

Simultaneous Determination of Dolutegravir and Lamivudine in Human Plasma by LC-MS/MS

***Banothu Bhadru^a , V.Venkata Rao^b and Suryadevara Vidyadhara^b**

^aResearch Scholar, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

^bDepartment of Pharmaceutical analysis, Chebrolu Hanumaih Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur, Andhra Pradesh, India-522019.

Abstract: A rapid, simple, sensitive and selective LC-MS/MS method has been developed and validated for quantification of the Dolutegravir and Lamivudine in plasma samples. The analytical procedure involves a liquid-liquid extraction method using Emtricitabine as an internal standard (IS). The precision and accuracy data have to fulfill the requirements for quantification of the analytes in biological matrices to generate data for bioequivalence and bioavailability investigations. The chromatographic separation was achieved on a Hypurity Advance (4.6, 50 mm, 5 μ) column using a mobile phase consisting of 0.1% formic acid buffer-acetonitrile (20:80, v/v) at flow rate of 0.8 mL/min. The API-4000 LC-MS/MS was operated in the multiple-reaction monitoring mode using electrospray ionization. The total run time of analysis was 3 min and elution of Dolutegravir, Lamivudine and Emtricitabine (IS) occurred at 1.06, 1.84 and 0.92 min, respectively. A detailed validation of the method was performed as per the US Food and Drug Administration guidelines. The method was validated in terms of linearity, accuracy, precision, specificity, limit of detection and limit of quantitation. The standard curves found to be linear in the range of 0.10–30.0 ng/mL for Dolutegravir and 20.2–6026 ng/mL for Lamivudine, with a coefficient of correlation of =0.99 for both the compounds. Dolutegravir and Lamivudine were found to be stable in a plasma stability studies, viz. bench-top, autosampler, re-injection, wet-extract and repeated freeze-thaw cycles. The coefficient of variation was \pm 15% for intra- and inter-batch assays. The assay is suitable for pharmacokinetic study samples as demonstrated by its specificity, precision, accuracy, recovery, and stability characteristics.

Keywords: Dolutegravir and Lamivudine; Emtricitabine; plasma; Method validation; LC-MS/MS; Pharmacokinetics

***Corresponding Author**

Banothu Bhadrua , V , Research Scholar, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

Received On 23 March 2020

Revised On 31 July 2020

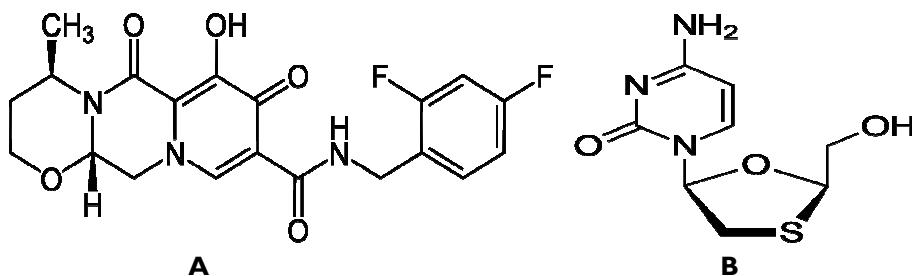
Accepted On 23 September 2020

Published On 02 April 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Banothu Bhadrua , V.Venkata Rao^b, Suryadevara Vidyadhara^b , Simultaneous Determination of Dolutegravir and Lamivudine in Human Plasma by LC-MS/MS.(2021).Int. J. Life Sci. Pharma Res. 11(2), P90-97 <http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.2.P90-97>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)



Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

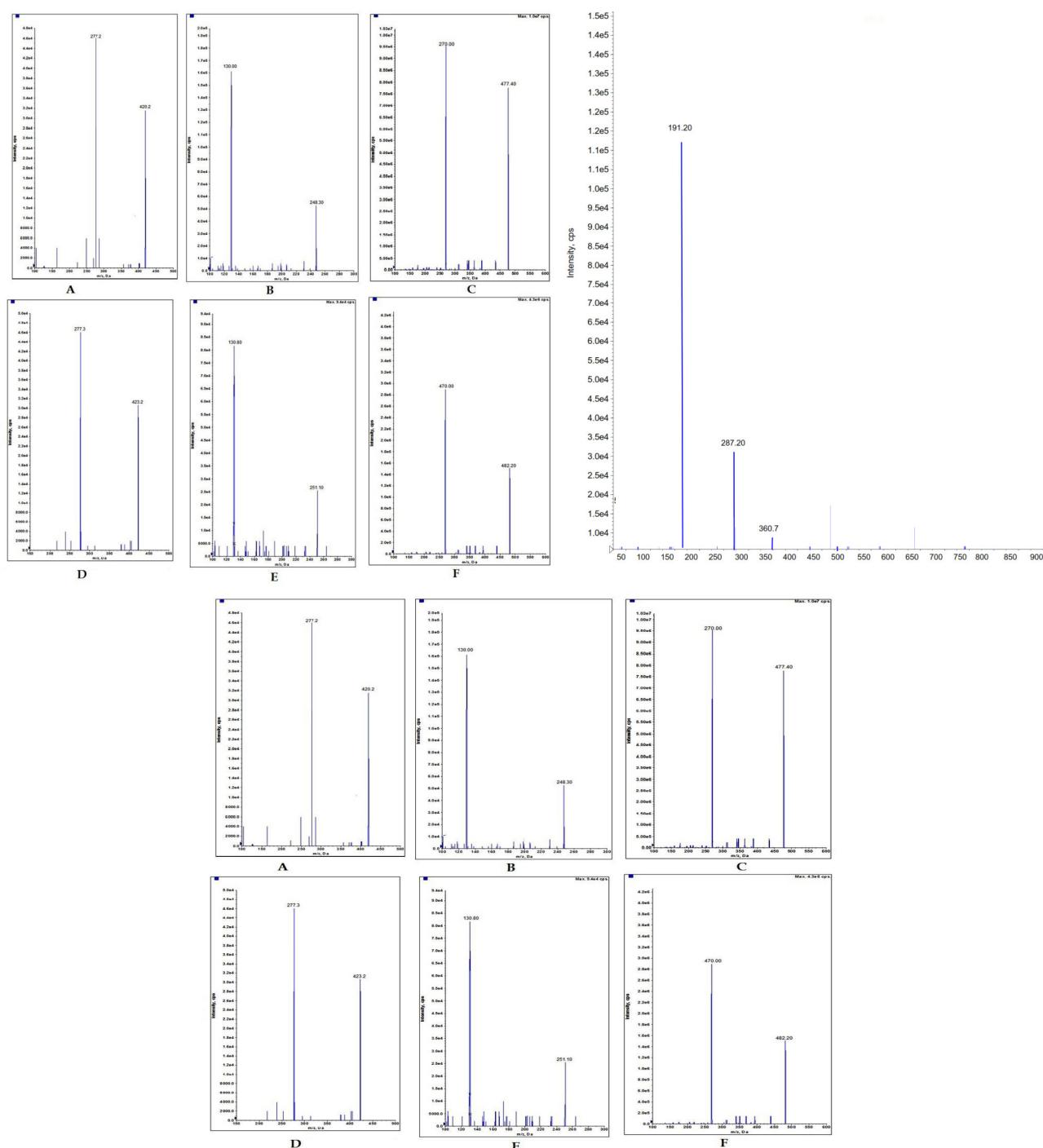
Human immunodeficiency virus (HIV) treatment has improved significantly since from 29 years. Whereas the first therapies emerged in the 1980s. Current drug regimens offer patients durability and improved conveniences so that HIV is now a chronic, rather than a life-threatening, disease. The life expectancy of people living with HIV has dramatically increased, for example, life expectancy at age 20 for individuals with HIV living in California in 2011 has been estimated at 33 - 53 years. As the life expectancy of people living with HIV increases with the age of 34. In addition to carrying HIV, develop age-related comorbidities, such as diabetes¹⁻³. In the age of 35, people living with HIV, these comorbidities are more prevalent and can occur at a 36 years age than in the general population. Polypharmacy, in the aging HIV population, leads to an increased risk for drug-drug interactions. The aim of development of new therapies include reducing adverse effects and undesirable drug

interactions, and increasing convenience and ease of administration, while maintaining efficacy⁴. Lamivudine, commonly called 3TC, is an antiretroviral medication used to prevent and treat HIV/AIDS. The chemical name of Lamivudine is (2R,cis)-4-amino-1 (2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. Lamivudine, chemically the (-) enantiomer of a dideoxy analogue of cytidine. Lamivudine has also been referred to as (-)2',3'-dideoxy, 3' thiacytidine. It has a molecular formula of C₈H₁₁N₃O₃S and a molecular weight of 229.3 g per mol⁵. Dolutegravir, is an antiretroviral medication used, together with other medication, to treat HIV/AIDS. The chemical 332 name of Dolutegravir sodium is sodium (4R,12aS)-9-[(2,4-difluorophenyl)methyl]carbamoyl]-3334-methyl-6,8-dioxo-3,4,6,8,12,12a-hexahydro-2H-pyrido [1',2':4,5]pyrazino[2,1-b][1,3]oxazin-7-334 olate. The empirical formula is C₂₀H₁₈F₂N₃NaO₅ and the molecular weight is 441.36 g/mol⁶.

Fig1. Chemical structures of A) Dolutegravir B) Lamivudine

Literature survey reveals that various UV-VIS spectroscopy⁷⁻⁸, HPTLC⁹, HPLC¹⁰⁻¹³, LC-MS¹⁴⁻³⁰ methods have been reported individually for the estimation of Dolutegravir and Lamivudine. None of the methods were reported for simultaneous estimation of Dolutegravir and Lamivudine. The present study illustrates development and validation of a simple, accurate and precise procedure for Development and validation of bio-analytical method for the simultaneous estimation of Dolutegravir and Lamivudine biological matrices by LC-MS/MS.

2. MATERIALS AND METHODS


2.1 HPLC operating conditions

A Shimadzu LC-20 AD Series HPLC system (Shimadzu Corporation, Kyoto, Japan) was used to inject 20 mL aliquots of the processed samples on a Hypurity Advance column (4.6, 50 mm, 5 μ), which was kept at ambient temperature. The isocratic mobile phase, a mixture of acetonitrile-

0.1%formic acid (80:20, %v/v) was filtered through a 0.45mm membrane filter (Millipore, USA), then degassed ultrasonically for 5 min and delivered at a flow rate of 0.8 mL/min into the mass spectrometer electrospray ionization chamber.

2.2 Mass spectrometry operating conditions

Quantitation was achieved with MS/MS detection in positive ion mode for the analytes and IS using a MDS Sciex API-4000 mass spectrometer at C. The ion spray voltage was set at 5500 V. The source parameters, viz. the nebulizer gas, curtain gas, auxiliary gas and collision gas, were set at 40, 20, 45 and 8 psi, respectively. The compound parameters viz. the declustering potential, collision energy, entrance potential and collision cell exit potential were 60, 30, 10 and 8 V for Dolutegravir, 80, 30, 10 and 10 V for Lamivudine 54, 34, 10 and 12 for Emtricitabine (Internal standard-IS), respectively. MRM ions were identified as m/z 420.20 and 192.20 for Dolutegravir, m/z 287.20 and 130.0 for Emtricitabine.

Fig 2. Mass Spectra of Q1→Q3 A) Dolutegravir B) Lamivudine C) Emtricitabine (Internal Standard).

2.3 Experimental

2.3.1 Chemicals and reagents

The reference standards of Dolutegravir (97.9%), Lamivudine (99.5%) and Emtricitabine (Internal standard-IS) (95.7%) were purchased from Neucon Pharma Private Limited, Goa, India. Chemical structures are presented in Fig.1. Water used for the LC-MS/MS analysis was prepared from a Milli-Q water purification system procured from Millipore (Bangalore, India). All chemicals used in this research were HPLC grade

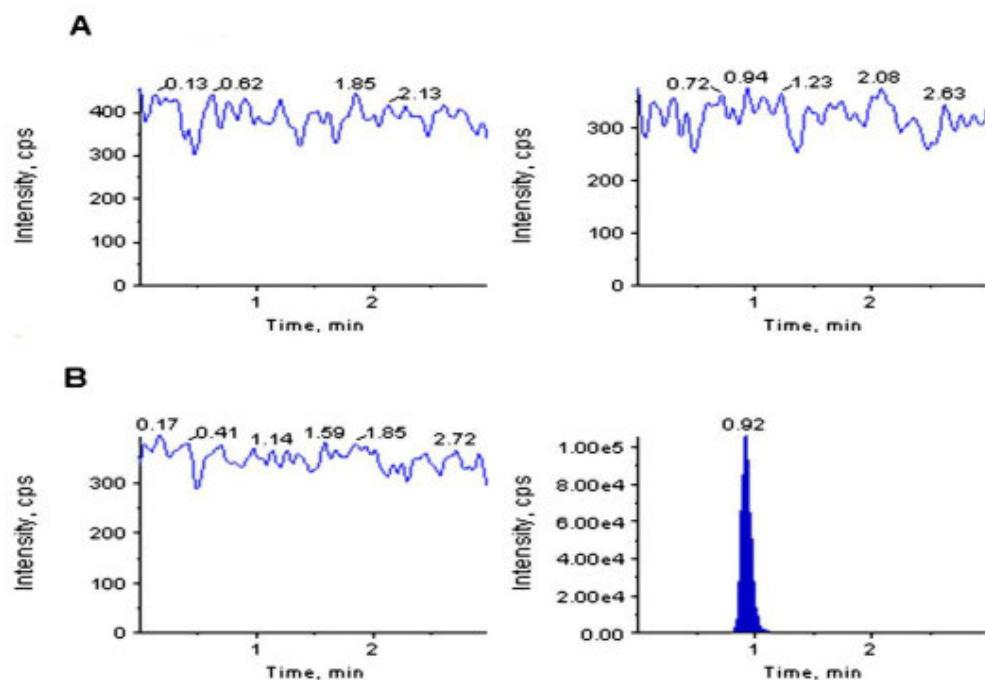
2.3.2 Preparation of stock solutions of analytes and IS

The primary stock solutions of Dolutegravir and Lamivudine were prepared in methanol and the stock solutions of Dolutegravir and Lamivudine and Emtricitabine (IS) were

stored at 2–8° C. They were consecutively diluted with methanol: water (50:50, %v/v) to prepare working solutions for preparation of calibration curve standards. Another set of working stock solutions of Dolutegravir and Lamivudine was made in methanol: water for preparation of QC samples. Working stock solutions were stored at 2–8° C.

2.3.3 Preparation of calibration curve and quality control samples

Calibration curve samples were prepared by spiking 200 mL of control human plasma with the appropriate working solutions of the Dolutegravir and Lamivudine was prepared in combination (50 mL). Calibration curve standards consisting of a set of 10 non-zero concentrations at 0.10–30.0 ng/mL for Dolutegravir and 20.2–6026 ng/mL for Lamivudine were prepared. Portion of 250 mL plasma samples transferred to freshly PP (poly propylene) tubes. The

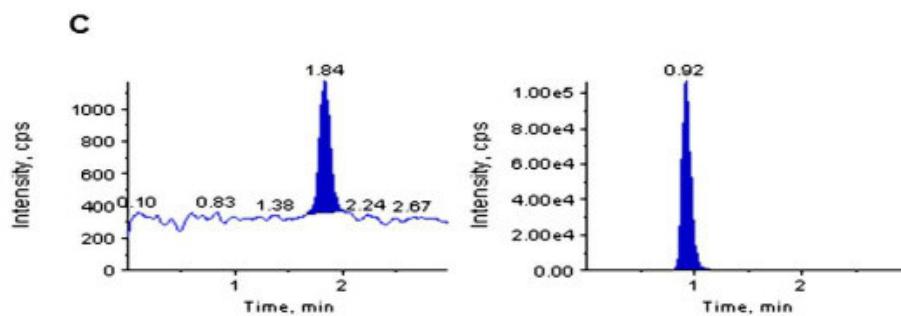

QCs prepared for each analyte were: for Dolutegravir, 0.10 (lower limit of quantization, LLOQ), 0.30 (low quality control, LQC), 4.96 (medium quality control, MQC1), 17.7 (MQC2) and 24.6 ng/mL (high quality control, HQC); and for Lamivudine, 21.0 (LLOQ), 60.8 (LQC), 1014 (MQC1), 3621 (MQC2) and 5030 ng/mL (HQC). All the samples were stored at -70 degree. 0.10–30.0 ng/mL for Dolutegravir and 20.2–60.26 ng/mL for Lamivudine.

2.3.4 Sample preparation

A simple liquid–liquid extraction method was followed for extraction of Dolutegravir and Lamivudine from human plasma. To an aliquot of 250 mL plasma, working solution of Emtricitabine (IS) (25 mL of 5000 ng/mL) and 25 mL of 100 % formic acid were added and mixed for 15 s on a cyclomixer (Remi Instruments, Mumbai, India). After the addition of 5 mL of ethyl acetate, the samples were placed on a reciprocating shaker for 15 min at 200 rpm, followed by centrifugation for 10 min at 4000 rpm on a Multifuge 3SR at 4 deg (Heraus, Germany). The supernatant was dried and reconstituted in mobile phase.

2.4 Method validation

In selectivity, the endogenous matrices interference was less than 20%. The precision of the method acceptable in range less than 20%. The Linearity curve shows regression >0.998 for Dolutegravir and Lamivudine in the concentration ranges 0.10–30.0 and 20.2–6026 ng/mL. In stability experiments, QC shows %CV less than 15% indicates analytes were stable in biological samples.


3. RESULTS

3.1 Method development

Mass parameters were optimized in both positive and negative ionization modes for the analytes and Emtricitabine (IS). Good response was found in positive ionization mode. Data from multiple reaction monitoring was considered to obtain better selectivity. Use of a buffer with formic acid helped to achieve a good response for MS detection in the positive ionization mode. The chromatographic separation was achieved with 0.1% Formic acid and Acetonitrile (20:80%v/v) using analytical column Hypurity Advance, 50, 4.6mm, 5 mm at flow of 0.8ml/min. The analytes were eluted at 1.06, 1.84 and 0.92 min for Dolutegravir, Lamivudine and Emtricitabine (IS). During extraction, among the different solvents checked alone and in combination for their suitability, ethyl acetate was found to be optimal. It can produce a clean chromatogram for a blank sample and yields the highest recovery for the analytes from the plasma. Isotope-labelled analyte was not available to serve as IS, so in the initial stages of this work, several compounds were investigated to find a suitable IS and finally Emtricitabine was found to be best for the present purpose. Extraction recovery of the IS was almost the same as that of the analytes.

3.2 Selectivity and chromatography

As shown in Fig. 2 and 3, no significant direct interference in the blank plasma traces was observed from endogenous substances in drug-free plasma at the retention times of the analytes and Emtricitabine (IS).

Fig 3. Typical MRM chromatograms of Lamivudine (left panel) and Emtricitabine (IS) (right panel) in (A) human blank plasma, (B) human plasma spiked with IS and (C) an LLOQ sample along with Emtricitabine (IS).

3.3 Sensitivity

The lowest limit of reliable quantification for the analytes was set at the concentration of the LLOQ. The precision and accuracy at LLOQ concentration were found to be 3.10 and 100 %, and 4.07 and 102 % for Dolutegravir and Lamivudine, respectively.

3.4 Extraction efficiency

The method shows good recovery using LLE method and mean overall recovery of Dolutegravir, Lamivudine was 77.85 % and 80.96 %, respectively.

3.5 Matrix effect

No significant matrix effect was observed in all the six batches of human plasma for the analytes at LQC and HQC concentrations respectively. Similarly, the precision and accuracy for Dolutegravir & Lamivudine at HQC concentration were found to be 1.11 & 98.2 %, and 1.36 & 100 %, respectively.

3.6 Linearity

The 10-point calibration curve 0.10, 0.20, 0.50, 1.01, 2.01, 4.02, 8.04, 16.0, 24.0 and 30.0 ng/mL for Dolutegravir; 20.2, 40.4, 101, 202, 404, 807, 1615, 3230, 4821 and 6026 ng/mL for Lamivudine) was constructed by plotting the peak area ratio of analyte-IS against the nominal concentration of calibration standards in human plasma. Following the evaluation of different weighting factors, the results were fitted to linear regression analysis with the use of a $1/x^2$ (where x is the concentration) weighting factor. The mean correlation coefficient of the weighted calibration curves generated during the validation was ≥ 0.998 .

3.7 Precision and accuracy

As shown in Table 1 and 2, the precision and accuracy of each analyte in the intra-day and inter-day runs were within 15 % at LQC, MQC-1, MQC-2 and HQC concentrations and within 20 % at LLOQ QCs.

Table 1. Intraday P&A for Dolutegravir and Lamivudine

Intraday P&A	Dolutegravir				
	Nominal Conc.(ng/mL)				
	LLOQ QC	LQC	MQC1	MQC2	HQC
	0.103	0.297	4.955	17.698	24.581
Mean	0.1057	0.2965	4.9763	18.0650	25.0481
SD	0.00561	0.00967	0.22456	0.61788	0.75883
% CV	5.31	3.26	4.51	3.42	3.03
% Nominal	102.57	99.84	100.43	102.07	101.90
Intraday P&A	Lamivudine				
	Nominal Conc.(ng/mL)				
	LLOQ QC	LQC	MQC1	MQC2	HQC
	21.017	60.840	1014.000	3621.428	5029.761
Mean	20.3415	59.1983	981.3520	3550.3803	5094.5079
SD	1.53393	3.96304	71.54628	169.76598	161.50765
% CV	7.54	6.69	7.29	4.78	3.17
% Nominal	96.79	97.30	96.78	98.04	101.29

Table 2. Interday P&A for Dolutegravir and Lamivudine

Between Batch/ Intraday P&A	Dolutegravir				
	Nominal Conc.(ng/mL)				
	LLOQ QC	LQC	MQC1	MQC2	HQC
	0.103	0.297	4.955	17.698	24.581
Mean	0.1035	0.2983	4.9575	18.0619	25.1560
SD	0.00474	0.00858	0.16602	0.39970	0.57117

% CV	4.58	2.88	3.35	2.21	2.27
% Nominal	100.49	100.43	100.05	102.06	102.34
Lamivudine					
Nominal Conc. (ng/mL)					
Between Batch/ Intraday P&A	LLOQ QC	LQC	MQC1	MQC2	HQC
	21.017	60.840	1014.000	3621.428	5029.761
Mean	20.7383	59.8393	1016.5092	3518.9283	5078.8632
SD	1.18367	2.72295	86.61183	127.61869	123.48108
% CV	5.71	4.55	8.52	3.63	2.43
% Nominal	98.67	98.36	100.25	97.17	100.98

3.8 Dilution integrity

The upper concentration limits can be extended to 48.0 ng/mL for Dolutegravir and 9642 ng/mL for Lamivudine by 1:2 and 1:4 dilutions with order to depict the plot with clarity having mean SD values of screened human blank plasma. The mean back-calculated for 1:2 and 1:4 dilution samples were within 85–115% of their nominal value. The coefficients of variation (%CV) for 1:2 and 1:4 dilution samples were less than 10% for both the analytes.

3.9 Stability studies

In the different stability experiments carried out, viz. bench-

top stability (12 h), autosampler stability (50 h), repeated freeze-thaw cycles (five cycles), re-injection stability (30 h), wet-extract stability (48 h at 2–8 Deg) and long-term stability at 70 deg for 60 days, the mean percentage nominal values of the analytes of the biological matrices were found to be within 15% of the predicted concentrations for the deter- for the analytes at their LQC and HQC levels (Table-3). Thus, determination of Dolutegravir and Lamivudine concentrations in human plasma for the results were found to be within the acceptable limits during entire validation.

Table 3. Stability Data of Dolutegravir and Lamivudine

Bench top Stability	Dolutegravir		Lamivudine	
	Nominal Conc. (ng/mL)			
	LQC	HQC	LQC	HQC
	0.297	24.581	60.840	5029.761
Mean	0.2992	25.0048	61.8172	5010.4187
SD	0.00853	0.14577	1.77125	112.53717
% CV	2.85	0.58	2.87	2.25
% Stability	100.74	101.72	101.61	99.62
AutoSampler Stability	Dolutegravir		Lamivudine	
	Nominal Conc. (ng/mL)			
	LQC	HQC	LQC	HQC
	0.297	24.581	60.840	5029.761
Mean	0.2957	25.4532	60.1567	5086.3437
SD	0.01206	0.37314	1.17684	97.60966
% CV	4.08	1.47	1.96	1.92
% Stability	99.55	103.55	98.88	101.12
Freeze-Thaw Stability	Dolutegravir		Lamivudine	
	Nominal Conc. (ng/mL)			
	LQC	HQC	LQC	HQC
	0.297	24.581	60.840	5029.761
Mean	0.2952	25.3370	59.8078	5119.6210
SD	0.01115	0.64439	1.40302	227.89192
% CV	3.78	2.54	2.35	4.45
% Stability	99.39	103.08	98.30	101.79
Long term Stability	Dolutegravir			
	Nominal Conc. (ng/mL)			
	LQC	HQC	LQC	HQC
	0 Day (PA BATCH-I)		60 Days	
	0.297	24.581	0.297	24.581
Mean	0.2944	25.1164	0.2908	24.9747
SD	0.01177	1.11180	0.01246	0.25357
% CV	4.00	4.43	4.28	1.02
% Stability	99.11	102.18	97.90	101.60
Long term Stability	Lamivudine			
	Nominal Conc. (ng/mL)			
	LQC	HQC	LQC	HQC

	0 Day (PA BATCH-I)	60 Days	
60.840	5029.761	60.840	5029.761
Mean	58.4965	5031.1562	59.2140 5012.1845
SD	4.88222	185.63470	1.83798 166.72356
% CV	8.35	3.69	3.10 3.33
% Stability	96.15	100.03	97.33 99.65

4. DISCUSSION

There are as yet no published methods available for the simultaneous quantification of Dolutegravir and Lamivudine in any of the biological matrices. Validated methods are essential for the determination of Dolutegravir and Lamivudine concentrations in human plasma for bioequivalence studies. To the best of our knowledge and from previous earlier studies, this entire validation is the first report on the simultaneous analysis of Dolutegravir and Lamivudine in human plasma. The projected method is simple, rugged and rapid with a short run time of 3 min for each sample analysis. The method for the determination of Dolutegravir and Lamivudine in plasma has good sensitivity (LLOQ 0.10 ng/mL for Dolutegravir and a 20.2 ng/mL Lamivudine) and uses a single IS with a simple sample preparation.

5. CONCLUSION

The LC-MS/MS assay presented in this paper is rapid, simple, specific and sensitive for quantification of Dolutegravir and

Lamivudine in plasma. It is fully validated according to commonly accepted FDA guidelines. The extraction method gave consistent and reproducible recoveries for the analytes and IS from liquid extraction and sample turnover rate of less than 3 min per bioanalysis of Dolutegravir and Lamivudine. From the results it is evident that, the developed method is selective, precise and robust and stable and it can be applicable in pharmacokinetic studies for estimation of drug levels in various biological matrices.

6. AUTHORS CONTRIBUTION STATEMENT

Dr. Venkata Rao.V conceived and designed the study; Mr.Bonthu badru performed the experiment and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

7. CONFLICT OF INTEREST

Conflict of interest declared none.

8. REFERENCES

1. Duong M, Piroth L, Peytavin G, Forte F, Kohli E, Grappin M, Buisson M, Chavanet P, Portier H. Value of patient self-report and plasma human immunodeficiency virus protease inhibitor level as markers of adherence to antiretroviral therapy: relationship to virologic response. *Clin Infect Dis*. 2001;33(3):386-92. doi: 10.1086/321876. PMID 11438909.
2. Pragst F, Balikova MA. State of the art in hair analysis for detection of drug and alcohol abuse. *Clin Chim Acta*. 2006;370(1-2):17-49. doi: 10.1016/j.cca.2006.02.019, PMID 16624267.
3. Gandhi M, Greenblatt RM. Hair it is: the long and short of monitoring antiretroviral treatment. *Ann Intern Med*. 2002;137(8):696-7. doi: 10.7326/0003-4819-137-8-200210150-00016, PMID 12379072.
4. Nakahara Y. Hair analysis for abused and therapeutic drugs. *J Chromatogr B Biomed Sci Appl*. 1999;733(1-2):161-80. doi: 10.1016/s0378-4347(99)00059-6, PMID 10572981.
5. Liu AY, Yang Q, Huang Y, Bacchetti P, Anderson PL, Jin C, Goggin K, Stojanovski K, Grant R, Buchbinder SP, Greenblatt RM, Gandhi M. Strong relationship between oral dose and tenofovir hair levels in a randomized trial: hair as a potential adherence measure for pre-exposure prophylaxis (PrEP). *PLOS ONE*. 2014;9(1):e83736. doi: 10.1371/journal.pone.0083736, PMID 24421901.
6. Bernard L, Vuagnat A, Peytavin G, Hallouin MC, Bouhour D, Nguyen TH, Vildé JL, Bricaire F, Raguin G, de Truchis P, Ghez D, Duong M, Perronne C. Relationship between levels of indinavir in hair and virologic response to highly active antiretroviral therapy. *Ann Intern Med*. 2002;137(8):656-9. doi: 10.7326/0003-4819-137-8-200210150-00009, PMID 12379065.
7. Choudhari VP, Parekar SR, Chate SG, Bharande PD, Singh RR, Kuchekar BS. Development and validation of UV-visible spectrophotometric baseline manipulation method for simultaneous quantitation of tenofovir disoproxil fumarate and emtricitabine in pharmaceutical dosage form. *J Spectrosc*. 2013;2013:1-6. doi: 10.1155/2013/146580, PMID 146580.
8. Ghorpade SA, Sali MS, Kategaonkar AH, Patel DM, Choudhari VP, Kuchekar BS. Simultaneous determination of emtricitabine and tenofovir by area under curve and dual wavelength spectrophotometric method. *J Chil Chem Soc*. 2010;55(1):115-7. doi: 10.4067/S0717-97072010000100027.
9. Joshi M, Nikalje AP, Shahed M, Dehghan M. HPTLC method for the simultaneous estimation of emtricitabine and tenofovir in tablet dosage form. *Ind J Pharm Sci*. 2009;71(1):95-7. doi: 10.4103/0250-474X.51951, PMID 20177471.
10. Venkatesan S, Kannappan N, Mannemala SS. Stability-Indicating HPLC Method for the Simultaneous Determination of HIV Tablet Containing Emtricitabine, Tenofovir Disoproxil Fumarate, and Rilpivirine Hydrochloride in Pharmaceutical Dosage Forms. *Int Sch Res Not*. 2014;2014:849149. doi: 10.1155/2014/849149. PMID 27437485.
11. Srinath A, Sneha B, Akhila A. Simultaneous estimation of lamivudine, tenofovir and efavirenz in combined tablet dosage form by RP-HPLC

- and UV-spectrophotometric method. *Int J Pharm Sci Res.* 2014;5(12):5491-7. doi: 10.13040/IJPSR.0975-8232.5(12).5491-97.
12. Seshachalam U, Haribabu B, Chandrasekhar KB. Development and validation of a stability-indicating liquid chromatographic method for determination of emtricitabine and related impurities in drug substance. *J Sep Sci.* 2007;30(7):999-1004. doi: 10.1002/jssc.200600429, PMID 17566333.
13. Devrakhakar PS, Borkar R, Shastri N, Surendranath KV. A Validated Stability-Indicating RP-HPLC Method for the Simultaneous Determination of Tenofovir, Emtricitabine, and a Efavirenz and Statistical Approach to Determine the Effect of Variables. *ISRN Chromatogr.* 2013;2013:1-8. doi: 10.1155/2013/878295.
14. D'Avolio A, Simiele M, Siccardi M, Baietto L, Sciandra M, Oddone V, Stefani FR, Agati S, Cusato J, Bonora S, Di Perri G. A HPLC-MS method for the simultaneous quantification of fourteen antiretroviral agents in peripheral blood mononuclear cell of HIV infected patients optimized using medium corpuscular volume evaluation. *J Pharm Biomed Anal.* 2011;54(4):779-88. doi: 10.1016/j.jpba.2010.10.011, PMID 21071165.
15. Gomes NA, Vaidya VV, Pudage A, Joshi SS, Parekh SA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of tenofovir and emtricitabine in human plasma and its application to a bioequivalence study. *J Pharm Biomed Anal.* 2008;48(3):918-26. doi: 10.1016/j.jpba.2008.07.022, PMID 18783908.
16. Kromdijk W, Pereira SA, Rosing H, Mulder JW, Beijnen JH, Huitema AD. Development and validation of an assay for the simultaneous determination of zidovudine, abacavir, emtricitabine, lamivudine, tenofovir and ribavirin in human plasma using liquid chromatography-tandem mass spectrometry. *J Chromatogr B Analys Technol Biomed Life Sci.* 2013;919-920. doi: 10.1016/j.jchromb.2013.01.005, PMID 23411018.
17. Estrela RC, Ribeiro FS, Seixas BV, Suarez-Kurtz G. Determination of lopinavir and ritonavir in blood plasma, seminal plasma, saliva and plasma ultra-filtrate by liquid chromatography/tandem mass spectrometry detection. *Rapid Commun Mass Spectrom.* 2008;22(5):657-64. doi: 10.1002/rcm.3411, PMID 18257112.
18. Difrancesco R, Maduke G, Patel R, Taylor CR, Morse GD. Antiretroviral bioanalysis methods of tissues and body biofluids. *Bioanalysis.* 2013;5(3):351-68. doi: 10.4155/bio.12.319, PMID 23394701.
19. Van Heeswijk RP, Veldkamp AI, Mulder JW, Meenhorst PL, Beijnen JH, Lange JM, Hoetelmans RM. Saliva as an alternative body fluid for therapeutic drug monitoring of the non nucleoside reverse transcription inhibitor nevirapine. *Ther Drug Monit.* 2001;23(3):255-8. doi: 10.1097/00007691-200106000-00012, PMID 11360034.
20. Deshmukh N, Hussain I, Barker J, Petroczi A, Naughton DP. Analysis of anabolic steroids in human hair using LC-MS/MS. *Steroids.* 2010;75(10):710-4. doi: 10.1016/j.steroids.2010.04.007, PMID 20435054.
21. Shah SAB, Mullin R, Jones G, Shah I, Barker J, Petroczi A, Naughton DP. Simultaneous analysis of antiretroviral drugs abacavir and tenofovir in human hair by liquid chromatography-tandem mass spectrometry. *J Pharm Biomed Anal.* 2013;74:308-13. doi: 10.1016/j.jpba.2012.10.023, PMID 23245265.
22. Duval X, Peytavin G, Breton G, Ecobichon JL, Descamps D, Thabut G, Leport C. Hair versus plasma concentrations as indicator of indinavir exposure in HIV-1-infected patients treated with indinavir/ritonavir combination. *AIDS.* 2007;21(1):106-8. doi: 10.1097/QAD.0b013e3280118486, PMID 17148976.
23. Gandhi M, Ameli N, Bacchetti P, Gange SJ, Anastos K, Levine A, Hyman CL, Cohen M, Young M, Huang Y, Greenblatt RM, Women's Interagency HIV Study (WIHS). Protease inhibitor levels in hair strongly predict virologic response to treatment. *AIDS.* 2009;23(4):471-8. doi: 10.1097/QAD.0b013e328325a4a9, PMID 19165084.
24. Yan J, Liu J, Su B, Pan X, Wang Z, Wu J, Zhang J, Ruan Y, Hsi J, Liao L, Shao Y, Xing H. Lamivudine concentration in hair and prediction of virologic failure and drug resistance among HIV patients receiving free ART in China. *PLOS ONE.* 2016;11(4):e0154421. doi: 10.1371/journal.pone.0154421, PMID 27119346.
25. Müller DM, Rentsch KM. Therapeutic drug monitoring by LC-MS-MS with special focus on anti-infective drugs. *Anal Bioanal Chem.* 2010;398(6):2573-94. doi: 10.1007/s00216-010-3986-z, PMID 20652551.
26. Pruvost A, Théodoro F, Agrofoglio L, Negredo E, Bénech H. Specificity enhancement with LC-positive ESI-MS/MS for the measurement of nucleotides: application to the quantitative determination of carbovir triphosphate, lamivudine triphosphate and tenofovir diphosphate in human peripheral blood mononuclear cells. *J Mass Spectrom.* 2008;43(2):224-33. doi: 10.1002/jms.1294, PMID 17935070.
27. Taylor PJ, Tai CH, Franklin ME, Pillans PI. The current role of liquid chromatography-tandem mass spectrometry in therapeutic drug monitoring of immunosuppressant and antiretroviral drugs. *Clin Biochem.* 2011;44(1):14-20. doi: 10.1016/j.clinbiochem.2010.06.012, PMID 20599871.
28. Leinonen A, Kuuranne T, Kostainen R. Liquid chromatography/mass spectrometry in anabolic steroid analysis--optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. *J Mass Spectrom.* 2002;37(7):693-8. doi: 10.1002/jms.328, PMID 12125002.
29. Valluru RK, B PB, S KS, V PK, Kilaru NB. High throughput LC-MS/MS method for simultaneous determination of tenofovir, lamivudine and nevirapine in human plasma. *J Chromatogr B Analys Technol Biomed Life Sci.* 2013;931:117-26. doi: 10.1016/j.jchromb.2013.05.008, PMID 23774246.
30. Huang Y, Yang Q, Yoon K, Lei Y, Shi R, Gee W, Lin ET, Greenblatt RM, Gandhi M. Microanalysis of the antiretroviral nevirapine in human hair from HIV-infected patients by liquid chromatography-tandem mass spectrometry. *Anal Bioanal Chem.* 2011;401(6):1923-33. doi: 10.1007/s00216-011-5278-7, PMID 21847531