species. Earlier phyllanthin found in only *P.amarus*. For the first time we are reporting phyllanthin in *P.narayanswamii*, *P.rheedei*, *P.polyphyllus*, *P.Pinnatus* and *P.maderaspatensis*. from Eastern Ghats of Anhra Pradesh.


Fig 3: Distribution of percentage area of quercetin in thirteen *Phyllanthus* spp.. extracts in densitograms (codes:1-13)








Fig 4: Distribution of percentage area of phyllanthine in thirteen *Phyllanthus spp.* extracts in densitogram (codes: 1-13)

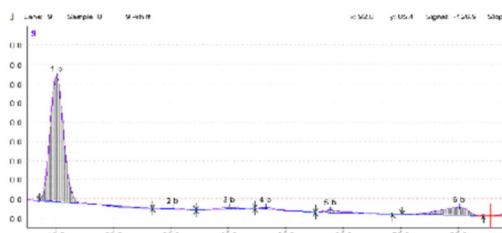
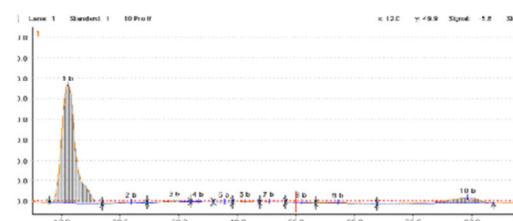


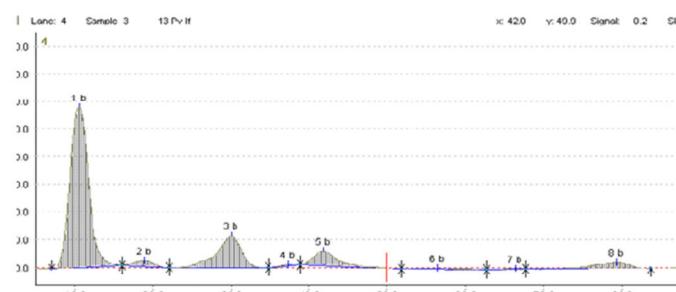
Fig 5: Distribution of percentage area of niranthin in thirteen *Phyllanthus spp.* Extracts in densitogram (codes:1-13)



Fig 6: Distribution of percentage area of phenolic compounds in thirteen *Phyllanthus spp.* extracts in densitograms (codes:1-13)




Densitogram of extract - IX


Densitogram of extract - XI

Densitogram of extract - X

Densitogram of extract - XII

Densitogram of extract - XIII

Fig 7.Densitograms of methanolic extracts of *Phyllanthus* species with codes I-13

5. CONCLUSION

In the present study, phytochemicals in *Phyllanthus* spp. collected from various parts of Eastern Ghats of Andhra Pradesh were analyzed by HPTLC clearly explained the diversity of phytochemicals like, quercetin, phyllanthin, niranthin and phenolic compounds in *Phyllanthus* spp.. Methanolic extracts of all these plants were a good source quercetin. phyllanthin was reported in *P.narayanaswamii*. *P.rheedei*, *P.rotundifolius* and *P.maderaspatensis* first time. Niranthin and phenolic phytochemicals are found in least amount. So, we hope the results of this study may be useful for development of Phytomedicine against various diseases.

6. ACKNOWLEDGMENT

The authors are very thankful to IICT-HYD for providing HPTLC. The authors are thankful to Dr. Sadasivaiah, Assistant Professor in Dr.BRR Degree College, Gadcherla for his help and support during field exploration. We are also very thankful to Dr.Y.Padma, Assistant professor in Botany,

10. REFERENCES

1. Muthusamy A, Sanjay ER, Nagendra Prasad HN, RadhakrishnaRao M, Manjunath Joshi B, Padmalatha Rai S, Satyamoorthy K. Quantitative Analysis of *Phyllanthus* Species for Bioactive Molecules Using High-Pressure Liquid Chromatography and Liquid Chromatography-Mass Spectrometry. ProcNatlAcadSci India Sect B Biol Sci. 2018;88(3):1043-54. doi: 10.1007/s40011-017-0839-y.
2. Mao X, Wu LF, Guo HL, Chen WJ, Cui YP, Qi Q, Li S, Liang WY, Yang GH, Shao YY, Zhu D, She GM,

PVKK PG College, Anantapuramu for her valuable assistance during identification of the collected species.

7. FUNDING ACKNOWLEDGEMENT

The authors are grateful to the Department of Biotechnology, New Delhi, for financial assistance (DBT sanction order no. bt/pr7615/bce/8/967/2013 dt.04-1-2016) and thankful to the forest officials, Government of Andhra Pradesh for help in field studies.

8. AUTHORS CONTRIBUTION STATEMENT

Mr. Akkulanna. S conceptualized and gathered the data for this work. Mr. P. Malleswarareddy was analysed the data and necessary inputs were given towards the designing of manuscript. All authors contributed to discussion of methodology and results to the final manuscript.

9. CONFLICT OF INTEREST

Conflict of interest declared none.

You Y, Zhang LZ. The genus *Phyllanthus*: an ethnopharmacological, phytochemical, and pharmacological review. *Evid Based Complement Alternat Med.* 2016 Oct;2016:7584952. doi: 10.1155/2016/7584952, PMID 27200104.

3. Calixto JB, Santos AR, Filho VC, Yunes RA. A review of the plants of the genus *Phyllanthus*: their chemistry, pharmacology, and therapeutic potential. *Med Res Rev.* 1998;18(4):225-58. doi: 10.1002/(sici)1098-1128(199807)18:4<225::aid-med2>3.0.co;2-x, PMID 9664291.

4. Kaur N, Kaur N, Kaur B, Sirhindhi G. Phytochemistry and pharmacology of *Phyllanthus niruri* L.: a review. *Phytother Res.* 2017 Jul;31(7):980-1004. doi: 10.1002/ptr.5825, PMID 28512988.

5. Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, Ma ZF, Lee YY, Horbańczuk JO, Atanasov AG. Ethnopharmacological approaches for therapy of jaundice: Part II. Highly used plant species from Acanthaceae, Euphorbiaceae, Asteraceae, Combretaceae, and Fabaceae families. *Front Pharmacol.* 2017 Aug 10;8:519. doi: 10.3389/fphar.2017.00519, PMID 28848436.

6. Yadav SS, Singh MK, Singh PK, Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of *Emblica officinalis*. *Biomed Pharmacother.* 2017 Sep 1;93:1292-302. doi: 10.1016/j.bioph.2017.07.065, PMID 28747010.

7. Sharma A, Singh RT, Handa SS. Estimation of phyllanthin and hypophyllanthin by high performance liquid chromatography in *Phyllanthus amarus*. *Phytochem Anal.* 1993 Sep;4(5):226-9. doi: 10.1002/pca.2800040507.

8. Somanabandhu A, Nitayangkura S, Mahidol C, Ruchirawat S, Likhitwitayawuid K, Shieh HL, Chai H, Pezzuto JM, Cordell GA. IH- and 13C-NMR assignments of phyllanthin and hypophyllanthin: lignans that enhance cytotoxic responses with cultured multidrug-resistant cells. *J Nat Prod.* 1993 Feb;56(2):233-9. doi: 10.1021/np50092a008, PMID 8385184.

9. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. *J Nat Prod.* 2007 Mar 23;70(3):461-77. doi: 10.1021/np068054v, PMID 17309302.

10. Schwarz E, Metzler J, Diedrich JP, Freudenstein J, Bode C, Bode JC. Oral administration of freshly expressed juice of *Echinacea purpurea* herbs fail to stimulate the nonspecific immune response in healthy young men: results of a double-blind, placebo-controlled crossover study. *J Immunother.* 2002 Sep 1;25(5):413-20.9.

11. Harborne AJ. Phytochemical methods a guide to modern techniques of plant analysis. Springer Science+Business Media; 1998 Apr 30.

12. Raaman N. Phytochemical techniques. New India Publishing; 2006.

13. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. *Nat Rev Drug Discov.* 2015 Feb;14(2):111-29. doi: 10.1038/nrd4510, PMID 25614221.

14. Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. *Avicenna J Phytomed.* 2015 Mar;5(2):84-97. PMID 25949949.

15. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK. Medicinal plants and cancer chemoprevention. *Curr Drug Metab.* 2008 Sep 1;9(7):581-91. doi: 10.2174/138920008785821657, PMID 18781909.

16. Mozaffarian D, Wu JHY. Flavonoids, dairy foods, and cardiovascular and metabolic health: a review of emerging biologic pathways. *Circ Res.* 2018 Jan 19;122(2):369-84. doi: 10.1161/CIRCRESAHA.117.309008, PMID 29348256.

17. Nara TK, Gleye J, Lavergne de Cerval E, Stanislas E. Flavonoides de *Phyllanthus niruri* L., *Phyllanthus urinaria* L., *Phyllanthus orbiculatus* L. c. Rich. *Plantes Medicinales et phytotherapy.* 1977.

18. Thanh NV, Huong PTT, Nam NH, Cuong NX, Thao NP, Dejaeger B, Gordien A, Heyden YV, Quetin-Leclercq J, Minh CV. A new flavone sulfonic acid from *Phyllanthus urinaria*. *PhytochemLett.* 2014 Feb 1;7:182-5. doi: 10.1016/j.phytol.2013.11.013.

19. Fang SH, Rao YK, Tzeng YM. Anti-oxidant and inflammatory mediator's growth inhibitory effects of compounds isolated from *Phyllanthus urinaria*. *J Ethnopharmacol.* 2008 Mar 5;116(2):333-40. doi: 10.1016/j.jep.2007.11.040, PMID 18187278.

20. Geethangili M, Ding ST. A review of the phytochemistry and pharmacology of *Phyllanthus urinaria* L. *Front Pharmacol.* 2018 Oct 1;9:1109. doi: 10.3389/fphar.2018.01109, PMID 30327602.

21. Du G, Xiao M, Yu S, Wang M, Xie Y, Sang S. *Phyllanthus urinaria*: a potential phytopharmacological source of natural medicine. *Int J ClinExp Med.* 2018 Jan 1;11(7):6509-20.

22. Senguttuvan J, Subramaniam P. HPTLC fingerprints of various secondary metabolites in the traditional medicinal herb *Hypochaeris radicata* L. *J Bot.* 2016;2016:1-11. doi: 10.1155/2016/5429625.

23. Wang CY, Lee SS. Analysis and identification of lignans in *Phyllanthus urinaria* by HPLC-SPE-NMR. *Phytochem Anal.* 2005 Mar;16(2):120-6. doi: 10.1002/pca.830, PMID 15881120.

24. Deb S, Mandal SK. TLC-densitometric determination of phyllanthin and hypophyllanthin in *Phyllanthus amarus* (bhumiamalaki) and in polyherbal formulation. *Indian Drugs.* 1996;33(8):415-6.

25. Srivastava A, Misra H, Verma RK, Gupta MM. Chemical fingerprinting of *Andrographis paniculata* using HPLC, HPTLC and densitometry. *Phytochem Anal.* 2004 Sep;15(5):280-5. doi: 10.1002/pca.779, PMID 15508831.

26. Saxena S, Jain DC, Gupta MM, Bhakuni RS, Mishra HO, Sharma RP. High-Performance Thin-Layer chromatographic analysis of hepatoprotective diterpenoids from *Andrographis paniculata*. *Phytochem Anal.* 2000 Jan;11(1):34-6. doi: 10.1002/(SICI)10991565(200001/02)11:1<34::AID-PCA487>3.0.CO;2-V.

27. Tripathi AK, Verma RK, Gupta AK, Gupta MM, Khanuja SP. Quantitative determination of phyllanthin and hypophyllanthin in *Phyllanthus* species by high-performance thin layer chromatography. *Phytochem Anal.* 2006 Nov;17(6):394-7. doi: 10.1002/pca.936, PMID 17144246.

28. Sharma V, Gupta AP, Bhandari P, Gupta RC, Singh B. A validated and densitometric HPTLC method for the quantification of withaferin-A and withanolide- A in different plant parts of two morphotypes of *Withania somnifera*. *Chromatographia*. 2007 Nov 1;66(9-10):801-4.
doi: 10.1365/s10337-007-0396-2.

29. Murugaiyah V, Chan KL. Determination of four lignans in *Phyllanthus niruri* L. By a simple high-performance liquid chromatography method with fluorescence detection. *J Chromatogr A*. 2007 Jun 22;1154(1-2):198-204.
doi: 10.1016/j.chroma.2007.03.079, PMID 17418855.

30. Rajasekaran A, Preethi N, Arivukkarasu R. Stability indicating High Performance Thin Layer chromatographic determination of raloxifene hydrochloride. *Int J Curr Trends Pharm Res*. 2014;2(2):348-55. ISSN: 2321-3760.

31. Khan S, Al-Qurainy F, Ram M, Ahmad S, Abdin MZ. Phyllanthin biosynthesis in *Phyllanthus amarus* Schum and Thonn growing at different altitudes. *J Med Plants Res*. 2010 Jan 4;4(1):041-8.

32. Nayak PS, Upadhyay A, Dwivedi SK, Sathrupa RA. Quantitative determination of phyllanthin in *Phyllanthus amarus* by high-performance thin layer chromatography. *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*. 2010;9(5):353-8.

33. Rao AS, Ahmed MF. Simultaneous estimation of quercetin and rutin in ethanolic extract of *Melia azedarach* Linn leaves by HPTLC method. *Asian Journal of Biomedical and Pharmaceutical Sciences*. 2013 Jul 10;3(21):56-69.

34. Prabhu K, Karar PK, Hemalatha S, Ponnudurai K. A preliminary chromatographic detection of phenolic compounds from ethanolic stem extracts of *Viburnum* Linn. species by TLC and PC. *Der Pharmacia Sinica*. 2011;2(3):74-80.

35. VandanaSrivastavaManjuSinghRichaMalasoniVermaRk madanmohangupta anilguptasuman p s khanuja Separation and quantification of lignans in *Phyllanthus* species by a simple chiral densitometric method" July 2008; *Journal of Separation Science* 31(12):2338 DOI: 10.1002/jssc.200890049

36. J. Santoshkumar, M.S. Devarmani, M.M. Sajjanar, et al., Study of anti-inflammatory activity of fruit of *Emblica officinalis* (Amla) in Albino rats, *Med. Innov.* 2 (2013) 17–25.

37. W. Duan, Y. Yu, L. Zhang, Anti-atherogenic effects of *Phyllanthus emblica* associated with corilagin and its analogue, *Yakugaku Zasshi* 125 (2005) 587–591.

38. S. Madhuri, G. Pandey, K.S. Verma, Antioxidant, immunomodulatory and anticancer activities of *Emblica officinalis*: an overview, *Int. Res. J. Pharm.* 2 (2011) 38–42.

39. M. Krishnaveni, S. Mirunalini, Therapeutic potential of *Phyllanthus emblica* (amla): the ayurvedic wonder, *J. Basic. Clin. Physiol. Pharmacol.* 21 (2010) 93–105.

40. D.W. Unander, G.L. Webster, B.S. Blumberg, Records of usage or assays in *Phyllanthus* (Euphorbiaceae). I. Subgenera *Isocladus*, *Kirganelia*, *Cicca* and *Emblica*, *J. Ethnopharmacol.* 30 (1990) 233–264.

41. Gupta, M.M. and Verma, R.K. 1996. Combined thin layer chromatography-densitometry method for the quantitative estimation of major alkaloids in poppy straw samples. *Ind. J. Pharm. Sci.*, 58: 161-163.