

Study of Interaction of Cadmium With Imine Derivative of 2-Amino-2 -Methyl -I-Propanol In DMF -Water System (40%V/V)

G.Ramamaohan^{1*}, J. Sreeramulu¹, P.Malleswarareddy¹ , N.Nagaraju², and D.Raju²

Department of Chemistry, S.K. University College, S.K. University, Anantapurum -515003, Andhra Pradesh, India.

Abstract: Cadmium (II), highly toxic metal ion that acts as a carcinogen in mammals, inhibits growth of plants and decreases uptake of water and minerals. Thus there is an emergency to develop promising reducing methods. In this present research deford- hume's formulation was applied to investigate the complexation of Cadmium with newly synthesized imine derivative 2-(3,4,5 tri methoxybenzylidene amino)-2-methyl propan-1-ol using an electrochemical technique polarography in di methyl formamide-water system. Imine derivative was synthesized by condensation of 3,4,5-trimethoxybenzaldehyde with 2-Amino-2-Methyl -I-Propanol. Characterised by electronic and IR spectroscopy. Solutions were taken in the H-type cell of Lingane and Laitimer for recording polarograms. Millicoulometric method was applied to know the number of electrons transferred. From these studies it was observed that Cd(II) complex showed irreversible two electron reduction at d.m.e. electrode and 1:4 metal to ligand ratio with consecutive stability constants as $\beta_1 = 0.85 \times 10^2$; $\beta_2 = 4.50 \times 10^3$; $\beta_3 = 1.50 \times 10^5$; $\beta_4 = 3.48 \times 10^6$. This study confirmed that imine derivative shows a weak interaction with cadmium.

Keywords: Deford-Humes method, Cadmium, stability constants and Polarography

*Corresponding Author

G.Rama maohan , Department of Chemistry, S.K. University College, S.K. University, Anantapurum -515003, Andhra Pradesh, India.

Received On 21 August 2020

Revised On 31 October 2020

Accepted On 05 November 2020

Published On 04 March 2021

Funding This work is supported by Human Resource Development Group Council of Scientific and Industrial Research [HRDG- CSIR] SRF fellowship, Grant no. (09/383(0052)/2017-EMR-I).

Citation G.Rama maohan, J.Sree Ramulu, N.Nagaraju, D.Raju and P.Malleswarareddy , Study of an Interaction Of Cadmium with imine Derivative Of 2-Amino-2 -Methyl -I-Propanol in dmf -Water System (40%V/V).(2021).Int. J. Life Sci. Pharma Res. 11(2), L58-65 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.2.L58-65>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Cadmium (II) is generally known as a non-essential, highly toxic metal ion that acts as a carcinogen in mammals, inhibits growth of plants by interfering with photosynthesis and nitrogen metabolism, and decreased uptake of water and minerals¹. A well-known example of cadmium poisoning is the *Itai-Itai*disease (*Itai* = pain in Japanese), which was caused by cadmium released from mining waste into the Jinzu river in Japan, contaminating large agricultural areas². Literature revealed that not much work has been carried out in establishing the complexing ability of 2-Amino-2-Methyl-1-Propanol (AMP), towards metal ions. Even the available few references on metal complexes of AMP not fully established the coordinating ability of AMP towards metals, but only emphasized the applications of those complexes in biological fields. Metal complexes prepared by the reaction of tetra chloroaurate with AMP in aqueous media were recommended as antitumor agents³. Werner coordination complexes⁴ prepared by reacting benzotriazole with a monoepoxide to form a mixture of 1 and 2-hydroxy alkyl benzotriazoles and esterifying mixture with an alkaline succinic anhydride to form a monoester and converting the monoester to a salt of metal selected from IB, IIB, IVB and VII groups of the periodic table and complexing the salt with alkanolamines including AMP form a chelate. The chelate thus obtained was employed as detergent and anti wear additive for lubricants references. Structural and bonding properties of Cu (II) complexes in presence of AMP employing X-ray crystallographic techniques have been reported. Muhonen et al. Studied the magnetic properties of (2-amino-2-methyl-1-propanolato) chloro copper (II) and bromo Copper (II) tetramers⁵. The studies on Ni (II) complexes with AMP and other alkanolamines have been carried out by using potentiometric methods. pH- titration method is also employed in studying the Ni (II) (substituted alkanolamines) systems and relative stabilities reported in the literature⁶. The electrochemical behaviour of Copper (II) complexes of five aminoalcohols including 2-amino-2-methyl-1-propanol (AMP) were studied⁷ in aqueous solutions by maintaining pH (10.5-13.0). Exchange interaction in a linear tri nuclear Copper (II) cluster complex with a single oxygen bridge between neighbouring Copper (II) ions using AMP as a ligand have been reported^{8,9}. The stability constants and molar absorptivities of complexes of Copper (II) with AMP in aqueous medium were determined employing Spectrophotometric method¹⁰. Specification of Copper in presence of AMP as a complexing agent has been studied by DC Polarography and Differential Pulse Polarographic techniques¹¹. Complex formation equilibria of heavy metals (Cd, Pb and Hg) with aminoalcoholic biological buffers have been discussed¹². A Potentiometric study of zinc (II) complexes and spectrophotometric study of Copper (II) complexes with AMP in aqueous media has been reported^{13,14}. Synthesis, Structural, Magnetic and Spectral properties of alkanolamine complexes of, Ni, Ag, Au and Zn. have been reported¹⁵. A determination and correlation of stability constants of various Copper (II) complexes with ethanolamines, the isopropanolamines and 3-hydroxy substituted amines of AMP and ethanol propanolamines have been reported¹⁶. The synthesis, structural and catalytic ethylene oligomerization behaviour of Nickel complexes with substituted diphenylPhosphinomethyloxazoline has been studied by Braustein et.al¹⁷. A nucleating tetra-dentate Schiff base ligand, bis (O-Vanillin) benzidine (O-v₂bzHz), and its seven new binuclear complexes have been synthesized and

characterized on the basis of elemental analysis, IR, NMR, Electronic, Magnetic, Thermal studies and conductance measurements. The 3D molecular modeling and analysis for bond lengths and bond angles have also been carried out by Mourya et al¹⁸. Spectroscopic analysis on interaction of O-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and O-Vanillin-L-Levodopa Schiff bases with bovine serum albumin (BSA) has been investigated by Gao J and Wang J and et.al¹⁹, The crystal structures of the ligand (L2) and complexes [Ni(L2)2] and [Cu(L2)2] have also been determined by using X-ray crystallographic technique has been reported by Cemal Senoland et al²⁰. Nagaraju Reddy G, Synthesized and characterized of mo (vi) and vo (iv) new schiff base Metal complexes²¹. Schiff base derived from 2,4,6-trimethyl-m-phenylenediamine with o-vanillin and its metal complexes were studied by Kassim Karimah²². A new tetra-nuclear coordination complex [Cu₄(HL)₄] containing Cu₄O₄ cubane core has been synthesized by using Schiff base ligand [(OH)C₆H₄CHNC(CH₃)(CH₂OH)₂] (H₄L), obtained by the 1:1 condensation of 2-amino-2-methyl-1,3-propanediol with salicylaldehyde²³. Sam Norrihan was synthesized, Organotin(IV) complexes with-vanillin-2-hydrazinopyridine (VHP)²⁴.

2. MATERIALS AND METHODS

Standard cadmium solution was prepared using AR Cadmium acetate in a 250 ml volumetric flask and standardized gravimetrically. The E_{1/2} of Cd (s) has been determined in similar conditions (for e.g. 40% DMF -water medium) employed for Cd (c) in order to avoid discrepancy due to liquid-junction potential. Potassium nitrate was used to kept ionic strength at 0.1M, 0.002% Triton-X-100 used as maximum suppressor. Double distilled mercury was employed for dropping mercury electrode. Purified mercury was employed for de oxygenation of all test solutions prior to recording. Polarography model CL-357 was used for recording the polarograms. Saturated calomel electrode (SCE) was used as reference electrode. An ELICO glass capillary having the following characteristics m = 1.7434 mg sec⁻¹, t = 4.00 sec at constant height of mercury head 67.0 cm (0.1M KNO₃ in open circuit) was used. The pH measurements and pH adjustments were made using 0.1 M HNO₃ and 0.1 M NaOH with ELICO digital pH meter model (LI 120). Solutions were taken in the H-type cell for recording polarograms. Thermostat type GL-15 was used to keep the temperature at 30±0.1. De oxygenation was employed for of all test solutions prior to recording. The electrochemical studies of imine in the presence of cadmium were carried out in BR buffer solutions of pH 2.1-10.1 Effect of Mercury column height was carried out at pH 4.10 Kinetic parameters of redox behavior were carried out at pH 2.10-10.10. The number of electrons involved in the redox behaviour of different functional groups was analyzed by Millicoulometric method. Effect of pH on current voltage curves was studied by taking 8.0 ml of the buffer solution of desired pH (1.1 – 10.1), 2 ml of the stock solution of the ligand (1.0 x 10⁻² M) in dimethylformamide (DMF), 6 ml of dimethylformamide (DMF) and 4.0 ml of distilled water are mixed thoroughly in the polarographic cell and the polarograms are recorded after removing the dissolved oxygen by passing pure and dry nitrogen gas through the solution for about fifteen minutes. To study effect of ligand concentration 8.0 ml of required buffer solution and a known aliquot of the ligand solution (1.0 x 10⁻² M) and the requisite volume of dimethyl formamide are mixed in the

polarographic cell to make the total volume 20 ml and the polarogram is recorded after deprecation. To effect of mercury column height 8.0 ml of the buffer solution (pH 4.1 and 8.1), 2.0 ml of the ligand (1.0×10^{-3} M) stock solution, 6.0 ml dimethylformamide (DMF) and 4.0 ml of distilled water are mixed in the polarographic cell and the polarogram is recorded at different heights (80, 70, 60, 50 and 40 cms) of mercury column²⁶.

2.1 METHODS

All chemicals used were of Analar Grade.

2.2 Synthesis Of 2-(3,4,5 Tri Methoxybenzylidene Amino)-2-Methyl Propan-1-ol

Imine derivative of AMP was synthesized by adding 0.05moles 3,4,5-Trimethoxybenzaldehyde (merk) to a mixture of 50ml of methanol and 2-Amino-2-methyl-1-propanol 5ml; 0.05mole and 50ml of distilled water. The mixture of reactants was poured into a clean 250 ml RB flask and stirred well with magnetic stirrer. Then the reaction mixture was refluxed for 8 hours. A yellow colored product was formed. It was separated by filtration and washed several times with hot water and methanol and dried in vacuum. This product was recrystallized from methanol²⁵. The percentage of yield

was 70% and melting point of the compound was 82°C. Schiff bases were used as complexing agents. As the ligands were not freely soluble in water, 40% V/V DMF -water medium was maintained uniformly throughout the experiment to establish the complexation towards Cadmium.

3. STATISTICAL ANALYSIS

The data obtained was analyzed by using DeVries and Kroon²⁷ method is used to arrive at the number of electrons involved in reduction. The heterogeneous rate constant ($k_{f,h}$) calculated from the Meites-Israel equation²⁸, Graphs were drawn by using MS excel. Functions of $[x]$, $F1[x]$ and $F2[x]$, $F3[x]$ and $F4[x]$ were computed by deford-hume formulation.

4. RESULTS AND DISCUSSION

The IR spectra of the newly synthesized Schiff base was recorded in KBr Pellets in the IR range of 4000-400 cm^{-1} and IR data establishes the Molecular structure of. 3420 cm^{-1} (intramolecular H- bonding), 3020 cm^{-1} (Ar-H, stretching), 2929 cm^{-1} (Aliphatic C-H stretching), 1568 cm^{-1} ($>\text{C}=\text{N}$ stretching), 1343 cm^{-1} (C-O stretching vibrations of Alcohol / Phenol shown in the (Fig 1).

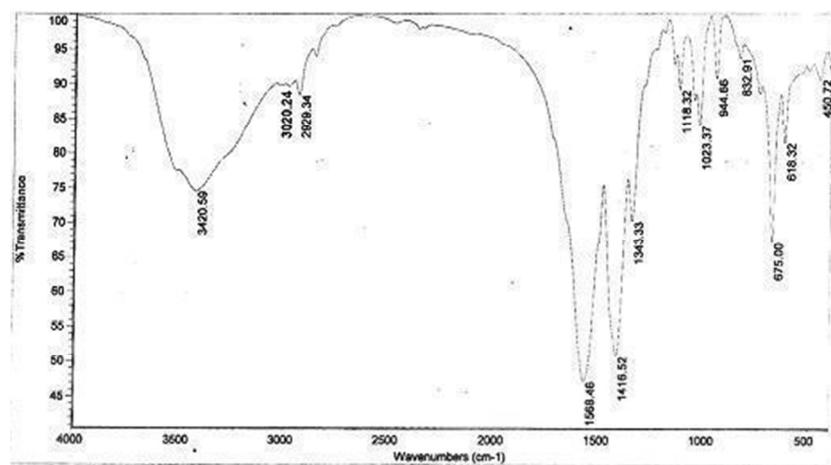
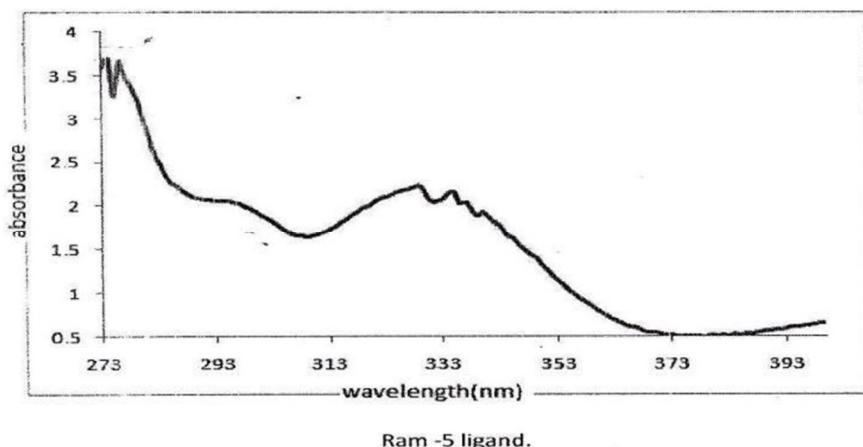
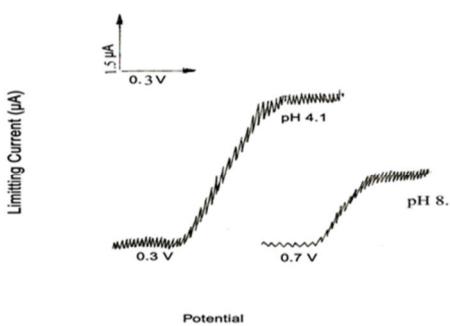


Fig 1. Infrared spectra of imine derivative of AMP




Fig 2. Electronic spectra of imine derivative of AMP

Electronic spectra (fig 2) of the TMB-AMP Schiff base in UV region show an intense band at 275 nm and weaker band at 323 nm which are assigned to the $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$

Transitions respectively¹⁵. Current voltage curves of Schiff's base ligand and Schiff's base in presence of cadmium were recorded. The results in the current voltage curves show

that the half-wave potential increases with increase in pH in the acid range but it remains unaltered in the alkaline pH range (Table;1) The plot of the half-wave potential and the pH was a straight line up to pH 8.1 and the slope lies

between 80-110 mV (fig 4) .The p values (Table-3) were low and non-integers. This confirms that the proton transfer in the reduction process was a heterogeneous process.

Fig 3.Polarograms of imine derivative of AMP at pH 4.1 and 8.1

The shift in the half-wave potentials with pH of the solution can therefore be ascribed due to the following reasons. Both protonated form and unprotonated form of the depolarizer were electro active. There exists equilibrium between

protonated and Unprotonated forms. The unprotonated form is reduced at more negative potentials than protonated form of the azomethine group¹³.

Table:1 Polarographic results of TMB-AMP in Briton Robinson buffer solutions (1x10-3 mM) Medium: Aqueous DMF (40% v/v)

pH	$E_{1/2}$ vs SCE	Limiting Current $i_l(\mu\text{A})$
2.1	0.48	3.4
3.1	0.57	3.4
4.1	0.66	3.4
5.1	0.75	3.5
6.1	0.84	3.3
7.1	0.93	3.2
8.1	1.02	3.0
9.1	1.02	3.0
10.1	1.02	3.0

The pH dependence of the half-wave potential was caused not only by the antecedent chemical acid-base reaction but also by the consumption of protons in the reduction process⁶. In the presence of electric field the inequality was observed ($\text{pHs} < \text{pHs}$) as the equilibrium shifted towards the unprotonated form²⁵, the $E_{1/2}$ remains constant. It is seen that above pH 8.1, the shift in half-wave potential with pH was not so marked as in the acidic pH range. $E_{1/2}$ – pH of Polarographic wave was $\sqrt{}$ shaped in the pH range of study. The $E_{1/2}$ becomes practically constant in the alkaline pH range and this constancy in $E_{1/2}$ may be due to the fact that both acidic and basic forms of the depolariser were electroactive. But in the pH range where the protonation rate decreases, the half-wave potentials of both the protonated form (acidic) and the unprotonated form (basic) were so close to each

other that the waves merged and a single wave was observed. $E_{1/2}$ vs pH graph consists of two linear segments intercepting each other and the point of interception of the two linear plots was approximately equal to pK_1 . The effect of mercury column height on the limiting current indicates the diffusion controlled nature of the polarographic wave¹¹. The i_l versus $h^{1/2}$ plots¹² are linear and passing through the origin. The values of $i_l/h^{1/2}$ were constant as shown in the three Polarographic reduction waves that were found to be diffusion controlled waves. The i_l versus concentration graphs were linear and passing through the origin. The constancy of i_l/C values serves not only as a test for the diffusion controlled nature of the wave but also indicates the applicability of the polarographic method for quantitative determination.

Table: 2 Effect of Mercury Column height (h) on the limiting current (i) of TMB-AMP(1x10-3 M) Medium: aqueous dimethyl formamide (40%v/v)

Mercury column height (h)(cm)	$pH = 4.1$		$pH = 8.1$	
	$i_l(\mu\text{A})$	i_l/\sqrt{h}	$i_l(\mu\text{A})$	i_l/\sqrt{h}
80	3.8	0.420	3.4	0.38
70	3.5	0.42	3.1	0.38
60	3.0	0.40	2.80	0.36
50	2.8	0.40	2.50	0.36

The experimental results observed from the effect of concentrations and mercury column height (Table-2) on the limiting current confirmed the diffusion-controlled nature of the limiting current. The electrode process was found to be irreversible at low acidic pH values unlike the reversible electrode process observed for simple azo and azomethine compounds under comparable conditions. The irreversible nature of the process observed in the present investigations was also further confirmed by The slopes of (0.08-0.15) of the semi-logarithmic plots ($E_{1/2}$ Vs $\log \frac{i_d}{i_d - i_c}$) do not confirm the values expected for two or four electrons reversible reduction processes respectively. $E_{1/2}$ shifts towards more negative potentials with increase in the depolariser concentration. The heterogeneous rate constant ($k_{f,h}^0$) calculated from the Meites-Israel equation²⁸, the $K_{f,h}^0$ values

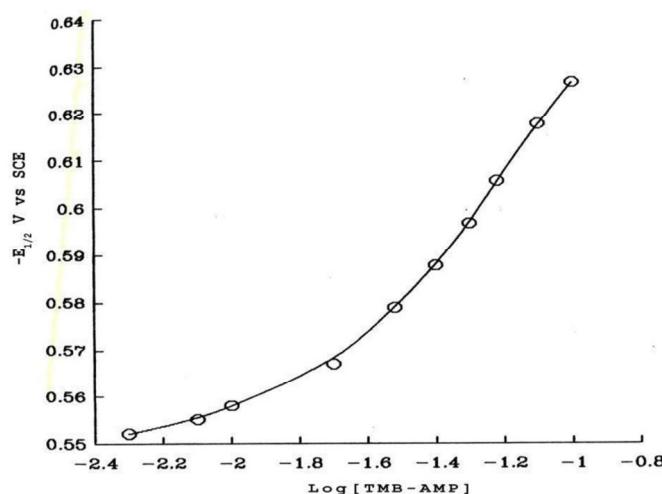

in the present investigations were less than 10^{-4} . (d) The G^* values computed from the relation $k_{f,h}^0 = KT/h \cdot \exp(-\Delta G^*/RT)$..(4) Increases in pH range 1.1 – 7.1 and remains unaltered in alkaline pH range 8.1 – 10.1. These observations suggest that the Polarographic reduction of azomethine ($>\text{C}=\text{N}-$) was found to be irreversible in nature⁶. This may be due to the presence of bulky groups at the end of the $>\text{C}=\text{N}-$ groups. A mercury pool cathode was used for determining the number of electrons (n) in the millicoulometer described by DeVris and Kroon²⁷. F_0 [x] (Fig 5), F_1 [x] (Fig 6), F_2 [x] (Fig 7), F_3 [x] (Fig 8) and F_4 [x] (Fig 9) were computed¹¹ from the $E_{1/2}$ data of Cadmium at different concentrations of the ligand (Table-4). The obtained data confirmed the 1:4 metal to ligand ratio.

Table: 3 Polarographic characteristics and kinetic parameters of TMB-AMP (1x 10-3 mM) Medium: Aqueous dimethyl formamide (40% v/v)

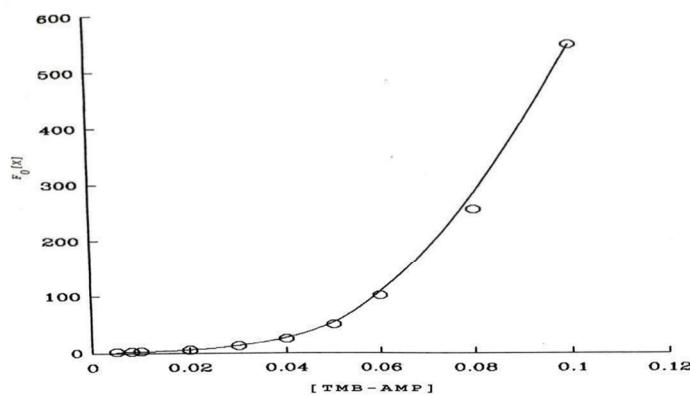
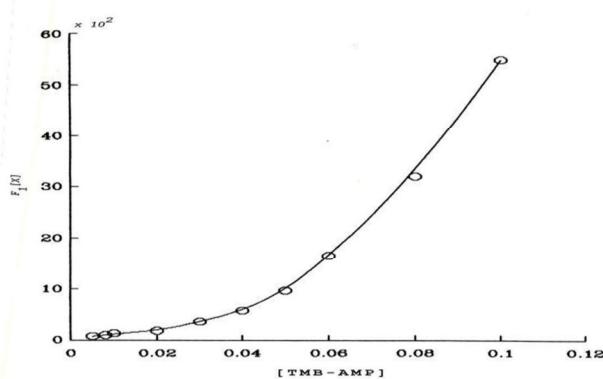
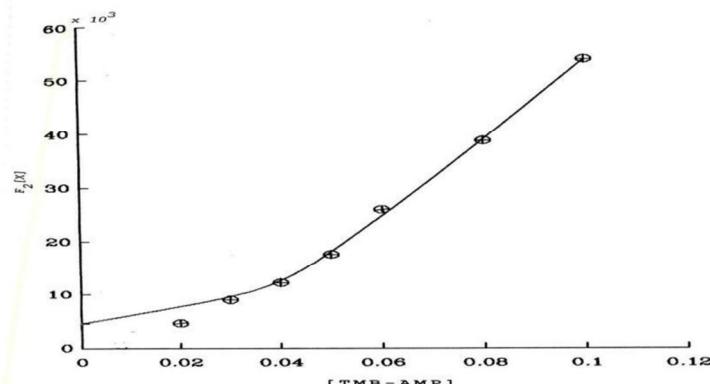
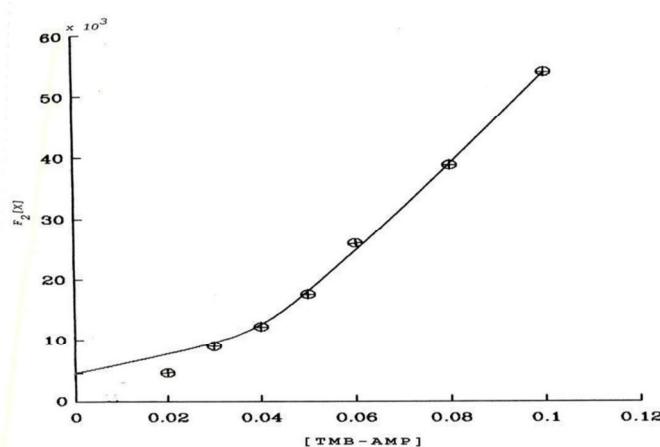

pH	$-E_{1/2}/\text{pH}$ (Mv)	α_{na}	No. of protons p	$D \times 10^{-6}$ $\text{cm}^2/\text{sec}^{-1}$	$I^* \times 10^3$	$K^0 fh \text{ cm sec}^{-1}$	$\Delta G^* \text{ k cal}$ mole^{-1}
2.1	0.086	0.41	0.51	2.85	4.04	4.25×10^{-4}	9.20
4.1	0.086	0.46	0.58	1.92	3.34	2.30×10^{-4}	9.77
6.1	0.086	0.51	0.64	1.11	2.54	1.09×10^{-4}	10.49
8.1	0.086	0.58	0.69	0.55	1.84	4.43×10^{-5}	11.04
10.1	0.086	0.58	0.69	0.55	1.84	4.25×10^{-5}	11.04

Table 4. Derived functions for Cadmium-ligand complex system = 1.0 mM $\text{pH} \beta_1 = 0.85 \times 10^2$; $\beta_2 = 4.50 \times 10^3$; $\beta_3 = 1.50 \times 10^5$; $\beta_4 = 3.48 \times 10^6$


[TMB-AMP] M	i_d μA	Slope mV	$E_{1/2}$ -V vs SCE	$\Delta E_{1/2}-V$ vs SCE	$\log I_M$ / I_c	F_0 [TMB-AMP]	F_1 [TMB-AMP] $\times 10^2$	F_2 [TMB-AMP] $\times 10^3$	F_3 [TMB-AMP] $\times 10^5$	F_4 [TMB-AMP] $\times 10^6$
0.000	5.88	29.41	0.549	-	-	-	-	-	-	-
0.005	5.52	31.82	0.552	0.003	0.0274	1.3445	0.6889	-	-	-
0.008	5.46	32.00	0.555	0.006	0.0322	1.7159	0.8949	0.5610	-	-
0.010	5.34	31.58	0.558	0.009	0.0418	2.2143	1.2143	3.6440	-	-
0.020	5.28	31.25	0.567	0.018	0.0467	4.5039	1.7519	4.5095	-	-
0.030	5.22	30.77	0.579	0.030	0.0517	11.5659	3.5220	8.9066	1.4688	-
0.040	5.10	30.00	0.588	0.039	0.0618	23.8081	5.7020	12.1301	1.9075	1.0187
0.050	4.98	30.77	0.597	0.048	0.0721	49.0307	9.6061	17.5122	2.6024	2.2048
0.060	4.92	30.43	0.606	0.057	0.0774	99.8187	16.4698	26.0330	3.5888	3.4813
0.080	4.86	29.63	0.618	0.069	0.0827	256.5098	31.9387	38.8608	4.2951	3.4939
0.100	4.56	28.57	0.627	0.078	0.1104	549.8548	54.8855	54.0855	4.9585	3.4585


Fig 4. Plot of $E_{1/2}$ vs \log [TMB-AMP] in 0.1 M KNO_3 at pH 8.0 for 1.0 mM Cadmium


Fig 5. The function of $F_0[X]$ plotted as function of ligand concentration for the Cadmium-TMB-AMP system

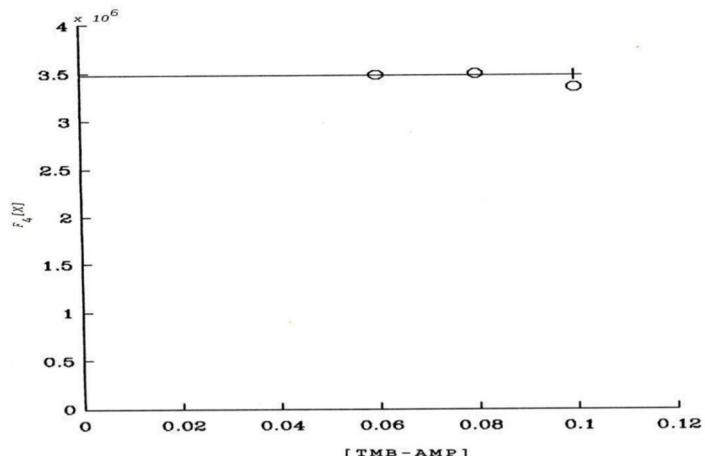

Fig 6. The function of $F_1[X]$ plotted as function of ligand concentration for the Cadmium-TMB-AMP system

Fig 7. The function of $F_2[X]$ plotted as function of ligand concentration for the Cadmium-TMB-AMP system

Fig 8. The function of $F_3[X]$ plotted as function of ligand concentration for the Cadmium-TMB-AMP system

Fig 9. The function of $F_4[X]$ plotted as function of ligand concentration for the Cadmium-TMB-AMP system

5. CONCLUSION

Present investigation of interaction of cadmium with imine derivative of amp confirmed cadmium shows weak interaction with 2-(3,4,5 trimethoxybenzylidene amino)-2-methyl propan-1-ol. This study is further useful for pharmaceutical research as replacement of 2-amino-2-methyl-1-propanol.

6. FUNDING ACKNOWLEDGEMENT

We acknowledge the resources and financial support for the study was provided by HRDG-CSIR-SRF fellowship (sanction no 09/383(0052)/2017-EMR-I). We also thankful analytical chemistry division. Department of chemistry, Sri

Krishnadevaraya University for supporting us to carrying out the study.

7. AUTHORS CONTRIBUTION STATEMENT

G.Ramamohan and P. Malleswarareddy conceptualized and gathered the data with regard to this work. Prof. J. Sreeramulu, D.Raju and N. Nagaraju analyzed these data and necessary inputs were given towards the designing of the manuscript. All authors discussed the methodology and results and contributed to the final manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

9. REFERENCES

1. Deckert Joanna. Cadmium toxicity in plants: is there any analogy to its carcinogenic effect in mammalian cells? *Biometals*. 2005 Oct 1;18(5):475-81. doi: 10.1007/s10534-005-1245-0, PMID 16333748.
2. Ishihara T, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nishijyo M, Nakagawa H, Nogawa K. Association between cadmium concentration in rice and mortality in the Jinzu River basin, Japan. *Toxicology*. 2001;163(1):23-8. doi: 10.1016/s0300-483x(01)00367-5, PMID 11376862.
3. Patel MN, Patel MM, Cassidy PE, Fitch John W. Synthesis of poly-Schiff bases and some copper(II) and manganese(II) Polychelates. *InorgChimActa*. 1986;118(1):33-5. doi: 10.1016/S0020-1693(00)86404-X.
4. Babu KS, Reddy PM, Naik VKM, Ramanjaneyulu K. Synthesis and antibacterial screening of five new azomethine derivatives of 2-amino-2-methyl-1-propanol. *Int J Pharm Sci Res*. 2019;10(9):4396-03. doi: 10.13040/IJPSR.0975-8232. 10(9).4396-03.
5. MuhonenHeikki, Borch G, Klaeboe Peter, Nielsen Per, Sjöblom Johan, Strand, T. Sukhoverkhov, V. Crystal Structures of (2Amino2-methyl-1-propanolato)chlorocopper(II) and -bromocopper(II) Tetramers. *ActaChem Scand*. 1980/01/01 VL. -. doi:10.3891/Acta.chem.scand.34a-0079;34:79-83.
6. Sreenivasulu R, Rao VSR, Reddy KH. Electrochemical behaviour and simultaneous determination of copper(II) and palladium(II) at a dropping mercury electrode in the presence of salicylaldehydetris(hydroxymethyl)methylamine. *Analyst*. 1985;110(4):411. doi: 10.1039/an9851000411.
7. Masoud, Mamdouh S, Akelah, Ahmed, Kandil Samir S. Spectroscopic and potentiometric studies of some multi dentate schiffs bases and their metal complexes. *Indian J Chem*. 1985; 24A:855-9.
8. Gasowska A, Lomozik L, Jastrzab R. Mixed-ligand complexes of copper(II) ions with AMP and CMP in the systems with polyamines and non-covalent interaction between bioligands. *J InorgBiochem*. 2000 Jan 30;78(2):139-47. doi: 10.1016/S0162-0134(99)00223-8.
9. Mayadeo MS, Nalgirkar, Jyothi V. Stability constants of some metal ion chelate Schiff's bases derived from 2-hydroxy 5- bromobenzaldehyde. *Indian J Chem*. May 1988;27A:456-7.
10. Mitra J, Metzler DE. Schiff bases of pyridoxal 5'-phosphate with Tris and glycine.

BiochimicaetBiophysicaActa (BBA) - General Subjects. 1988;965(1):93-6.
doi: 10.1016/0304-4165(88)90156-0.

11. DeFord Donald D, Hume David N. The determination of consecutive formation constants of complex ions from polarographic data. *J Am Chem Soc.* 1951;73(11):5321-2.
doi: 10.1021/ja01155a093.

12. GranbergInger, Forsling Willis, SjöbergStaffanSteimecke, Günter Hoyer Eberhard. Metal complexes with mixed ligands. 25. Complex Form Agric(I)Tris(hydroxymethyl)aminomethane--OH- System in 3.0 M (Na)ClO4 Medium, *ActaChemicaScandinavica.* 1982;36:819-24.
DOI: -. 10.3891/Acta.chem.scand.36a-0819.

13. SudhakarBabu K, Shantha K, Hari K. Nagamaddaiah., Electrochemical study of zinc(II)-(AMP) complex system. *J Electrochem Soc.* Aug 2012;61(1):9-12.

14. Canepari, Silvia, Caruncho V, Schina R, Poyhedron. Potentiometric_and_Spectrophotometric_Studies_of_Copper_II_Complexes_of_Some_Ligands_in_Aqueous_and_Nonaqueous_Solution. Elsevier Sci LDT. 1999;18(25):3263-7 (Eng).

15. Ru Jing, Zhang Ru-Fen, Shi Yang, Zhang Shao-Liang, Li Qian-Li, Ma Chun-Lin. Synthesis, structures and magnetic properties of heterobimetallicRulll-3d (3d = Mn, Ni) compounds based on the chiral Rulll building block. *New J Chem.* 2018;42(19):16237-43.
doi: 10.1039/C8NJ03747G.

16. Predragdjurdjevik. Jannikjerrum., Metal ammine formation in solutions. XXIV. The copper II and some other metal II-mono and di ethanolamine systems. *ActaChem Scand.* 1983;A37:881-90.

17. Guerrero Rios Patricia Chávez Itzel, Kermagoret Anthony, Pattacini Roberto. Nickel complexes with Phosphinito-Oxazoline ligands: temperature-controlled formation of Mono- or dinuclear complexes and catalytic oligomerization of ethylene and propylene. *Organometallics.* Mar 2009;28(6).

18. Emara Adel AA, Abou-HussenAzza AA. Spectroscopic studies of bimetallic complexes derived from tridentate or tetridentate Schiff bases of some di- and tri-valent transition metals. *SpectrochimActa A MolBiomolSpectrosc.* 2006 Jul;64(4):1010-24.
doi: 10.1016/j.saa.2005.09.010, PMID 16332449.

19. GaoJingqun, GuoYuwei, Wang Jun, Wang Zhiqiu, Jin Xudong, Cheng Chunping, Li Ying, Li Kai. Spectroscopic analyses on interaction of o-vanillin-D-phenylalanine, o-vanillin-L-tyrosine and o-vanillin-L-levodopa Schiff Bases with bovine serum albumin (BSA). *SpectrochimActa A MolBiomolSpectrosc.* 2011 Apr;78(4):1278-86.

20. Şenol C, Hayvali Z, Dal H, Hökelek T, TuncerHökelek. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes. *J MolStruct.* 2011;997(1-3):53-9.
doi: 10.1016/j.molstruc.2011.04.037.

21. Sreeramulu J, Nagaraju Reddy G et al. Synthesis and spectroscopic characterization of mo (vi) and vo (iv) new schiff base Metal complexes: biological activity. *Int J SciInnovDiscov.* 2011;1(3):372-85.

22. BakarSiti, BahronHadariah, KassimKarimah. Synthesis and characterization of a novel Schiff base derived from 2,4,6-trimethyl-m-phenylenediamine with o-vanillin and its metal complexes International Conference on Science and Social Research. COLLECTIVE for social science research; 2010,463-466. p. 2010.-doi: 10.1109/CSSR.2010.5773821.

23. Shit Shyamapada, Rosair Georgina, MitraSamiran. A new tetrานuclearcopper(II) Schiff base complex containing Cu 4O 4 cubane core: structural and spectral characterizations. *J MolStruct.* 2011;991(1-3):79-83.
doi: 10.1016/j.molstruc.2011.02.003.

24. Sam Norrihan, Affan MA, Salam MA, Ahmad FB, Asaruddin MR. Synthesis, spectral characterization and biological activities of Organotin(IV) complexes with vanillin-2-hydrazinopyridine (VHP). *Open J Inorg Chem.* 2012;02(2):22-7.
doi: 10.4236/ojic.2012.22004.

25. Babu KS, Reddy PM, Naik VKM, Ramanjaneyulu K. Synthesis and antibacterial screening of five new azomethine derivatives of 2-amino-2-methyl-1-propanol. *Int J Pharm Sci Res.* 2019;10(9):1000-07.
doi: 10.13040/IJPSR.0975-8232.10(9).1000-07.

26. Ramanjaneyulu K, Malleswara Reddy P, Murthy Naik V Krishna, Babu K Sudhakar. Stability studies of cadmium (ii) presence of 2-(3, 4-Dimethoxy benzylidene Amino)-2-methyl propane-1-ol by using dc polarography in 40% v/v methanol-water syste. *The PharmacolInnov J.* 2018;7(12):47-53. ISSN (E): 2277-7695 ISSN (P): 2349-8242.

27. Khan F. Electrochemical study and dependence of 'transition state' in Co(II) and Ni(II) complexes with some antibiotics and cephalothin. *EcletQuím.* 2007;32(3):73-83.
doi: 10.1590/S0100-46702007000300010.

28. Meites Louis, Israel Yecheskel. The calculation of electrochemical kinetic parameters from polarographic current-potential curves. *J Am Chem Soc.* 1961;83(24):4903-6.
doi: 10.1021/ja01485a008.