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ABSTRACT 

 
This study aims to create a tumor heterogeneity-based model for predicting the best features of lung 

adenocarcinoma (LUAD) in multiple cancer subtypes using the Least Absolute Shrinkage and Selection 

Operator (LASSO).  The RNASeq data of 533 LUAD cancer samples were downloaded from the TCGA 

database. Subsequent to the identification of differentially expressed genes (DEGs), the samples were 

divided into two subtypes based on the consensus clustering method. The subtypes were estimated with the 

abundance of immune and non-immune stromal cell populations which infiltrated tissue.  LASSO model 

was established to predict each subtype's best genes. Enrichment pathway analysis was then carried out. 

Finally, the validity of the LUSC model for identifying features was established by the survival analysis.89 

and 444 samples were clustered in Subtype-1 and Subtype-2 groups respectively. DEG analysis was 

performed on each subtype. A standard cutoff was applied and in total, 2033 genes were upregulated and 

505 were downregulated in case of subtype-1 and 5039 genes were upregulated and 1219 were 

downregulated in case of subtype-2. LASSO model was established to predict the best features from each 

subtypes, 40 and 43 most relevant genes were selected in subtype-1 and subtype-2.  The abundance of 

tissue-infiltrates analysis distinguished the subtypes based on the expression pattern of immune infiltrates.  

Survival analysis showed that this model could effectively predict the best and distinct features in cancer 

subtypes. The study suggests that unsupervised clustering and Machine learning methods such as LASSO 

model-based feature selection can be effectively used to predict relevant genes which might play an essential 

role in cancer diagnosis. 
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INTRODUCTION 
 

Lung cancer is reported to be the most deadly 

cancer 
1 

it is showing the worst survival rate when 

compared with colon, breast, and pancreatic 

cancers combined.  According to the American 

Cancer society, it estimates both small cell and non-

small cell lung cancer as the second most common 

cancer in both men and women. About 13% of all 

cancers are lung cancer. Lung Squamous cell 

carcinoma (LUSC) and Adenocarcinoma (LUAD) 

account for 15% and 85% of all lung cancer 

respectively 
2
. Lung cancer is a highly 

heterogeneous disease and the identification of 

cancer subtypes is decisive for clinicians. Genetic 

mutations, cancer microenvironment, immune and 

therapeutic selection pressures all dynamically 

contribute to tumor heterogeneity. Heterogeneity 

may lead to cells with a differential molecular 

signature within single tumor tissue and in some 

cases; it may contribute to therapy resistance 
3
. 

Therefore, deciphering LUAD heterogeneity will 

have a significant impact on designing precision 

medicine strategy. Heterogeneous data suffers from 

a large number of covariates and identification of 

variable selection is necessary to obtain more 

accurate predictions with a large number of 

covariates. Many computer-based diagnostic and 

predictive models have been used for predicting the 

risk of a variety of cancers, such as logistic 

regression, Cox proportional hazard model, 

artificial neural networks, decision trees and 

support vector machines. Previous studies indicate 

standard stepwise selection approaches which are 

not best for regression models with a vast number 

of covariates 
4
. Alternatively, the least absolute 

shrinkage and selection operator (LASSO), has 

received much attention for the identification and 

selection of best variables. LASSO was introduced 

by Robert Tibshirani in 1996 
5
. Regularization and 

feature selection are the two critical tasks LASSO 

performs.  LASSO estimates the regression 

coefficients by maximizing the log-likelihood 

function with the constraint that the sum of the 

absolute values of the regression coefficients, 

∑j=1kβj, is less than or equal to a positive constant. 

In this study, we selected the best features using 

LASSO established model. We downloaded the 

RNASeq data for LUAD samples from the Cancer 

Genome Atlas (TCGA) database. We differentiated 

the samples based on clusters into two subtypes to 

study the tumor heterogeneity. Differentially 

expressed genes (DEGs) were identified between 

two subtypes and normal groups, followed by 

predicting relevant variables that are associated 

with the response variable using the LASSO model 

and validating the variables using survival analysis. 

We also estimated the population abundance of 

tissue-infiltrating immune and stromal cell 

populations in each subtype to decipher the 

inflammatory, antigenic, and desmoplastic 

reactions occurring in cancer tissue. Our study 

provides new insights into tumor heterogeneity and 

its importance in sample classification for 

predicting biomarkers of LUAD. 

 

MATERIALS AND METHODS 
 

Data source 

The RNASeq data of LUAD, including 533 LUAD 

samples, and 59 normal samples were downloaded 

from the TCGA database 

(https://portal.gdc.cancer.gov/) in June 2019. All 

the raw, preprocessed data, images, supplemental 

tables and supporting files can be accessed at 

https://github.com/AteeqKhaliq/LUAD/. 

 

Data preprocessing and grouping 

533 Primary solid Tumor samples and 59 Solid 

Tissue Normal samples were downloaded from the 

TCGA database. We calculated a variance 

stabilizing transformation (VST) from the raw 

count data and transformed the counts yielding a 

matrix of values approximately homoscedastic. 

 

Molecular subtyping analysis 

Feature dimension reduction was needed to remove 

irrelevant features and to reduce noises, we used 

median absolute deviation (MAD) method and the 

features with MAD>0.5 were selected from set 2 

groups. Consensus clustering (CC) 
6
 was used for 

the identification of subtypes on tumor samples. 

Silhouette width 
7
 was used to validate sample 

clustering to its identified subtype when compared 

to other subtypes 

  

Differential gene expression analysis 

Differential gene expression (DGE) was assessed 

by using the DESeq2 package 
8
 (Version 1.24.0, 

https://bioconductor.org/packages/release/bioc/html

/DESeq2.html) on Subtype-1 and Subtype-2 

samples when compared with normal samples. 

Log2 fold change </> +/- 2 and P-value <0.05 were 

used as the cut-off values to identify the DEGs. 

 

Construction of the LASSO model 

Glmnet Package 
9
(Version 2.0-18, https://cran.r-

project.org/web/packages/glmnet/index.html) was 



Int. J. Life Sci. Pharma Res. 2019 Oct; 9(4): (L) 59-67                  ISSN 2250-0480 

 

 

This article can be downloaded from www.ijlpr.com 

L-61 

 

used to fit a generalized linear model via penalized 

maximum likelihood, LASSO model was 

established (Least Absolute Shrinkage and 

Selection Operator) on the DEGs from individual 

Subtype-1 and Subtype-2 cancer samples. We built 

a single pass (single fold) lasso-penalized model 

and performed 10-fold cross-validation to identify 

the best predictor. 

 

Survival Analysis 

To find clinically or biologically meaningful 

biomarkers Kaplan-Meier survival curves 
10

 were 

generated by selecting the best predictors from 

individual subtypes. Kaplan-Meier curves were 

generated using the TRGAted 
11

 

(https://github.com/ncborcherding/TRGAted) 

package implemented in R. 

 

Quantification of the abundance of the immune 

and stromal cell population in Cancer Subtypes  

immune and non-immune stromal cell populations 

in Subtype-1 and Subtype-2 samples. MCP-counter 
12

 (https://github.com/ebecht/MCPcounter) Package 

was used to estimate the Microenvironment Cell 

Populations. VST normalized gene expression 

matrix was used for the estimation of an immune 

and stromal cell population in tumor samples. 

 

Gene classification and enrichment analyses  

Cluster Profiler 
13

(Version 3.12.0, 

http://bioconductor.org/packages/release/bioc/html/

clusterProfiler.html) was used to annotate the DEGs 

from Subtype-1 and Subtype-2 groups to biological 

processes, molecular functions, and cellular 

components in a directed acyclic graph structure 

with a q-value cutoff of 0.2, Kyoto Encyclopedia of 

Genes and Genomes (KEGG) 
14

 was utilized to 

annotate genes to pathways, and Disease 

Ontologies. 

We estimated the abundance of tissue-infiltrating 

 

Table description 
 

Table 1 

List of best-predicted genes by LASSO Model for cancer Subtype-1 and Subtype-2 

 

LASSO best predicted genes in LUAD 

Subtype_1 Subtype-2 

LYVE1 LINC01785 

LINC00211 LINC02570 

LAD1 HTR3C 

IL22RA2 LINC02416 

LINC00862 PLAC9P1 

MED28P8 LINC01081 

BCL9P1 LINC01996 

TMPRSS4 HELT 

LINC01028 NCAPGP2 

NECTIN4 STARD13.AS 

VPS9D1.AS1 LGR4 

AWAT2 TESC 

ST13P20 HBM 

SLC25A48 LINC01506 

PRR9 FGF10.AS1 

CDC37P2 GPT2 

DUXA PACRG.AS3 

S100A12 TOP2A 

CD5L OTC 

TMEM51.AS1 EFNA3 

DCST1 ZNF695 

 STX11 

 LGI3 

 TEK 
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Figure 1 

LUAD sample clustering. (A) CC plot shows the clustering of samples into two distinct subtypes. (B) 

Silhouette plot for validating the sample clustering. (C) PCA plot indicates distinct sample groups. 

 
 

 
Figure 2 

DGE analysis at standard cutoff of </>+/- 2 fold change at p value of <0.05. (A) DGE volcano  

plot for Subtype-1 samples. (B) DGE volcano plot for Subtype-2 samples. 

 

 
Figure 3 

The heat map clearly differentiates subtype-1 and subtype-2 into two different categories based on tissue-

infiltrating immune and non-immune stromal cell population. 
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Figure 4 

Pathway analysis for the best predicted genes by the LASSO model. (A) Subtype-1 LASSO predicted 

genes pathway analysis. (B) Subtype-2 LASSO predicted genes pathway analysis. 
 
 

RESULTS 
 

Cancer subtype identification in LUAD samples 

We used the Consensus clustering (CC) method, an 

unsupervised clustering method for grouping 

subtypes in LUAD. CC method is the most widely 

used method for subtype discovery in high 

dimensional datasets. We used settings of the 

agglomerative hierarchical clustering algorithm 

using Pearson correlation distance. Two distinct 

clusters were discovered in our datasets, 89 and 444 

samples were clustered in Subtype-1 and Subtype-2 

respectively (Fig.1.A). We have validated 

consistency within clusters of data using the 

Silhouette width (Fig.1.B). 

 

Identification of DEGs in Subtype-1 and Subtype-

2 LUAD samples 

We compared the subtype-1 and subtype-2 with the 

normal samples and based on the p-value cutoff < 

0.05 and log2 fold change </> +/- 2 we identified 

significant DEGs. 2033 genes were upregulated, 

and 505 were downregulated in the case of subtype-

1 (Fig.2.A), and 5309 genes were upregulated, and 

1219 were downregulated in the case of subtype-2 

(Fig.2.B) shows differential expression pattern in 

subtype-1 and subtype-2. The DEGs in both 

subtypes were used for building the LASSO 

predictive model and for the identification of best 

predictor genes in LUAD heterogeneous cancer 

data. 
 

 

LASSO model for identification of best predictive 

genes. 

LASSO was first described by Robert Tibshirani in 

1996. Regularization and feature selection are the 

two crucial tasks performed by LASSO. RNASeq 

datasets are high dimensional datasets, with a 

smaller sample size and a large number of features 

also called small-n-large-p datasets (p >> n). High 

dimensional data will be sparse, and only a few 

features affect the response variable, and LASSO is 

known to identify the best features that affect the 

response variable. We deal with a p >> n situation 

for feature selection in our Subtype-1 and Subtype-

2 datasets, thus probably not all DEGs are relevant 

for the identification of features which affect the 

response variable. The purpose of our analysis is to 

identify the feature selection task and underline 

which genes are more relevant to predict and to 

classify them as biomarkers, to do so, we have used 

the LASSO model. The result shows the trends of 

the 40 and 43 most relevant features selected by our 

model in subtype-1 and subtype-2 LUAD, 

respectively. The next step would be to find the 

most appropriate values for λ for our LASSO 

model. We analyzed the λ value using the 10 fold 

cross-validation, between λ min that gives 

minimum mean cross-validated error or λ1se, that 

gives a model such that error is within one standard 

error of the minimum. Using this analysis, we 

obtained the most relevant genes which are unique 

to subtype-1 and subtype-2 in the detection of a 

LUAD. A list of best-predicted genes available for 

each cancer a subtype is shown in Table 1. 

 

Analysis of the microenvironment of Subtype-1 

and Subtype-2 LUAD samples 

The abundance of tissue-infiltrating immune and 

non-immune stromal cell populations is highly 

informative. It has been shown that the extent of 

infiltrating immune cells is associated with disease 

prognosis. T-cell infiltrates, endothelial cells and 

fibroblasts are associated with a favorable outcome 
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and also poor prognosis in some cancer types 
15

. To 

understand the immunological microenvironment in 

our expression subset-1 and subset-2 we used the 

MCP-counter method as described by Becht et al.
12

. 

The estimations consist of single sample scores 

which are computed on each sample independently 

in two subtypes. The heat map shown in Figure 3 

clearly distinguishes subtype-1 and subtype-2 into 

two different categories based on tissue-infiltrating 

immune and non-immune stromal cell populations. 

Subtype-1 shows an apparent increase in B lineage 

cells, monocytic cells, Cytotoxic lymphocytes, 

Natural killer cells, and CB 8 T cells and Subtype-2 

shows decreased levels of T-cells, macrophages, B 

cells, and natural killer (NK) cells, as well as 

endothelial cells and fibroblasts. Our study clearly 

distinguishes LUAD subtypes based on their 

inflammatory and stromal profiles, and Subtype-1 

LUAD samples show increased expression of 

immunological markers than Subtype- 2 samples. 

 

Pathway analysis 

Subtype-1 and Subtype-2 showed distinct and 

unique features which are involved in cancer 

progression. Genes such as IL22RA2, PLA2G2C 

identified in subtype-1 are up- regulated and found 

to be involved in canonical cancer regulatory 

pathways such as the JAK-STAT signaling 

pathway and RAS signaling pathway (Fig. 4). The 

PLA2G2C gene is associated with alpha-Linolenic 

acid as well as ether lipid metabolism, and both are 

known to play a role in cancer progression 
16

. Our 

model identified the ONECUT1 gene in subtype1, 

which is associated with regulating pluripotency of 

stem cells and the DEFA3 gene which is associated 

with Transcriptional misregulation in cancer. The 

gene AWAT2 identified in subtype1 is found to be 

involved in Retinol metabolism, and studies 

suggest that retinoid signaling triggers tumor 

development 
17

. The NECTIN4 gene highlighted in 

our study is associated with Adherens junction, 

which plays an essential role in cancer initiation 

and progression 
18

. PYCR1 gene involved in 

proline metabolism which is highly correlated with 

cancer is also found to be differentially expressed 

in subtype1. EFNA3 is up -regulated in Subtype-2, 

and previous studies show that it contributes to the 

metastatic spread of breast cancer 
19

. Our model 

predicted that increased expression of LGR4, 

TESC, TOP2A, and ZNF695 is suggestive of 

increased invasive and metastatic activity in 

Subtype-2 
20

. Decreased expression of FGF10 is 

seen in Subtype-2 and predicted by our model is 

suggestive of dysplasia in LUAD subtype-2 

samples 
21

. 
 
 

Validation with survival analysis 

The LUAD samples were classified into two 

subtypes based on the consensus clustering method. 

Overall survival analysis for the most predictive 

genes identified by our model in Subtype-1 and 

Subtype-2 groups was conducted. The genes 

predicted by our LASSO model accurately 

predicted the outcome of a patient's survival using 

gene expression data. Genes such as LAD1, 

NECTIN4, SLC25A48, LYVE1, EFNA3, FGF10, 

HELT, HTR3C, and LGI3 yielded accurate 

predictions for the risk of LUAD and can be used in 

cancer prediction.  Survival plots and its p-value is 

shown in Supplemental Figures. 

 

DISCUSSION 
 

In this study, we developed a LASSO based model 

for accurate feature selection in LUAD. Our model 

removed variables that are redundant and removed 

features which do not add any valuable information 

in disease prediction. . Moreover in our study we 

are highlighting the Heterogeneity and cancer 

prediction in Lung adenocarcinoma and Squamous 

cell carcinoma. Analysis using the survival data for 

the predicted genes showed that the model could 

effectively predict genes responsible for disease 

prognosis in high dimensional datasets. 

Deciphering cancer heterogeneity is very critical in 

understanding cancer dynamics and also for the 

development of personalized cancer treatment 
22

. 

We used the Consensus clustering method to 

determine the number of clusters in our samples, 

and we clustered the samples into two groups 

which produced optimal silhouette width for the 

determined clusters. Differential gene expression 

analysis showed distinct expression patterns in both 

Subtype-1 and Subtype-2. The number of 

differentially expressed genes was very high, and in 

these situations, it is difficult to predict the relevant 

variables. LASSO model was established around 

DE genes in Subtype-1 and Subtype-2 groups. Not 

all the expressed genes were relevant, and our 

model predicted the most relevant genes which 

were involved in disease progression.  Decreased 

expression of LYVE1 and MED28P8 in Subtype-1 

and FGF10, HELT, HTR3C, LGI3, PACRG, 

PLAC9P1, and STX11 in Subtype-2 showed worse 

overall survival in LUAD samples. Whereas 

increased expression of genes such as CDC37P2, 

DCST1, IL22RA2, LAD1, NECTIN4, SLC25A48, 

TMEM51.AS1, TMPRSS4, VPS9D1-AS1, 



Int. J. Life Sci. Pharma Res. 2019 Oct; 9(4): (L) 59-67                  ISSN 2250-0480 

 

 

This article can be downloaded from www.ijlpr.com 

L-65 

 

AWAT2, BCL9P1 and CD5L in Subtype-1 and 

EFNA3, LGR4, TESC, TOP2A and ZNF695 in 

subtype-2 showed decreased overall survival in 

LUAD samples. Long intervening noncoding 

RNAs (lncRNAs) are known to be critical 

regulators of numerous biological processes, and 

substantial evidence supports that lncRNA 

expression plays a significant role in tumorigenesis 

and tumor progression. Increased expression of 

LINC00862 in Subtype-1 samples correlates with 

worse survival in LUAD subtypes. Whereas, 

decreased expression of LINC00211 in Subtype-1 

and LINC01506, LINC01785 and LINC01996 in 

Subtype-2 showed worse survival in LUAD 

samples. Our LASSO model predicts the most 

relevant and distinct genes from Subtype-1 and 

Subtype-2 samples which might be an important 

factor in cancer diagnosis and management. The 

best predictors for subtype-1 and subtype-2 from 

the LASSO model were found to be involved in 

several regulatory pathways. Subtype-1 gene such 

as S100A12 is a vital serum inflammatory marker 

and has been illustrated in several cancer types such 

as oropharyngeal squamous cell carcinoma and 

gastric cancers 
23

. Subtype-1 samples show 

increased expression of CD5L and TMPRSS4, 

which induces cancer stem cell-like properties and 

promotes malignant transformation by limiting lung 

epithelial cell apoptosis and promoting immune 

escape in NSCLC patients 
24

. Long noncoding 

RNA VPS9D1-AS1 overexpression in subtype-1 

predicts poor prognosis and serves as a biomarker 

to predict the prognosis of NSCLC 
25

. 

Overexpression of nectin-4 oncoprotein, LYVE-

1/PCAB, PROM2, and LAD1 are associated with 

poor overall survival in subtype-1 samples and can 

be considered as candidate serum and tissue 

biomarker as well as therapeutic target 
26

. 

Overexpression of Lgr4 in Subtype-2 samples 

promotes tumor aggressiveness may potentially 

become a novel target for cancer therapy 
27

. 

Subtype-2 samples show up regulation of TOP2A 

and ZNF695 is associated with a worse prognosis 

and induces overrepresentation of growth and 

proliferation pathways and can act as prognostic 

and predictive markers 
28

. Hypoxia-inducible 

oncogene EFNA3 is overexpressed in subtype-2 

samples may play a critical role in the focal 

adhesion kinase (FAK) signaling and VEGF-

associated tumor angiogenesis pathway 
19

. Down 

regulation of tumor suppressor gene STX11 in 

Subtype-2 samples predicts poor prognosis. 

Various studies indicate the role of STX11 

expression in suppressing the proliferation of T-cell 
29

. Our model predicts lncRNAs such as 

LINC01506, LINC01785, LINC01996, 

LINC00862, and LINC02014 were expressed in 

subtype-1 and subtype-2 samples which can be 

considered as potential biomarkers and shows poor 

overall survival in LUAD. LncRNAs might be used 

as biomarkers and drug targets for early diagnosis, 

prognosis and personalized treatment of LUAD 

patients. Our study suggests that Consensus 

Clustering methods and LASSO combined will 

help us to develop a model with the most 

appropriate characteristics. Consistent with these 

findings, different subtypes showed distinct unique 

features which underscore the importance of 

sample grouping and assessment. Furthermore, 

Survival analyses validate that the survival time of 

the predicted genes correlates with gene expression 

pattern, which is recognizably different in both 

Subtypes, indicating that the LASSO model could 

effectively be used to overcome the feature 

selection problem and can be used for accurate 

prediction of risk in LUAD. 

 

CONCLUSION 
 

In conclusion, this study suggests that the 

unsupervised method such as Consensus clustering 

and LASSO model-based feature selection could be 

used to evaluate prediction and prognosis of Lung 

Adenocarcinoma. With this model, we can identify 

the prognostic biomarkers of LUAD cancer, and the 

model-predicted genes would be helpful for 

clinicians in the management of cancer patients. 
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