

Lantadenes Targeting NF-KB in Cancer: Molecular Docking and ADMET Predictions

Monika¹, Ankesh Sharma², Vaibhav Aggarwal², Manu Sharma³ and Neelima Dhingra^{1*}

¹University Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Panjab University, Chandigarh -160014, India

²Jaypee University of Information Technology, Waknaghat, Solan, India, Waknaghat, India

³Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar deemed to be University Mullana, Haryana-133207, India

Abstract: Natural products and their scaffolds encompasses an array of molecular entities as starting points for drug designing and discovery. In the past two decades, phytochemically driven Lantadenes and their modified analogues have attracted lots of attention due to their tumor necrosis factor- α induced nuclear factor-kappa B inhibition and consequently their promising anticancer potential. Earlier reports described the synthesis of esters at C-3 and C-22 of pentacyclic triterpenoid Lantadene, and their evaluation to inhibit tumor necrosis factor- α induced nuclear factor-kappa B along with cytotoxicity against A549 lung cancer cells. In the modern drug discovery process, molecular docking have become an integral part of drug design. Combination of computational platforms and experimental strategies have allowed many successful stories in the discovery of new structure-based or mechanism drugs. Thus as a continuation of our research concerning Lantadenes and their significance, present study has been undertaken to predict binding mode, pharmacokinetic and drug likeness using Vlife MDS Biopredicta and ADMETlab tools. *In silico* inspired grip docking approach was utilized to estimate binding interactions of all the optimized Lantadenes and their modified ester against nuclear factor-kappa B receptor (PDB ID: ILE9). In addition, all the compounds were screened for pharmacokinetic profile and drug likeness as an important consideration for the selection of compounds with desirable prosperities using ADMETlab tools. Ligand-receptor analysis revealed Lantadene parent nuclei and their modified analogues as potent inhibitors of nuclear factor-kappa B receptor based on binding energy (-21.16 to -42.56 kcal/mol), number of interactions and bond length. Furthermore, most of the analogues were found to have good ADMET profiles. Cumulative computational analyses provided the lead Lantadene analogue 10 and can be considered as a potential candidate for detailed mechanistic studies against lung cancer.

Keywords: Natural products, Lantadenes, NF- κ B inhibitors, lung cancer, *In silico* studies

*Corresponding Author

Neelima Dhingra , University Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Panjab University, Chandigarh -160014, India

Received On 23 August 2020

Revised On 24 October 2020

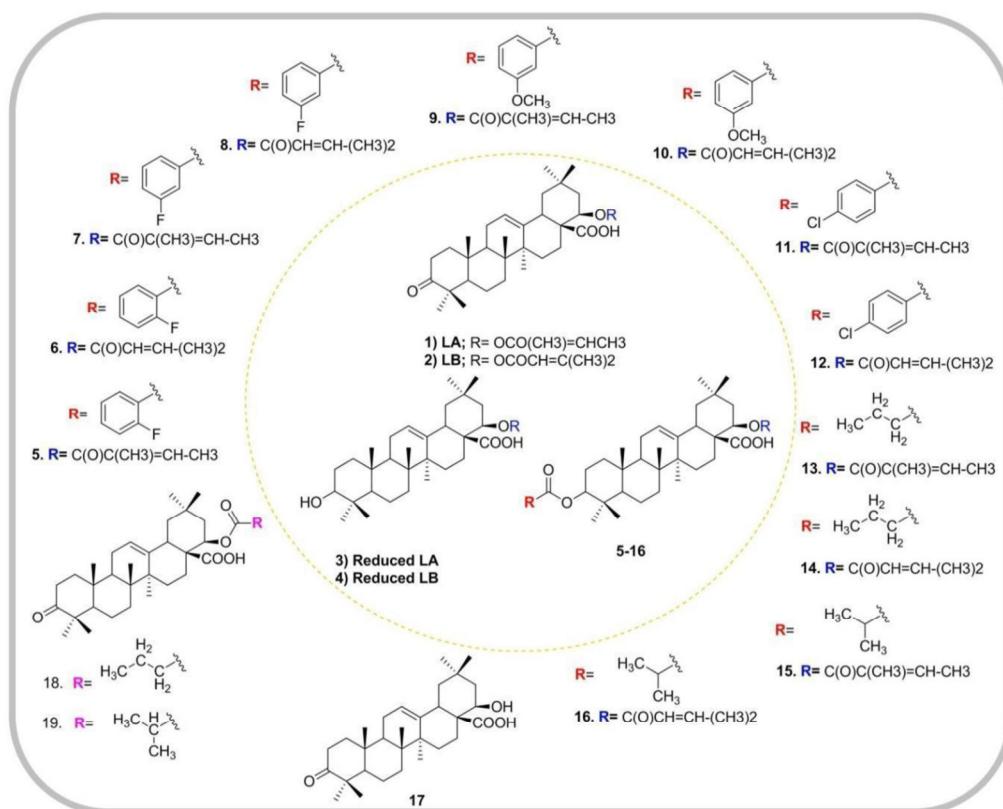
Accepted On 30 October 2020

Published On 02 March 2021

Funding This work is supported by Government of India, Ministry Of Science And Technology, Department of Science and Technology, Technology Bhawan, New Mehrauli Road, New Delhi-110016 Grant no. DST/INSPIRE Fellowship/[IFI50722]

Citation Monika, Ankesh Sharma, Vaibhav Aggarwal, Manu Sharma and Neelima Dhingra , Lantadenes targeting NF- κ B in cancer: molecular docking and ADMET predictions.(2021).Int. J. Life Sci. Pharma Res. 11(2), P114-122
<http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.2.P114-122>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)



Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

In 2018, the World Health Organization (WHO) reported around 18.1 million cases, 9.6 million deaths from cancer disease along with prediction of this number to get double in size by 2040. Lung cancer is the most commonly diagnosed (11.6% of all cases) and leading cause of death among all the cancers with approximately 18.4% of all deaths.¹ Cancer management is generally more complex than that of other diseases treatment and involve different approaches like surgery, systemic therapy, radiotherapy as well as combination therapies.²⁻³ At the molecular level, it has been established that nuclear factor-kappa B (NF-κB) is an important transcription factor linked with onset & progression of inflammation and pathophysiology of cancer, consequently over expressed in a variety of solid tumors, including lung cancer.⁴⁻⁵ Natural products and their unique structures provide a rich source of inspiration for drug development. As far as plants are concerned, weeds are relatively high in bioactive secondary compounds and hold promising roles in drug discovery. One such weed *Lantana camara* has attracted a lot of attention as a vital source of bioactive metabolites and it can be used as an important source for new pharmaceuticals for the treatment of human ailments.⁶⁻⁷ Published reports with extensive study and research findings on *Lantana camara* indicated the role of its different extracts and active secondary metabolites in rheumatism, ulcers, skin itches, leprosy, scabies, toothache, stomachache, tumors, anemia, malaria, nematicidal, bactericidal, wound healing, antihyperglycemic, antihypertensive, anticancer etc.⁸⁻⁹ Some of the metabolites like Lantadene A and B (pentacyclic triterpenoids) from the weed *Lantana camara* have been known to possess anti-antitumor potential by inhibiting cell division.¹⁰⁻¹³ *In vivo* anticancer studies has showed delayed and reduced papillomas formation, slight increase in the average body weight and increased survival rate of mice treated with

Lantadene and its congeners, in comparison to the diseased group in 2 stage carcinoma model using 7,12 dimethylbenz[a]anthracene (DMBA), and 12-O-tetradecanoylphorbol-13-acetate (TPA) as cancer inducer and promoter.¹⁴ Further, number of existing reports on Lantadenes and their derivatives with modifications at ring A and D showed marked anti-tumor and anti-inflammation potential via down-regulation of NF-κB, c-Jun, Bcl-2, and inhibiting Akt protein and NF-κB activation.¹⁵⁻²⁰ Recent work on Lantadene scaffold described the synthesis of various Lantadene modified analogues figure 1 and their evaluation as antitumor potential & inhibition of tumor necrosis factor-alpha-induced (TNF-α induced) NF-κB activation using lung adenocarcinoma A549 cell line. These analogues displayed significant anti-proliferative activity and provided us with 10 and 12 as promising candidates against lung cancer.²¹ *In silico* based virtual screening have become an integral part of academic and industrial research. One of the technique like molecular docking has been extensively used in last two decades for macromolecular targets identifications, prediction of binding affinity and activity of the molecules.²² Further, high-throughput screening have significantly increased the success rate of drug with the advances in ADME prediction tools where molecules can be exclusively accessed for their molecular structure determination, and proliferating drug likeness rapidly.²³⁻²⁴ Drug discovery and development through such search engines not only increases the reproducibility of experiments, but reduces the amount of consumables needed, and minimizes the risk of drug withdrawal from clinical trials.²⁵ Thus, as a continuation of our on-going research on Lantadene derivatives and their significant anticancer potential, in the present study, efforts have been made to get the molecular insights of drug receptor interaction i.e molecular docking, drug likeness and their ADMET predictions to optimize the pharmacophore for NF-κB inhibition.

Fig 1. Lantadenes (1-4) and their modified analogues (5-19) from published report.²¹

2. MATERIALS AND METHODS

2.1 Dataset

We have chosen the dataset of recently synthesised and evaluated Lantadenes (1-4) and their modified analogues (5-19) from the published report as indicated in Figure 1.²¹

2.2 Molecular Docking

2.2.1 Target Identification and Protein Preparation

X-ray crystal structure of NF- κ B (PDB ID: ILE9) was downloaded from a protein data bank (<http://www.rcsb.org>) complexed with co-factors. Protein structure was analyzed, reprocessed, and refined using the protein preparation protocol. Water molecules were removed from the protein structure and their valency was maintained by addition of hydrogen molecules. Further, protein structure integrity was assessed, checked, followed by the insertion of incomplete or missing residues and removal of co-factors via Loop Builder tool. The optimized receptor protein was then saved in .mol 2 format and utilized for the further studies.

2.2.2 Ligand Standardization

Two-dimensional (2D) structures of all the test compounds *i.e.* Lantadene analogues (1-19) and Bortezomib were sketched using Chem-Draw Ultra 8.0 and converted into their corresponding three-dimensional (3D) structures with the help of VLife converter module. All the molecules were energetically, geometrically minimized and optimized with default settings up to the rms gradient of 0.01 using Merck Molecular Force Field (MMFF). The conformer generated with least energy was subjected for further studies.

2.2.3 Ligand Docking

“BioPredicta module”, a comprehensive and integrated graphical user interface program of the VLife MDS 4.6, *i.e.*, was used to prepare, run, and analyze the docking simulations on the HP Pentium IV 2.80 GHz Processor/ Microsoft Win XP Home Edition system.²⁶ It is an advanced and swift tool, equipped with grip docking feature have been used to identify the critical binding mode of all of the optimized molecules against NF- κ B receptor. In drug receptor interaction studies, an optimal binding and subsequently affinity prediction with respect to ligand pose always remains an important criteria.²⁷⁻²⁸ Docking results being generated with different conformations and orientation are referred as ligand pose. Best pose identified with the least energy in terms of D score is taken forward for the subsequent analysis and identification of putative binding interactions associated with active amino acid residues of the binding domain.

2.3 ADMET Predictions

Early predictions of physicochemical properties like absorption, distribution, metabolism, excretion and toxicity (ADMET) have become a prime/ fundamental consideration to reduce the chances of drug failure at the clinical level.²⁹ Taking into consideration, a preliminary predictive *in silico* pharmacokinetic studies including absorption (Papp Caco-2 permeability; human intestinal absorption), distribution [plasma protein binding (PPB); blood brain barrier (BBB)], metabolism (P450 CYP3A4 inhibitor; P450 CYP3A4 substrate; P450 CYP2C9 inhibitor) elimination [half life time (T $\frac{1}{2}$); clearance rate (CL)], and toxicity [hERG (hERG blockers); human hepatotoxicity (H-HT); LD50 of acute toxicity (LD50); ames mutagenicity (AMES)]³⁰ are being studied for all the Lantadene analogues using ADMETlab (<http://admet.scbdd.com/>) online server.

2.4 Drug Likeness: Rule of Five

Drug discovery and development strongly rely upon optimizing ligand affinity for a specific receptor, enhancing functional potency and selectivity, and improving drug like properties for optimal pharmacokinetics and oral bioavailability.³¹ Lipinski’s “rule of five” provides an adequate set of guidelines to select the orally bioavailable drug like molecules based on their molecular weight <500 Da, number of hydrogen-bond donors <5, number of hydrogen-bond acceptors <10, and calculated octanol- water partition coefficient 1-5 and low polar surface area (tPSA < 140 Å).³² The descriptor calculations of the compounds were determined using the Vlife MDS tool.

3. RESULTS AND DISCUSSION

3.1 Molecular docking

Down-regulation of NF- κ B by Lantadenes represents a promising therapeutic approach towards the lung adenocarcinoma. Using molecular docking a core technology, authors have made efforts to understand ligand-receptor interactions, and to identify possible binding modes of all the Lantadene analogues and their corresponding interactions with NF- κ B receptor using Bortezomib as reference drug. Number of published reports indicated the role of Bortezomib in inhibition of NF- κ B activation,³³ but present study is an effort to report its potential binding interactions with NF- κ B (PDB ID: ILE9) for the first time. Table I is reflecting the hydrogen, hydrophobic, van der Waals forces and charge interactions involved with active amino acid residues of the receptor by the data set of Lantadenes (1-4), its modified analogues (5-19) and Bortezomib (reference drug).

Table I. Detailed docking parameters including D score, ligand pose and forces involved in interaction with active amino acid residues of ILE9

Ligands	Ligand pose	D score	Forces involved in interaction with active amino acid residues		
			Hydrogen bond	Hydrophobic interaction	Vander wall forces
1	6	-36.30	LEU193A 3.28 Å	GLY44A 3.28 Å, MET32A 3.20 Å	ARG30A 2.98 Å, GLY31A 2.41 Å
2	2	-42.56	-	GLY31A 2.94 Å, ARG33A 2.43 Å, ARG35A 2.18 Å	ARG35A 2.53 Å LYS28A 2.54 Å
3	24	-37.03	GLU193A 2.45 Å	ARG35A 3.52 Å MET35A 3.35 Å GLY44A 3.51 Å	LYS28A 2.60 Å ARG35 2.53 Å
4	11	-40.57	GLN29A 2.48 Å ARG30A 2.07 Å GLY31A 2.37 Å	GLU49A 2.82 Å LYS28A 2.73 Å GLY31A 3.52 Å	LYS28A 2.42 Å ARG33A 2.80 Å
5	30	-31.30	-	LYS28A 2.166 Å GLY31A 3.88 Å ARG33A 3.93 Å	GLN26A 2.84 Å LYS28A 2.40 Å GLU49A 3.74 Å
6	15	-30.94	GLN29A 1.94 Å	LYS28A 2.71 Å, AGR33A 4.1 Å	LYS28A 2.48 Å GLY31A 2.61 Å ARG33A 2.46 Å
7	27	-27.39	-	GLY31a 2.94 Å ARG33a 3.23 Å LYS195A 3.38 Å	LYS28A 2.99 Å GLN29A 2.56 Å AGR33A 3.31 Å
8	24	-26.38	-	LYS28A 2.57 Å AGR33A 3.29 Å SER51A 3.74 Å	LYS28A 2.92 Å GLY31A 2.74 Å
9	4	-37.77	ARG33A 3.523 Å ARG35A 1.70 Å	GLY31A 3.52 Å ARG35A 1.06 Å GLU193A 3.71 Å	ARG33A 2.43 Å LYS195A 2.51 Å
10	6	-40.14	ARG33A 2.36 Å ARG35 A 1.73 Å	GLY31A 3.65 Å ARG35A 2.83 Å LYS195A 3.68 Å MET 32A 3.89 Å	ARG30A 2.92 Å ARG35A 2.43 Å ALA43A 2.42 Å
11	28	-21.16	GLN29A 2.31 Å	LYS28A 1.79 Å GLY31A 3.72 Å ARG33A 3.86 Å	GLN26A 3.01 Å LYS195A 2.62 Å GLU49A 2.75 Å
12	26	-39.32	GLN29A 1.94 Å	LYS28A 2.71 Å ARG33A 3.93 Å GLU4 4.66 Å	LYS28A 2.46 Å ARG33A 2.50 Å GLU193 Å 2.43 Å
13	19	-31.95	-	LYS28A 3.41 Å GLY31A 3.28 Å ARG33A 4.22 Å	LYS28A 2.42 Å GLY31A 2.56 Å LYS195 2.40 Å
14	17	-27.62	GLN29A 2.44 Å	ARG50A 2.38 Å LYS28A 3.42 Å GLY31A 4.08 Å	LYS28A 2.62 Å ARG33 2.69 Å LYS195 2.69 Å
15	19	-38.54	-	LYS28A 2.977 Å GLY31A 3.01 Å ARG33A 3.55 Å	LYS28 A 2.44 Å GLU49 Å 3.11 Å ARG30 2.92 Å
16	20	-33.00	-	LYS28A 4.20 Å GLY31A 3.57 Å ARG30A 4.99 Å	LYS28A 2.47 Å ARG30 2.72 Å GLY31A 2.95 Å
17	14	-27.51	-	LYS28A 3.04 Å ARG33A 4.08 Å GLY31A 3.67 Å	LYS28A 2.76 Å ARG33A 2.89 Å GLY31A 2.75 Å
18	1	-36.84	-	LYS28A 2.84 Å ARG33A 3.71 Å GLY31A 3.35 Å	LYS28A 2.69 Å ARG33A 2.44 Å GLY31A 2.60 Å
19	29	-35.05	-	LYS28A 3.54 Å GLY31A 3.85 Å LYS195A 4.24 Å	LYS28A 2.88 Å ARG33 3.01 Å GLY31A 3.09 Å
Bortezomib	16	-57.97	-	LYS28A 4.08 Å, LYS28A 3.48 Å, GLY31A 3.51 Å	LYS28A 2.60 Å GLY31A 2.51 Å GLU193A 2.87 Å

In drug-receptor interactions, binding energy is indicated in terms of negative D score that reflects their binding affinity, compactness and spontaneous encroachment of the ligand towards its active site. Reference drug Bortezomib is found to interact with NF- κ B (PDB ID: ILE9) receptors and afforded a D score -57.97. Table I indicates the moderate to comparable binding affinity of Lantadenes, and their modified analogues towards the ILE9 with D score ranging from -21.16 to -42.56 kcal/mol. Moderate to good affinity has been observed for the compounds 9-10, 12, 15, 18 as indicated in table I, in comparison to parent Lantadenes (1-4) with -36.30 to 42.56 Kcal/mol, except for 5-8, 11, 13-14, 16-17 and 19 with weak affinity. The cumulative *in vitro* cytotoxicity, TNF- α induced NF- κ B activation inhibitory activities and *in silico* studies rendered us with potential molecule 10. Its high negative D score, thus high affinity towards protein ILE9:-40.14 kcal/mol is in agreement with *in vitro* studies. High affinity of this molecule can be considered on account of the significant and strong interactions including hydrogen (ARG33A 2.36 Å, ARG35 A 1.73 Å), hydrophobic (GLY31A 3.65 Å, ARG35A 2.83 Å, LYS195A 3.68 Å, MET32A 3.89 Å) and van der Waals forces (ARG30A 2.92 Å, ARG35A 2.43 Å, ALA43A 2.42 Å) in closer proximity. Further, this high activity and more negative D Score is governed on account

of involvement and interaction of 3 β -isobutyryloxy side chain at the C-22 of Lantadene analogue 10 with ARG33A, LYS195A and ALA43A with bond distance of 2.36 Å, 2.83 Å and 2.42 Å through hydrogen bond, hydrophobic and van der Waals interaction. Importance of the C-22 ester side chain is further indicated and reflected by the decreased activity of the compound 17. Without C-22 ester side chain there is absence of hydrogen bond interactions and presence of hydrophobic interaction at comparatively longer bond distance. Present observations are found to be in agreement with previous report,²¹ and suggested that the C-22 electrophilic α,β -unsaturated ester side chain seems to play a critical role in binding with active amino acid residues of the receptor corresponding to the biological activity. Consistent with our binding hypothesis, the reference drug Bortezomib was found to be engaged with different amino acid residues through hydrophobic interaction (LYS28A 4.08 Å, LYS28A 3.48 Å, GLY31A 3.51 Å) and van der Waals forces (LYS28A 2.60 Å, ASP217A 4.73 Å) affording the molecule to interact with least energy -57.97 kcal/mol. The docked complex and three-dimensional (3D) representations of the lead analogue 10 and reference drug Bortezomib are shown in Figure 2a and 2b respectively.

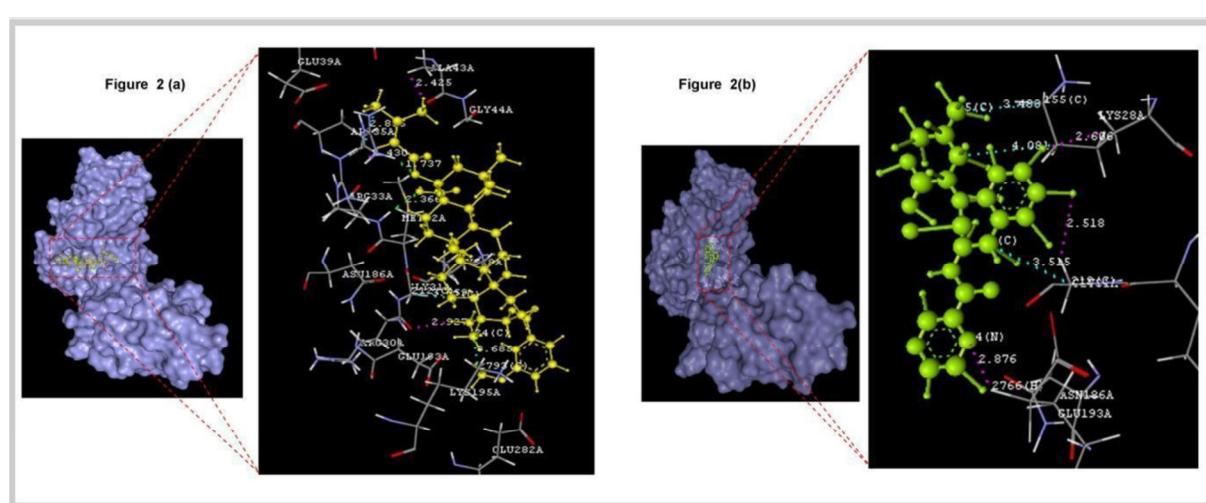


Table 2. Pharmacokinetic features (*In silico* ADMET) predictions

Ligands	Absorption		Distribution		Metabolism			Elimination		Toxicity		
	Papp (Caco-2 Permeability) cm/s	HIA (Human Intestinal Absorption)	PPB (Plasma Protein Binding) %	BBB (Blood Brain Barrier)	P450 CYP3A4 substrate	P450 CYP3A4 inhibitor	P450 CYP2C9 inhibitor	T _{1/2} (Half Life Time) hr	CL (Clearance Rate) mL/min/kg	hERG (hERG Blockers)	H-HT (Human Hepato- toxicity)	AMES (Ames Mutagenicity)
1	-5.03	+	86.84	+	+	-	-	2.00	1.42	-	-	-
2	-5.02	+	86.93	-	+	-	-	1.88	1.39	-	-	-
3	-5.24	+	87.53	-	+	-	-	2.01	1.44	-	-	-
4	-5.25	+	87.46	-	+	-	-	1.89	1.42	-	-	-
5	-5.08	+	87.62	-	+	+	-	2.38	1.39	+	-	-
6	-5.07	+	86.59	-	+	+	-	2.34	1.39	+	-	-
7	-5.08	+	87.17	+	+	+	+	2.27	1.36	+	-	-
8	-5.08	+	86.63	-	+	+	-	2.17	1.36	+	-	-
9	-5.16	+	87.57	-	+	+	+	2.45	1.35	-	-	-
10	-5.17	+	87.38	-	+	+	-	2.35	1.35	-	-	-
11	-5.08	+	87.14	-	+	+	+	2.38	1.32	-	-	-
12	-5.09	+	86.47	-	+	+	-	2.32	1.31	+	-	-
13	-5.01	+	87.04	+	+	+	-	2.12	1.32	-	-	-
14	-5.01	+	87.09	+	+	-	-	2.06	1.32	-	-	-
15	-5.01	+	87.43	-	+	+	-	2.17	1.34	-	-	-
16	-5.01	+	87.30	-	+	-	-	2.11	1.33	-	-	-
17	-5.05	+	86.34	+	+	-	-	1.95	1.38	-	-	-
18	-5.05	+	86.69	+	+	-	-	1.88	1.44	-	-	-
19	-5.04	+	84.97	+	+	-	-	1.96	1.46	-	-	-

Papp Caco-2 Permeability (Optimal: higher than -5.15 Log unit or -4.70 or -4.80); HIA (>30%: HIA is +ve; < 30%: HIA is -ve) +ve: greater affinity, -ve values: low affinity, PPB (90% Significant with drugs that are highly protein-bound and have a low therapeutic index); BBB (BB ratio ≥ 0.1 : BBB+; BB ratio < 0.1 : BBB-); T_{1/2} (> 8 h: high; 3 h $< \text{Cl} < 8$ h: moderate; < 3 h: low); CL (> 15 mL/min/kg: high; 5 mL/min/kg $< \text{Cl} < 15$ mL/min/kg: moderate; < 5 mL/min/kg: low). -ve values mean low affinity while +ve values indicate greater affinity.

Caco-2 permeability represents an important parameter to determine the oral absorption and permeability in early phases of drug design with optimal value higher than -5.15 cm/s.³⁴ All the modified Lantadene analogues (5-19) showed the permeability values in range from -5.01 to -5.25 cm/s and the lead analogue showed comparable permeability with its highest value -5.17 cm/s. In addition, all the compounds qualified HIA% with value $\geq 30\%$ a key parameter for oral bioavailability absorption related to the permeation of compounds through biological membrane under the influence of physicochemical characteristics.³⁵ PPB of drugs is a well-recognised phenomenon and plays a critical role in the dynamics of chemical inside the body.³⁶ Predicted information indicated the binding potential of all the Lantadene analogues in range of 84.97 % to 87.62% in comparison to reference value 90%, including the lead analogue 10 with comparable PPB. Another parameter BBB, as the name indicate facilitate the selective transport of drug molecule between the blood and the parenchyma.³⁷ The predicted observations indicated Lantadene (2) and their modified analogues (3-6, 8-12, 15-16) cannot cross the BBB which will add to their safety profiles. As well as, the fate of administered drugs is mainly influenced by their metabolism, that involves enzymatic modification or degradation of the drug molecules corresponding to their therapeutic response.³⁸ Table 2, is indicating the possible metabolism of the parent compounds (1-4) and their analogues with P450 CYP3A4 substrate, P450 CYP3A4 inhibitor and P450 CYP2C9 inhibitor. Positive and negative symbols against each compound reflects its metabolism by respective enzymes. All the compounds (1-19) showed low predicted $T_{1/2}$ ranging from 1.88 to 2.45 hr (>8h: high; 3h<Cl< 8h: moderate; <3h: low) and clearance rate 1.31 to 1.46 mL/min/kg w.r.t the standard values of high >15 mL/min/kg, moderate 5mL/min/kg<Cl< 15mL/min/kg, and low <5 mL/min/kg: low half time periods.^{30, 39} Drug induced toxicity is a major cause for drug withdrawal from the market and remain a key concern for the development of

novel molecules.⁴⁰ All the compounds (1-19) indicated negative test for H-HT and AMES test. Except for compounds 5-8 and 12 all the analogues showed non-toxicity towards hERG. Cumulative observations also indicated lead analogue 10 as a safe or non toxic molecule.

3.3 Drug Likeness: Rule of Five

Rule of 5 has been widely adopted and the first step filter useful in defining druggability. Molecular weight remains an important criteria and an obvious choice for absorption and permeation time as a function of drug weight. Molecular weight of all the Lantadene analogues were found in the range of 540.78 to 693.36 Da except for the molecules 18-19 (472.70 less than 500 Da) which is further in agreement with the statement that the natural driven molecules and their semi synthetic derivatives generally remained an exceptional cases among the approved drugs due to their more complex ring system. For oral drugs, log P value between 1-5 is often considered the optimal value to achieve a balance between permeability and first-pass clearance. Almost all the Lantadenes (1-19) found to deviate from the optimal range and their high logP value (log P 6.20 to 10.24) indicated the possible need of optimization of hydrophilicity profile before their preclinical or clinical evaluation. Polar surface area, a descriptor that signifies total polar surface area (tPSA) and correlates with molecular passive transport through the membrane and therefore allows the prediction of transport properties of drugs. All the molecules fall in the optimal range 77.76 to 99.13 \AA^2 in comparison to the critical value that should be <140 \AA^2 . According to the Lipinski rule of five, compounds with <5 hydrogen-bond donors and <10 hydrogen-bonds acceptors are generally considered with good absorption or permeation characteristics. Present findings indicated that all the molecules (1-19) fulfilled these criteria as indicated in table 3.

Table 3. Lipinski's rule of five: drug likeness of the compounds

Compound	Molecular weight eright	Log P	Hydrogen bond acceptor	Hydrogen bond donor	Total polar surface area
1	552.79	7.93	4	1	80.67
2	552.79	7.93	4	1	80.67
3	554.81	7.72	4	2	83.83
4	554.81	7.72	4	2	83.83
5	676.91	9.72	5	1	89.90
6	676.91	9.72	5	1	89.90
7	676.91	9.72	5	1	89.90
8	676.91	9.72	5	1	89.90
9	688.94	9.59	6	1	99.13
10	688.94	9.59	6	1	99.13
11	693.36	10.24	5	1	89.90
12	693.36	10.24	5	1	89.90
13	624.90	9.07	5	1	89.90
14	624.90	9.07	5	1	89.90
15	624.90	8.92	5	1	89.90
16	624.90	8.92	5	1	89.90
17	472.70	6.20	3	3	77.76
18	540.78	7.76	4	1	80.67
19	540.78	7.62	4	1	80.67

4. CONCLUSION

Continuing our research interests in Lantadenes and their analogues as anticancer agents, present study was an effort to get the molecular insights into ligand receptor interactions, *in silico* based pharmacokinetics and descriptors calculations. The predictive studies indicated the broader scope of Lantadenes as anticancer agents and offered compound **10** as an attractive starting point for its further evaluation and detailed mechanistic studies.

5. FUNDING ACKNOWLEDGEMENT

Authors gratefully acknowledged the Award of INSPIRE Fellowship to Ms Monika, grant no: DST/INSPIRE Fellowship/[IFI150722] from Government of India, Ministry Of Science And Technology, Department of Science and Technology, Technology Bhawan, New Mehrauli Road, New Delhi-110016.

6. AUTHORS CONTRIBUTION STATEMENT

Ms. Monika, carried out the research study, analysed & evaluated the results and drafted the manuscript. Dr. Manu Sharma has reviewed and corrected the manuscript. Current research work is an extension of the earlier published work

9. REFERENCES

1. World Health Organization. WHO report on cancer: setting priorities, investing wisely and providing care for all; 2020.
2. Kamb A, Wee S, Lengauer C. Why is cancer drug discovery so difficult? *Nat Rev Drug Discov.* 2007 Dec 8;6(2):115-20. doi: 10.1038/nrd2155, PMID 17159925.
3. Onn A, Tsuboi M, Thatcher N. Treatment of non-small-cell lung cancer: a perspective on the recent advances and the experience with gefitinib. *Br J Cancer.* 2004 Aug 1;91(2):Suppl 2:S11-7. doi: 10.1038/sj.bjc.6602062, PMID 15340373.
4. Xia Y, Shen S, Verma IM. NF- κ B, an active player in human cancers. *Cancer Immunol Res.* 2014 Sep 1;2(9):823-30. doi: 10.1158/2326-6066.CIR-14-0112, PMID 25187272.
5. Gu L, Wang Z, Zuo J, Li H, Zha L. Prognostic significance of NF- κ B expression in non-small cell lung cancer: A meta-analysis. *PLoS One.* 2018 May 29;13(5):e0198223. doi: 10.1371/journal.pone.0198223, PMID 29813121.
6. Rodrigues T. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. *Org Biomol Chem.* 2017;15(44):9275-82. doi: 10.1039/c7ob02193c, PMID 29085945.
7. Stepp JR, Moerman DE. The importance of weeds in ethnopharmacology. *J Ethnopharmacol.* 2001 Apr 1;75(1):19-23. doi: 10.1016/S0378-8741(00)00385-8, PMID 11282438.
8. Begum S, Raza SM, Siddiqui BS, Siddiqui S. Triterpenoids from the aerial parts of Lantana camara. *J Nat Prod.* 1995 Oct;58(10):1570-4. doi: 10.1021/np50124a014.
9. Ghisalberti EL. Lantana camara L. (Verbenaceae). *Fitoterapia.* 2000 Sep 1;71(5):467-86. doi: 10.1016/S0367-326X(00)00202-1.
10. Kaur J, Sharma M, Sharma PD, Bansal MP. Chemopreventive activity of lantadenes on two-stage carcinogenesis model in Swiss albino mice: AP-1 (c-jun), NF κ B (p65) and P53 expression by ELISA and immunohistochemical localization. *Mol Cell Biochem.* 2008 Jul 1;314(1-2):1-8. doi: 10.1007/s11010-008-9758-9, PMID 18425423.
11. Kaur J, Sharma M, Sharma PD, Bansal MP. Antitumor activity of lantadenes in DMBA/TPA induced skin Tumors in mice: expression of transcription factors. *Am J Biomed Sci.* 2010 Jan 5;2(1):79-90. doi: 10.5099/ajb100100079.
12. Sharma P, Bansal M, Singh J, Sharma M. Lantadene A-induced apoptosis in human leukemia HL-60 cells. *Indian J Pharmacol.* 2007 May 1;39(3):140-3. doi: 10.4103/0253-7613.33433.
13. Sharma M, Sharma PD, Bansal MP. Lantadenes and their esters as potential antitumor agents. *J Nat Prod.* 2008 Jul 25;71(7):1222-7. doi: 10.1021/np800167x, PMID 18553923.
14. Sharma M, Sharma PD, Bansal MP, Singh J. Synthesis, cytotoxicity, and antitumor activity of Lantadene-A congeners. *Chem Biodivers.* 2007 May 1;4(5):932-9. doi: 10.1002/cbdv.200790082, PMID 17511006.
15. Kumar SS, Tailor N, Lee HB, Sharma M. Reduced Lantadenes A and B: semi-synthetic synthesis, selective cytotoxicity, apoptosis induction and inhibition of NO, TNF- α production in HL-60 cells. *Med Chem Res.* 2013 Jul 1;22(7):3379-88. doi: 10.1007/s00044-012-0354-x.
16. Suthar SK, Hooda A, Sharma A, Bansal S, Monga J, Chauhan M, Sharma M. Isolation optimisation, synthesis, molecular docking and *in silico* ADMET studies of lantadene a and its derivatives. *Nat Prod*

where Monika, Ankesh Sharma and Vaibhav Aggarwal synthesized these molecules during their post graduation studies (M. Pharmacy) and Dr Manu Sharma supervised the research work. (Corresponding author) Dr. Neelima Dhingra is Ph.D. mentor of first author (Ms Monika) and present work is part of Monika PhD research outcomes. Dr Neelima has conceptualized, designed the study and guided at all stages. All the work and revision has been carried out in her supervision.

7. ACKNOWLEDGMENTS

Authors are thankful to the University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India. Authors gratefully acknowledge the grants received from the Department of Science and Technology (DST), New Delhi-India. We specially thank to Dr Amit Bedi, and Dr Kundan; Vlife Science Technologies Pvt. Ltd, Pune, India, for providing us with the Vlife MDS 4.3 software and for their continual support in the docking study.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

Res. 2020 Apr 21;34(10):1-6. doi: 10.1080/14786419.2020.1752204, PMID 32316769.

17. Tailor NK, Jaiswal V, Lan SS, Lee HB, Sharma M. Synthesis, selective cancer cytotoxicity and mechanistic studies of novel analogs of lantadenes. *Anticancer Agents Med Chem.* 2013 Jul 1;13(6):957-66. doi: 10.2174/18715206113139990127, PMID 23293887.

18. Tailor NK, Lee HB, Sharma M. Effective melanoma inhibition by synthetic pentacyclic triterpenoid 2-(3-phenylprop-2-en-1-ylidene)-22 β -hydroxy-3-oxoolean-12-en-28-oic acid: an in vitro and in vivo study. *J Environ Pathol Toxicol.* 2013 Sep 1;32(1):59-72. doi:10.1615/JEnvironPatholToxicolOncol.2013007125, PMID 23758153.

19. Sharma M, Rakhi A, Dalal N, Sharma N. Design, synthesis and evaluation of lantadeneA congener with hydroxyl functionality in ring A as an antitumour agent. *Nat Prod Res.* 2011 Feb 1;25(4):387-96. doi: 10.1080/14786411003792173, PMID 20623424.

20. Tailor NK, Boon HL, Sharma M. Synthesis and in vitro anticancer studies of novel C-2 arylidene congeners of lantadenes. *Eur J Med Chem.* 2013 Jun 1;64:285-91. doi: 10.1016/j.ejmech.2013.04.009, PMID 23644211.

21. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M. Synthesis of lantadeneanalog with marked in vitro inhibition of lung adenocarcinoma and TNF- α induced nuclear factor-kappa B (NF- κ B) activation. *Bioorg Med Chem Lett.* 2014 Aug 15;24(16):3814-8. doi: 10.1016/j.bmcl.2014.06.068, PMID 25027934.

22. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. *Curr Comput Aid Drug Des.* 2011 Jun 1;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.

23. Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. *Drug Discov Today.* 2019 May 1;24(5):1157-65. doi: 10.1016/j.drudis.2019.03.015, PMID 30890362.

24. Liotta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. *Curr Top Med Chem.* 2014 Aug 1;14(16):1923-38. doi: 10.2174/1568026614666140929124445, PMID 25262799.

25. Riniker S, Wang Y, Jenkins JL, Landrum GA. Using information from historical high-throughput screens to predict active compounds. *J Chem Inf Model.* 2014 Jul 28;54(7):1880-91.

26. Molecular docking using VLifeMDS: VLife product documentation, tutorial: Biopredicta, VLife sciences Technologies Pvt.ltd.2011; 1-17. doi: 10.1021/ci500190p, PMID 24933016.

27. Coleman RG, Carchia M, Sterling T, Irwin JJ, Shoichet BK. Ligand pose and orientational sampling in molecular docking. *PLOS ONE.* 2013 Oct 1;8(10):e75992. doi: 10.1371/journal.pone.0075992, PMID 24098414.

28. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions. *Proteins.* 2002 Jun 1;47(4):409-43. doi: 10.1002/prot.10115, PMID 12001221.

29. Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? *Nat Rev Drug Discov.* 2003 Mar 1;2(3):192-204. doi: 10.1038/nrd1032, PMID 12612645.

30. Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, Lu AP, Cao DS. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. *J Cheminform.* 2018 Dec 1;10(1):29. doi: 10.1186/s13321-018-0283-x, PMID 29943074.

31. Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. *Pharmacol Sin.* 2012 Sep 1;33(9):1131-40. doi: 10.1038/aps.2012.109, PMID 22922346.

32. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev.* 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0, PMID 11259830.

33. Roccaro AM, Vacca A, Ribatti D. Bortezomib in the treatment of cancer. *Recent Pat Anticanc Drug Discov.* 2006 Nov 1;1(3):397-403. doi: 10.2174/157489206778776925, PMID 18221049.

34. Wang NN, Dong J, Deng YH, Zhu MF, Wen M, Yao ZJ, Lu AP, Wang JB, Cao DS. ADME properties evaluation in drug discovery: prediction of Caco-2 cell permeability using a combination of NSGA-II and boosting. *J Chem Inf Model.* 2016 Apr 25;56(4):763-73. doi: 10.1021/acs.jcim.5b00642, PMID 27018227.

35. Wang NN, Huang C, Dong J, Yao ZJ, Zhu MF, Deng ZK, Lv B, Lu AP, Chen AF, Cao DS. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. *RSC Adv.* 2017 Mar 29;7(31):19007-18, doi: 10.1039/C6RA28442F.

36. Clark DE. In silico prediction of blood-brain barrier permeation. *Drug Discov Today.* 2003 Oct 15;8(20):927-33. doi: 10.1016/S1359-6446(03)02827-7.

37. Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. *J Neurochem.* 1998 May 1;70(5):1781-92. doi: 10.1046/j.1471-4159.1998.70051781.x

38. Kazmi SR, Jun R, Yu MS, Jung C, Na D. In silico approaches and tools for the prediction of drug metabolism and fate: a review. *Comput Biol Med.* 2019;106:54-64. doi: 10.1016/j.combiomed.2019.01.008.

39. Watanabe R, Ohashi R, Esaki T, Kawashima H, Natsume-Kitatani Y, Nagao C, Mizuguchi K. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor [Sci Rep:18782]. *Sci Rep.* 2019 Dec 11;9(1):18782. doi: 10.1038/s41598-019-55325-1, PMID 31827176.

40. Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. *Front Chem.* 2018 Feb 20;6(1):30. doi: 10.3389/fchem.2018.00030, PMID 29515993.