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ABSTRACT

This study aims to create a tumor heterogeneity-based model for predicting the best features of lung
adenocarcinoma (LUAD) in multiple cancer subtypes using the Least Absolute Shrinkage and Selection
Operator (LASSO). The RNASeq data of 533 LUAD cancer samples were downloaded from the TCGA
database. Subsequent to the identification of differentially expressed genes (DEGs), the samples were
divided into two subtypes based on the consensus clustering method. The subtypes were estimated with the
abundance of immune and non-immune stromal cell populations which infiltrated tissue. LASSO model
was established to predict each subtype's best genes. Enrichment pathway analysis was then carried out.
Finally, the validity of the LUSC model for identifying features was established by the survival analysis.89
and 444 samples were clustered in Subtype-1 and Subtype-2 groups respectively. DEG analysis was
performed on each subtype. A standard cutoff was applied and in total, 2033 genes were upregulated and
505 were downregulated in case of subtype-1 and 5039 genes were upregulated and 1219 were
downregulated in case of subtype-2. LASSO model was established to predict the best features from each
subtypes, 40 and 43 most relevant genes were selected in subtype-1 and subtype-2. The abundance of
tissue-infiltrates analysis distinguished the subtypes based on the expression pattern of immune infiltrates.
Survival analysis showed that this model could effectively predict the best and distinct features in cancer
subtypes. The study suggests that unsupervised clustering and Machine learning methods such as LASSO
model-based feature selection can be effectively used to predict relevant genes which might play an essential
role in cancer diagnosis.
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INTRODUCTION

Lung cancer is reported to be the most deadly
cancer ' it is showing the worst survival rate when
compared with colon, breast, and pancreatic
cancers combined. According to the American
Cancer society, it estimates both small cell and non-
small cell lung cancer as the second most common
cancer in both men and women. About 13% of all
cancers are lung cancer. Lung Squamous cell
carcinoma (LUSC) and Adenocarcinoma (LUAD)
account for 15% and 85% of all lung cancer
respectively Lung cancer 1is a highly
heterogeneous disease and the identification of
cancer subtypes is decisive for clinicians. Genetic
mutations, cancer microenvironment, immune and
therapeutic selection pressures all dynamically
contribute to tumor heterogeneity. Heterogeneity
may lead to cells with a differential molecular
signature within single tumor tissue and in some
cases; it may contribute to therapy resistance °
Therefore, deciphering LUAD heterogeneity will
have a significant impact on designing precision
medicine strategy. Heterogeneous data suffers from
a large number of covariates and identification of
variable selection is necessary to obtain more
accurate predictions with a large number of
covariates. Many computer-based diagnostic and
predictive models have been used for predicting the
risk of a variety of cancers, such as logistic
regression, Cox proportional hazard model,
artificial neural networks, decision trees and
support vector machines. Previous studies indicate
standard stepwise selection approaches which are
not best for regression models with a vast number
of covariates *. Alternatively, the least absolute
shrinkage and selection operator (LASSO), has
received much attention for the identification and
selection of best variables. LASSO was introduced
by Robert Tibshirani in 1996 °. Regularization and
feature selection are the two critical tasks LASSO
performs. LASSO estimates the regression
coefficients by maximizing the log-likelihood
function with the constraint that the sum of the
absolute values of the regression coefficients,
> j=1kpj, is less than or equal to a positive constant.
In this study, we selected the best features using
LASSO established model. We downloaded the
RNASeq data for LUAD samples from the Cancer
Genome Atlas (TCGA) database. We differentiated
the samples based on clusters into two subtypes to
study the tumor heterogeneity. Differentially
expressed genes (DEGs) were identified between
two subtypes and normal groups, followed by
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predicting relevant variables that are associated
with the response variable using the LASSO model
and validating the variables using survival analysis.
We also estimated the population abundance of
tissue-infiltrating immune and stromal cell
populations in each subtype to decipher the
inflammatory,  antigenic, and  desmoplastic
reactions occurring in cancer tissue. Our study
provides new insights into tumor heterogeneity and
its importance in sample classification for
predicting biomarkers of LUAD.

MATERIALS AND METHODS

Data source

The RNASeq data of LUAD, including 533 LUAD
samples, and 59 normal samples were downloaded
from the TCGA database
(https://portal.gdc.cancer.gov/) in June 2019. All
the raw, preprocessed data, images, supplemental
tables and supporting files can be accessed at
https://github.com/AteeqKhaliq/LUAD/.

Data preprocessing and grouping

533 Primary solid Tumor samples and 59 Solid
Tissue Normal samples were downloaded from the
TCGA database. We calculated a variance
stabilizing transformation (VST) from the raw
count data and transformed the counts yielding a
matrix of values approximately homoscedastic.

Molecular subtyping analysis

Feature dimension reduction was needed to remove
irrelevant features and to reduce noises, we used
median absolute deviation (MAD) method and the
features with MAD>0.5 were selected from set 2
groups. Consensus clustering (CC) © was used for
the identification of subtypes on tumor samples.
Silhouette width 7 was used to validate sample
clustering to its identified subtype when compared
to other subtypes

Differential gene expression analysis

Differential gene expression (DGE) was assessed
by using the DESeq2 package ¥ (Version 1.24.0,
https://bioconductor.org/packages/release/bioc/html
/DESeq2.html) on Subtype-1 and Subtype-2
samples when compared with normal samples.
Log?2 fold change </> +/- 2 and P-value <0.05 were
used as the cut-off values to identify the DEGs.

Construction of the LASSO model
Glmnet Package °(Version 2.0-18, https://cran.r-
project.org/web/packages/glmnet/index.html) was
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used to fit a generalized linear model via penalized
maximum likelihood, LASSO model was
established (Least Absolute Shrinkage and
Selection Operator) on the DEGs from individual
Subtype-1 and Subtype-2 cancer samples. We built
a single pass (single fold) lasso-penalized model
and performed 10-fold cross-validation to identify
the best predictor.

Survival Analysis

To find clinically or biologically meaningful
biomarkers Kaplan-Meier survival curves '’ were
generated by selecting the best predictors from
individual subtypes. Kaplan-Meier curves were
generated using the TRGAted H
(https://github.com/ncborcherding/ TRGAted)

package implemented in R.
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immune and non-immune stromal cell populations
in Subtype-1 and Subtype-2 samples. MCP-counter
' (https://github.com/ebecht/MCPcounter) Package
was used to estimate the Microenvironment Cell
Populations. VST normalized gene expression
matrix was used for the estimation of an immune
and stromal cell population in tumor samples.

Gene classification and enrichment analyses

Cluster Profiler B(Version 3.12.0,
http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) was used to annotate the DEGs
from Subtype-1 and Subtype-2 groups to biological
processes, molecular functions, and cellular
components in a directed acyclic graph structure
with a g-value cutoff of 0.2, Kyoto Encyclopedia of
Genes and Genomes (KEGG) '* was utilized to

annotate genes to pathways, and Disease
Quantification of the abundance of the immune Ontologies.
and stromal cell population in Cancer Subtypes
We estimated the abundance of tissue-infiltrating
Table description
Table 1

List of best-predicted genes by LASSO Model for cancer Subtype-1 and Subtype-2

LASSO best predicted genes in LUAD

Subtype 1

Subtype-2

LYVEI]

LINCO01785

LINCO00211

LINC02570

LADI

HTR3C

IL22RA2

LINC02416

LINC00862

PLAC9P1

MED28P8

LINCO01081

BCL9P1

LINC01996

TMPRSS4

HELT

LINC01028

NCAPGP2

NECTIN4

STARD13.AS

VPS9D1.AS1

LGR4

AWAT?2

TESC

ST13P20

HBM

SLC25A48

LINC01506

PRR9

FGF10.AS1

CDC37P2

GPT2

DUXA

PACRG.AS3

S100A12

TOP2A

CD5L

OTC

TMEMS51.AS1

EFNA3

DCST1

ZNF695

STX11

LGI3

TEK
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Figure 1
LUAD sample clustering. (A) CC plot shows the clustering of samples into two distinct subtypes. (B)
Silhouette plot for validating the sample clustering. (C) PCA plot indicates distinct sample groups.
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Figure 2
DGE analysis at standard cutoff of </>+/- 2 fold change at p value of <0.05. (A) DGE volcano
plot for Subtype-1 samples. (B) DGE volcano plot for Subtype-2 samples.
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Figure 3
The heat map clearly differentiates subtype-1 and subtype-2 into two different categories based on tissue-
infiltrating immune and non-immune stromal cell population.
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Figure 4
Pathway analysis for the best predicted genes by the LASSO model. (A) Subtype-1 LASSO predicted
genes pathway analysis. (B) Subtype-2 LASSO predicted genes pathway analysis.

RESULTS

Cancer subtype identification in LUAD samples
We used the Consensus clustering (CC) method, an
unsupervised clustering method for grouping
subtypes in LUAD. CC method is the most widely
used method for subtype discovery in high
dimensional datasets. We used settings of the
agglomerative hierarchical clustering algorithm
using Pearson correlation distance. Two distinct
clusters were discovered in our datasets, 89 and 444
samples were clustered in Subtype-1 and Subtype-2
respectively  (Fig.1.A). We have validated
consistency within clusters of data using the
Silhouette width (Fig.1.B).

Identification of DEGs in Subtype-1 and Subtype-
2 LUAD samples

We compared the subtype-1 and subtype-2 with the
normal samples and based on the p-value cutoff <
0.05 and log2 fold change </> +/- 2 we identified
significant DEGs. 2033 genes were upregulated,
and 505 were downregulated in the case of subtype-
1 (Fig.2.A), and 5309 genes were upregulated, and
1219 were downregulated in the case of subtype-2
(Fig.2.B) shows differential expression pattern in
subtype-1 and subtype-2. The DEGs in both
subtypes were used for building the LASSO
predictive model and for the identification of best
predictor genes in LUAD heterogeneous cancer
data.

LASSO model for identification of best predictive
genes.

LASSO was first described by Robert Tibshirani in
1996. Regularization and feature selection are the
two crucial tasks performed by LASSO. RNASeq

datasets are high dimensional datasets, with a
smaller sample size and a large number of features
also called small-n-large-p datasets (p >> n). High
dimensional data will be sparse, and only a few
features affect the response variable, and LASSO is
known to identify the best features that affect the
response variable. We deal with a p >> n situation
for feature selection in our Subtype-1 and Subtype-
2 datasets, thus probably not all DEGs are relevant
for the identification of features which affect the
response variable. The purpose of our analysis is to
identify the feature selection task and underline
which genes are more relevant to predict and to
classify them as biomarkers, to do so, we have used
the LASSO model. The result shows the trends of
the 40 and 43 most relevant features selected by our
model in subtype-1 and subtype-2 LUAD,
respectively. The next step would be to find the
most appropriate values for A for our LASSO
model. We analyzed the A value using the 10 fold
cross-validation, between A min that gives
minimum mean cross-validated error or Alse, that
gives a model such that error is within one standard
error of the minimum. Using this analysis, we
obtained the most relevant genes which are unique
to subtype-1 and subtype-2 in the detection of a
LUAD. A list of best-predicted genes available for
each cancer a subtype is shown in Table 1.

Analysis of the microenvironment of Subtype-1
and Subtype-2 LUAD samples

The abundance of tissue-infiltrating immune and
non-immune stromal cell populations is highly
informative. It has been shown that the extent of
infiltrating immune cells is associated with disease
prognosis. T-cell infiltrates, endothelial cells and
fibroblasts are associated with a favorable outcome
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and also poor prognosis in some cancer types °. To
understand the immunological microenvironment in
our expression subset-1 and subset-2 we used the
MCP-counter method as described by Becht et al.'?.
The estimations consist of single sample scores
which are computed on each sample independently
in two subtypes. The heat map shown in Figure 3
clearly distinguishes subtype-1 and subtype-2 into
two different categories based on tissue-infiltrating
immune and non-immune stromal cell populations.
Subtype-1 shows an apparent increase in B lineage
cells, monocytic cells, Cytotoxic lymphocytes,
Natural killer cells, and CB 8 T cells and Subtype-2
shows decreased levels of T-cells, macrophages, B
cells, and natural killer (NK) cells, as well as
endothelial cells and fibroblasts. Our study clearly
distinguishes LUAD subtypes based on their
inflammatory and stromal profiles, and Subtype-1
LUAD samples show increased expression of
immunological markers than Subtype- 2 samples.

Pathway analysis

Subtype-1 and Subtype-2 showed distinct and
unique features which are involved in cancer
progression. Genes such as IL22RA2, PLA2G2C
identified in subtype-1 are up- regulated and found
to be involved in canonical cancer regulatory
pathways such as the JAK-STAT signaling
pathway and RAS signaling pathway (Fig. 4). The
PLA2G2C gene is associated with alpha-Linolenic
acid as well as ether lipid metabolism, and both are
known to play a role in cancer progression '°. Our
model identified the ONECUT1 gene in subtypel,
which is associated with regulating pluripotency of
stem cells and the DEFA3 gene which is associated
with Transcriptional misregulation in cancer. The
gene AWAT? identified in subtypel is found to be
involved in Retinol metabolism, and studies
suggest that retinoid signaling triggers tumor
development '". The NECTIN4 gene highlighted in
our study is associated with Adherens junction,
which plays an essential role in cancer initiation
and progression '®. PYCRI gene involved in
proline metabolism which is highly correlated with
cancer is also found to be differentially expressed
in subtypel. EFNA3 is up -regulated in Subtype-2,
and previous studies show that it contributes to the
metastatic spread of breast cancer '°. Our model
predicted that increased expression of LGR4,
TESC, TOP2A, and ZNF695 is suggestive of
increased invasive and metastatic activity in
Subtype-2 2°. Decreased expression of FGF10 is
seen in Subtype-2 and predicted by our model is
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suggestive of dysplasia in LUAD subtype-2

samples 2.

Validation with survival analysis

The LUAD samples were classified into two
subtypes based on the consensus clustering method.
Overall survival analysis for the most predictive
genes identified by our model in Subtype-1 and
Subtype-2 groups was conducted. The genes
predicted by our LASSO model accurately
predicted the outcome of a patient's survival using
gene expression data. Genes such as LADI,
NECTIN4, SLC25A48, LYVEIL, EFNA3, FGF10,
HELT, HTR3C, and LGI3 yielded accurate
predictions for the risk of LUAD and can be used in
cancer prediction. Survival plots and its p-value is
shown in Supplemental Figures.

DISCUSSION

In this study, we developed a LASSO based model
for accurate feature selection in LUAD. Our model
removed variables that are redundant and removed
features which do not add any valuable information
in disease prediction. . Moreover in our study we
are highlighting the Heterogeneity and cancer
prediction in Lung adenocarcinoma and Squamous
cell carcinoma. Analysis using the survival data for
the predicted genes showed that the model could
effectively predict genes responsible for disease
prognosis in  high  dimensional datasets.
Deciphering cancer heterogeneity is very critical in
understanding cancer dynamics and also for the
development of personalized cancer treatment .
We used the Consensus clustering method to
determine the number of clusters in our samples,
and we clustered the samples into two groups
which produced optimal silhouette width for the
determined clusters. Differential gene expression
analysis showed distinct expression patterns in both
Subtype-1 and Subtype-2. The number of
differentially expressed genes was very high, and in
these situations, it is difficult to predict the relevant
variables. LASSO model was established around
DE genes in Subtype-1 and Subtype-2 groups. Not
all the expressed genes were relevant, and our
model predicted the most relevant genes which
were involved in disease progression. Decreased
expression of LYVE] and MED28P8 in Subtype-1
and FGF10, HELT, HTR3C, LGI3, PACRG,
PLACY9P1, and STX11 in Subtype-2 showed worse
overall survival in LUAD samples. Whereas
increased expression of genes such as CDC37P2,
DCSTI1, IL22RA2, LAD1, NECTIN4, SLC25A4S,
TMEMS51.AS1, TMPRSS4, VPS9D1-AS1,
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AWAT2, BCL9P1 and CDS5SL in Subtype-1 and
EFNA3, LGR4, TESC, TOP2A and ZNF695 in
subtype-2 showed decreased overall survival in
LUAD samples. Long intervening noncoding
RNAs (IncRNAs) are known to be critical
regulators of numerous biological processes, and
substantial evidence supports that IncRNA
expression plays a significant role in tumorigenesis
and tumor progression. Increased expression of
LINCO00862 in Subtype-1 samples correlates with
worse survival in LUAD subtypes. Whereas,
decreased expression of LINC00211 in Subtype-1
and LINCO01506, LINCO01785 and LINCO01996 in
Subtype-2 showed worse survival in LUAD
samples. Our LASSO model predicts the most
relevant and distinct genes from Subtype-1 and
Subtype-2 samples which might be an important
factor in cancer diagnosis and management. The
best predictors for subtype-1 and subtype-2 from
the LASSO model were found to be involved in
several regulatory pathways. Subtype-1 gene such
as SI00A12 is a vital serum inflammatory marker
and has been illustrated in several cancer types such
as oropharyngeal squamous cell carcinoma and
gastric cancers . Subtype-1 samples show
increased expression of CDSL and TMPRSS4,
which induces cancer stem cell-like properties and
promotes malignant transformation by limiting lung
epithelial cell apoptosis and promoting immune
escape in NSCLC patients >*. Long noncoding
RNA VPS9DI-AS1 overexpression in subtype-1
predicts poor prognosis and serves as a biomarker
to predict the prognosis of NSCLC *°.
Overexpression of nectin-4 oncoprotein, LYVE-
1/PCAB, PROM2, and LADI are associated with
poor overall survival in subtype-1 samples and can
be considered as candidate serum and tissue
biomarker as well as therapeutic target .
Overexpression of Lgr4 in Subtype-2 samples
promotes tumor aggressiveness may potentially
become a novel target for cancer therapy >’
Subtype-2 samples show up regulation of TOP2A
and ZNF695 is associated with a worse prognosis
and induces overrepresentation of growth and
proliferation pathways and can act as prognostic
and predictive markers Hypoxia-inducible
oncogene EFNA3 is overexpressed in subtype-2
samples may play a critical role in the focal
adhesion kinase (FAK) signaling and VEGF-
associated tumor angiogenesis pathway '°. Down
regulation of tumor suppressor gene STXI1 in
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Subtype-2 samples predicts poor prognosis.
Various studies indicate the role of STXI1
expression in suppressing the proliferation of T-cell
¥ Our model predicts IncRNAs such as
LINCO01506, LINCO01785, LINCO01996,
LINC00862, and LINC02014 were expressed in
subtype-1 and subtype-2 samples which can be
considered as potential biomarkers and shows poor
overall survival in LUAD. LncRNAs might be used
as biomarkers and drug targets for early diagnosis,
prognosis and personalized treatment of LUAD
patients. Our study suggests that Consensus
Clustering methods and LASSO combined will
help us to develop a model with the most
appropriate characteristics. Consistent with these
findings, different subtypes showed distinct unique
features which underscore the importance of
sample grouping and assessment. Furthermore,
Survival analyses validate that the survival time of
the predicted genes correlates with gene expression
pattern, which is recognizably different in both
Subtypes, indicating that the LASSO model could
effectively be used to overcome the feature
selection problem and can be used for accurate
prediction of risk in LUAD.

CONCLUSION

In conclusion, this study suggests that the
unsupervised method such as Consensus clustering
and LASSO model-based feature selection could be
used to evaluate prediction and prognosis of Lung
Adenocarcinoma. With this model, we can identify
the prognostic biomarkers of LUAD cancer, and the
model-predicted genes would be helpful for
clinicians in the management of cancer patients.
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