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ABSTRACT 
 

This study is aimed to establish a Least Absolute Shrinkage and Selection Operator (LASSO) 

model based on tumor heterogeneity to predict the best features of LUSC in various cancer 

subtypes. The RNASeq data of 505 LUSC cancer samples were downloaded from the TCGA 

database. Subsequent to the identification of differentially expressed genes (DEGs), the samples 

were divided into two subtypes based on the consensus clustering method. The subtypes were 

estimated with the abundance of immune and non-immune stromal cell populations which 

infiltrated the tissue. LASSO model was established to predict each subtype's best genes. 

Enrichment pathway analysis was then carried out. Finally, the validity of the LUSC model for 

identifying features was established by the survival analysis. 240 and 262 samples were clustered 

in Subtype-1 and Subtype-2 groups respectively. DEG analysis was performed on each subtype. 

A standard cutoff was applied and in total, 4586 genes were up regulated and 1495 were down 

regulated in case of subtype-1 and 5016 genes were up regulated and 3224 were down regulated 

in case of subtype-2. LASSO model was established to predict the best features from each 

subtype, 49 and 34 most relevant genes were selected in subtype-1 and subtype-2.  The 

abundance of tissue-infiltrates analysis distinguished the subtypes based on the expression 

pattern of immune infiltrates.  Survival analysis showed that this model could effectively predict 

the best and distinct features in cancer subtypes. This study suggests that unsupervised clustering 

and LASSO model-based feature selection can be effectively used to predict relevant genes 

which might play an important role in cancer diagnosis.  
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INTRODUCTION 
 

Lung cancer is among the most deadly cancers
1
. Its 

shows the worst survival rate when compared with 

colon, breast, and pancreatic cancers combined. 

Lung cancer is classified as non–small-cell lung 

cancer (NSCLC) and small-cell lung cancer 

(SCLC). NSCLCs are generally subcategorized into 

adenocarcinoma (LUAD), squamous cell carcinoma 

(LUSC), and large cell carcinoma. LUSC and 

LUAD account for 15% and 85% of all lung 

cancer, respectively 
2
. Lung cancer is a highly 

heterogeneous disease and identification of cancer 

subtypes is pivotal for clinicians. Genetic 

mutations, cancer microenvironment, immune, and 

therapeutic selection pressures all dynamically 

contribute to tumor heterogeneity. Heterogeneity 

may lead to cells with a differential molecular 

signature within single tumor tissue and in some 

cases, it may contribute to therapy resistance 
3,4

. 

Therefore, deciphering LUSC cancer heterogeneity 

will have a major impact in designing precision 

medicine strategy. Heterogeneous data suffers from 

a large number of covariates, and identification of 

variable selection is necessary to obtain more 

accurate predictions with a large number of 

covariates. Over the past decades, many computer-

aided diagnostic models have been used for 

predicting the risk of a variety of cancers, such as 

logistic regression, Cox proportional hazard model, 

Artificial neural networks, decision trees and 

Support vector machines 
5–8

. Previous studies 

indicate standard stepwise selection approaches 

which are not best for regression models with a 

very large number of covariates 
9
. Alternatively, 

least absolute shrinkage and selection operator 

(LASSO), has received much attention for 

identification and selection of best variables. 

LASSO was first formulated by Robert Tibshirani 

in 1996 
10

. It is a powerful method that performs 

two main tasks: regularization and feature selection. 

LASSO estimates the regression coefficients by 

maximizing the log-likelihood function with the 

constraint that the sum of the absolute values of the 

regression coefficients, ∑j=1kβj, is less than or 

equal to a positive constant s. In this study, we 

downloaded the RNASeq data for LUSC cancer 

samples from The Cancer Genome Atlas (TCGA) 

database. We differentiated the samples based on 

clusters into two subtypes to study the tumor 

heterogeneity. Differentially expressed genes 

(DEGs) were identified between two subtypes and 

normal groups, followed by predicting relevant 

variables that are associated with the response 

variable using the LASSO model and validating the 

variables using survival analysis. We estimated the 

population abundance of tissue-infiltrating immune 

and stromal cell populations in each subtype to 

decipher the inflammatory, antigenic, and 

desmoplastic reactions occurring. Our study 

provides new insight into tumor heterogeneity and 

its importance in sample classification for 

predicting of biomarkers of LUSC cancer. 

 

MATERIALS & METHODS 
 

Data source 

The RNASeq data of Lung Squamous cell cancer, 

including 505 LUSC samples, and 49 normal 

samples were downloaded from the TCGA 

database (https://portal.gdc.cancer.gov/) in May 

2019. All the raw, preprocessed data and supporting 

files can be accessed at 

https://bitbucket.org/lusc_data/supporting_data/src/

master/ . 

 

Data preprocessing and grouping  

Based on the clinical data, the LUSC cancer 

samples downloaded from TCGA database were 

divided into two sets, the first set was divided into 

114 low-risk samples and 390 high-risk sample 

groups according to the AJCC Cancer Staging 

(https://cancerstaging.org/). The second set (set2) 

was divided into 505 Primary solid Tumor samples 

and 49 Solid Tissue Normal samples. We 

calculated a variance stabilizing transformation 

(VST) from the data and transformed the counts 

yielding a matrix of values approximately 

homoskedastic. 

 

Molecular subtyping analysis 

Feature dimension reduction was needed to remove 

irrelevant features and to reduce noises, we used 

median absolute deviation (MAD) method and the 

features with MAD>0.5 were selected from set 2 

groups. Consensus clustering (CC) 
11

 was used for 

the identification of subtypes on set 2 group. 

Silhouette width 
12

 was used to validate sample 

clustering to its identified subtype compared to 

other subtypes.  

 

Differential gene expression analysis 

Differential gene expression was assessed by using 

the DESeq2 package
13

 (Version 1.24.0, 

https://bioconductor.org/packages/release/bioc/html

/DESeq2.html) on set1 (High-Risk samples Vs. 

Low-risk samples) and set2 (Subtype-1 vs. Normal 

and Subtype-2 vs. Normal). Log2 fold change > 2 

and P-value <0.05 were used as the cut-off values 

to identify the DEGs. 
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Construction of the LASSO Model 

Glmnet Package
14

 (Version 2.0-18, https://cran.r-

project.org/web/packages/glmnet/index.html) was 

used to fit a generalized linear model via penalized 

maximum likelihood, LASSO model was 

established (Least Absolute Shrinkage and 

Selection Operator) on the DEGs from individual 

Subtype-1 and Subtype-2 cancer samples. We built 

a single pass (single fold) lasso-penalized model 

and performed 10-fold cross-validation to identify 

the best predictor. 

 

Survival Analysis 

To find clinically or biologically meaningful 

biomarkers Kaplan-Meier survival curves
15

 were 

generated by selecting the best predictors from 

individual subtypes. Kaplan-Meier curves were 

generated using the TRGAted 
16

(https://github.com/ncborcherding/TRGAted) 

package implemented in R. 

 

Quantification of the absolute abundance of eight 

immune and two stromal cell populations  
We estimated the abundance of tissue-infiltrating 

immune and non-immune stromal cell populations 

in Subtype-1 and Subtype-2 samples. MCP-

counter
17

 (https://github.com/ebecht/MCPcounter) 

Package was used to estimate the 

Microenvironment Cell Populations. VST 

normalized gene expression matrix was used for the 

estimation of an immune and stromal cell 

population. 

 

Gene classification and enrichment analyses 

clusterProfiler
18

 (Version 3.12.0, 

http://bioconductor.org/packages/release/bioc/html/

clusterProfiler.html) was used  to annotate the 

DEGs from Subtype-1 and Subtype-2 groups to 

biological processes, molecular functions, and 

cellular components in a directed acyclic graph 

structure with a q-value cutoff of 0.2, Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
19

 

was utilized to annotate genes to pathways, and 

Disease Ontologies. 

 

 

 
 

Figure 1 

Expression Pattern and PCA analysis: (a) Volcano plot of differentially expressed genes (DEGs) in 

High risk Vs. low risk samples. (b) Principal component analysis for High risk and Low risk samples 
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Figure 2 

Cluster identification and validation. Fig 2.a. Consensus clustering results for LUSC samples. 

(b)Silhouette width for Cancer subtype Validation. (c) Principal component analysis for LUSC samples. 

(d) Differential gene expression in subtype 1 Vs. Normal samples. (e) Differential gene expression in 

subtype 2 Vs. Normal samples 
 

 
Figure 3 

Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using 

gene expression in Subtype-1 and Subtype-2 samples 
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Figure 4 a 

Cancer regulatory pathways in (a) Subtype-1 samples and (b) Subtype-2 samples 
 

 
Figure 4 b 

Cancer regulatory pathways in Subtype-2 samples 
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Figure 5 a 

Survival analysis for LASSO predicted genes in Subtype-1 samples 

 
 

 
Figure 5 b 

Survival analysis for LASSO predicted genes in Subtype-2 samples 
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Table 1 
Most relevant genes in established by LASSO model in Subtype-1 of LUSC 

 

Genes Coefficients 

GAL 0.003457 

MYCT1 0.003006 

IMPDH 1P8 0.001834 

TCF21 0.001811 

FOXA2 0.001753 

ROR1 0.001641 

NR3C2 0.001566 

GPD1 0.001236 

PPIAP45 0.001113 

LINC01977 0.000995 

GPR19 0.000891 

RTBDN 0.000838 

PGM5 0.000726 

AFF3 0.000712 

LINC01572 0.000662 

TM M249 0.000385 

TNNC1 0.000216 

CAGE1 0.000165 

TFAP2A 2.63E-05 

PGM5 -2.29E-05 

HRCT1 -3.03E-05 

C1orf87 -8.42E-05 

DPYSL2 -0.00011 

NEK5 -0.00014 

NKAPL -0.00016 

RBMY1KP -0.00017 

TGFBR2 -0.00024 

EIF4EBP1 -0.00051 

CENPF -0.0006 

RPL31P40 -0.0006 

FFAR4 -0.00061 

LINC01863 -0.0007 

GAS2L2 -0.0007 

KCNA4 -0.00079 

DUSP27 -0.00079 

LINC00670 -0.0009 

CAV3 -0.00101 

MIR4717 -0.00114 

PECAM1 -0.00139 

LINC00891 -0.00154 

HBM -0.00157 

GP9 -0.0016 

LINC02016 -0.00169 

HELT -0.0017 

OR6N1 -0.0021 

OR6K4P -0.00346 

CELF2 -0.0037 

LINC02058 -0.00486 

LINC00710 -0.00499 
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Table 2 

Most relevant genes in established by LASSO model in Subtype-2 of LUSC 
 

Genes Coefficient 

MIR3131 -0.01287 

LINC00844 -0.01122 

RXFP2 -0.00708 

PDZRN3.AS1 -0.00704 

GYPB -0.00534 

KHDRBS2.OT -0.00515 

DPPA3P2 -0.00496 

HBM -0.00425 

RPL31P40 -0.00424 

LINC00710 -0.00408 

SYNE1.AS1 -0.00382 

GP9 -0.00296 

PGM5.AS1 -0.00277 

MIR6071 -0.00207 

LINC01070 -0.00201 

LINC01985 -0.00184 

LINC02435 -0.00152 

KCNA10 -0.00119 

OR6K3 -0.00113 

MIR4717 -0.00094 

LINC02016 -0.00077 

LINC00670 -0.00066 

NCAPGP2 -0.00063 

GGTLC3 -0.00055 

GUCA2A -0.00038 

ART1 -0.0003 

ACSM2B -0.00021 

GPIHBP1 2.05E-05 

ATOH8 8.75E-05 

TCF21 0.000133 

ADGRD1 0.000279 

MAMDC2 0.000348 

ABCA8 0.000531 

SFTA1P 0.001316 
 

Table 3 

KEGG pathway analysis for Subtype-1 group 
 

Genes KEGG ID Description 

CAV3 hsa05100,hsa04510,hsa05205 

Bacterial invasion of epithelial cells, Focal 

adhesion, Proteoglycans in cancer 

CAV3/PECAM1 hsa05418 Fluid shear stress and atherosclerosis 

DPYSL2 hsa04360 Axon guidance 

EIF4EBP1 hsa05221 

Acute myeloid leukemia, EGFR tyrosine 

kinase inhibitor resistance, ErbB signaling 

pathway, Longevity regulating pathway, 

Choline metabolism in cancer, HIF-1 signaling 

pathway 

EIF4EBP1 

hsa05221, hsa01521, hsa04012, 

hsa04211, hsa05231, hsa04066, 

AMPK signaling pathway, Insulin signaling 

pathway, mTOR signaling pathway, RNA 
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hsa04152, hsa04910, hsa04150, 

hsa03013, hsa05163, hsa04151, 

hsa05168 

transport, Human cytomegalovirus infection, 

Human papillomavirus infection, PI3K-Akt 

signaling pathway, 

FOXA2 hsa04950, hsa04213 

Maturity onset diabetes of the young, 

Longevity regulating pathway - multiple 

species 

GAL hsa04080 Neuroactive ligand-receptor interaction 

GP9 hsa04512, hsa04640, hsa04611 

ECM-receptor interaction, Hematopoietic cell 

lineage, Platelet activation 

GPD1 hsa00564 Glycerophospholipid metabolism 

KCNA4 hsa04927, hsa04934 

Cortisol synthesis and secretion, Cushing 

syndrome 

NR3C2 hsa04960 Aldosterone-regulated sodium reabsorption 

OR6N1 hsa04740 Olfactory transduction 

PECAM1 hsa05144, hsa04670,hsa04514 

Malaria, Leukocyte transendothelial migration,  

Cell adhesion molecules (CAMs) 

ROR1 hsa04310 Wnt signaling pathway 

TGFBR2 hsa04520 Adherens junction 

TGFBR2 hsa05212, hsa05220, hsa05210, 

hsa04350, hsa04933, hsa05142, 

hsa04659, hsa04380, hsa04926, 

hsa04068, hsa05226, hsa04390, 

hsa05161, hsa05225, hsa05202, 

hsa05166, hsa04060, hsa04010 

Pancreatic cancer, Chronic myeloid leukemia, 

Colorectal cancer, TGF-beta signaling 

pathway, AGE-RAGE signaling pathway in 

diabetic complications, Chagas disease 

(American trypanosomiasis), Th17 cell 

differentiation, Osteoclast differentiation, 

Relaxin signaling pathway, FoxO signaling 

pathway, Gastric cancer, Hippo signaling 

pathway, Hepatitis B, Hepatocellular 

carcinoma, Transcriptional misregulation in 

cancer, Human T-cell leukemia virus 1 

infection, Cytokine-cytokine receptor 

interaction, MAPK signaling pathway 

TGFBR2/CAV3 hsa04144 Endocytosis 

TGFBR2/EIF4EBP1 hsa04218 Cellular senescence 

TNNC1 

hsa04260, hsa05410, hsa05414,  

hsa04261, hsa04020 

Cardiac muscle contraction, Hypertrophic 

cardiomyopathy (HCM), Dilated 

cardiomyopathy (DCM), Adrenergic signaling 

in cardiomyocytes, Calcium signaling pathway 

 

Table 4 

KEGG pathway analysis for Subtype-2 group 
 

Genes ID Description P value p. adjust Q value 

ACSM2B hsa00650 Butanoate metabolism 0.021127 0.110183 0.077321 

ABCA8 hsa02010 ABC transporters 0.033772 0.110183 0.077321 

GYPB hsa05144 Malaria 0.036728 0.110183 0.077321 

GP9 hsa04512 ECM-receptor interaction 0.06515 0.121208 0.085058 

GP9 hsa04640 Hematopoietic cell lineage 0.071609 0.121208 0.085058 

GP9 hsa04611 Platelet activation 0.090762 0.121208 0.085058 

RXFP2 hsa04926 Relaxin signaling pathway 0.094273 0.121208 0.085058 

RXFP2 hsa04080 
Neuroactive ligand-receptor 
interaction 0.231252 0.260158 0.182567 

OR6K3 hsa04740 Olfactory transduction 0.296107 0.296107 0.207794 
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RESULT 
 

Identification of DEGs in High-risk LUSC tumors 
The genes with p-value cutoff < 0.05 and log2 fold 

change > 2 were considered to be differentially 

expressed. A total of 22 genes were differentially 

expressed between high risk and low-risk samples, 

which includes 4 downregulated and 18 

upregulated genes. Figure 1.a displays the heat map 

of the risk-related DEGs. It is suggestive of similar 

gene expression pattern in both groups, which 

makes it difficult to classify the samples on the 

gene expression pattern. PC analysis shows the 

homogeneity of the data between the High and 

Low-risk group (Fig 1b.). 

 

Molecular cancer subtype identification in LUSC 

Tumor samples and validation of clusters 

We used an unsupervised clustering method 

Consensus clustering (CC) 
11

. CC method is most 

widely used for subtype discovery in high 

dimensional datasets. We used settings of the 

agglomerative hierarchical clustering algorithm 

using Pearson correlation distance. Two distinct 

clusters were discovered in our datasets, 240 and 

262 samples were clustered in Subtype-1 and 

Subtype-2 groups respectively. (Table S1 and S2) 

We have validated consistency within clusters of 

data using Silhouette Plot 
12

. The Average 

Silhouette width for our generated clusters is 0.68 

(Fig 2a, 2b. and 2c.). 

 

Identification of DEGs in Subtype-1 and Subtype-

2 LUSC Tumors 
We compared the subtype-1 and subtype-2 with the 

normal samples and based on the p-value cutoff < 

0.05 and log2 fold change > 2 we identified 

significant DEGs. 4586 genes were upregulated and 

1495 were downregulated in case of subtype-1 (Fig 

2d.) and 5016 genes were upregulated and 3224 

were downregulated in case of subtype-2 (Fig 2e) 

shows differential expression pattern in subtype-1 

and subtype-2. The DEGs in both subtypes were 

used for building LASSO predictive model and for 

the identification of best predictor genes. 

 

LASSO model for identification of best predictive 

genes 
It is a powerful method that performs two main 

tasks: regularization and feature selection. RNASeq 

datasets are high dimensional datasets, with smaller 

sample size and a large number of features also 

called small-n-large-p datasets (p >> n). High 

dimensional data will be sparse and only a few 

features affect the response variable and LASSO is 

known to identify the best features that affect the 

response variable. We deal with a p >> n situation 

for feature selection in our Subtype-1 and Subtype-

2 datasets, thus probably not all DEGs are relevant 

for the identification of features which affect the 

response variable. The result shows the trends of 

the 49 and 34 most relevant features selected by our 

model in subtype-1 and subtype-2 LUSC cancer 

respectively (Fig S1 and S2). The next step would 

be to find the most appropriate values for λ for our 

LASSO model. We analyzed the λ value using 10 

fold cross-validation (Fig S3 and S4), between λ 

min that gives minimum mean cross-validated error 

or λ1se, which gives a model such that error is 

within one standard error of the minimum. Using 

this analysis we obtained the most relevant genes 

which are unique to subtype-1 and subtype-2 in the 

detection of a LUSC cancer. A list of best-predicted 

genes available for each cancer subtype is shown in 

Table 1 and Table 2. 

 

Analysis of the microenvironment of Subtype-1 

and Subtype-2 LUSC cancer 

The abundance of tissue-infiltrating immune and 

non-immune stromal cell populations is highly 

informative. It has been shown that the extent of 

infiltrating immune cells is associated with disease 

prognosis 
20

. T-cell infiltrates, endothelial cells and 

fibroblasts are associated with a favorable outcome 

and also poor prognosis in some cancer types 
21–24

. 

To understand the immunological 

microenvironment in our expression subset-1 and 

subset-2 we used MCP-counter method as 

described by Becht et al 
17

. The estimations consist 

of single sample scores which are computed on 

each sample independently in two subtypes. The 

heatmap shown in Figure 3 clearly distinguish our 

subtype-1 and subtype-2 into two different 

categories based on tissue-infiltrating immune and 

non-immune stromal cell populations. Subtype-1 

shows clear increase in CD8 T cells, Cytotoxic 

lymphocytes and Natural killer cells and Subtype-2 

shows decreased levels of T-cells, macrophages, B 

cells, and natural killer (NK) cells, as well as 

endothelial cells and fibroblasts. Our study clearly 

distinguishes LUSC subtypes based on their 

inflammatory and stromal profiles and Subtype-1 

LUSC samples show increased expression of 

immunological markers than Subtype 2 LUSC 

samples. 

 

Disease pathway analysis 

KEGG pathway analysis for Subtype-1 and 

Subtype-2 revealed many significant cancer 

pathways, including genes involved in Focal 
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adhesion, mTOR signaling pathway, Axon 

guidance pathway , Cellular senescence pathway, 

ErbB signaling pathway, Longevity regulating 

pathway, HIF-1 signaling pathway, AMPK 

signaling pathway, Pancreatic cancer, Chronic 

myeloid leukemia, Colorectal cancer, TGFbeta 

signaling pathway etc.  (Table 3 and Table 4). 

Genes such as EIF4EBP1, FOXA2, PECAM1, 

TGFBR2, TNNC1, ACSM2B and ABCA8 picked 

up by our model plays a pivotal role in cancer 

regulatory pathways (Fig 4a. and 4b.). Both 

Subtype-1 and Subtype-2 groups showed distinct 

biological processes and cellular components after 

GO Enrichment Analysis of the gene sets from 

Subtype-1 and Subtype-2 groups. (Fig. S5, S6, S7 

and S8 and Table S3, S4, S5 and S6). 

 

Validation with survival analysis 

The genes predicted by our LASSO model 

accurately predicted the outcome of a patient's 

survival using gene expression data. Genes such as 

GAL, TFAP2A, AFF3, TNNC1, TGBR2, HELT, 

and SFTA1P yielded accurate predictions for the 

risk of LUSC cancer and can be used in cancer 

prediction.  Survival plots and its p-value is shown 

in (Fig 5a. and 5b , Supplemental Figure S9). 

 

DISCUSSION 
 

In this study, we developed a LASSO based model 

for accurate feature selection in LUSC cancer. Our 

model removed variables that are redundant and 

removed features which do not add any valuable 

information in disease prediction. Analysis using 

the survival data for the predicted genes showed 

that the model could effectively predict genes 

responsible for disease prognosis in high 

dimensional datasets. Deciphering cancer 

heterogeneity is very critical in understanding 

cancer dynamics and also for the development of 

personalized cancer treatment 
25,26

. We used 

Consensus clustering method to determine the 

number of clusters in our samples, and we clustered 

the samples into two groups which produced 

optimal silhouette width for the determined 

clusters. Differential gene expression analysis 

showed distinct expression patterns in Subtype-1 

and Subtype-2. The numbers of differentially 

expressed genes were very high and in these 

situations, it is difficult to predict the relevant 

variables. LASSO model was built around 6081 

and 8240 DE genes in Subtype-1 and Subtype-2 

respectively. Not all the expressed genes were 

relevant, our model predicted the most relevant 

genes which were involved in disease progression. 

Decreased expression of AFF3, TNNC1, TGFBR2, 

FFAR4 and HELT in Subtype-1 and GGTLC3, 

GUCA2A, HBM, SFTA1P and SYNE1 in Subtype-

2 showed worse overall survival in LUSC cancer 

samples. Whereas increased expression of genes 

such as PPIA P45, CAGE1, TFAP2A, CENPF in 

Subtype-1 decreased overall survival in LUSC 

cancer samples. Long intervening noncoding RNAs 

(lncRNAs) are known to be key regulators of 

numerous biological processes, and substantial 

evidence supports that lncRNA expression plays a 

significant role in tumorigenesis and tumor 

progression
27

. Increased expression of LINC01977, 

LINC01572 in Subtype-1 samples correlates with 

worse survival in LUSC cancer subtypes. Whereas, 

decreased expression of LINC02058 in Subtype-1 

and LINC00670 in Subtype-2 showed worse 

survival in LUSC samples. The LASSO method 

predicts the most relevant and distinct genes from 

Subtype-1 and Subtype-2 samples which might be 

an important factor in cancer diagnosis. The best 

predictors for subtype 1 and subtype 2 from the 

LASSO model were found to be involved in several 

regulatory pathways. The genes such as TGFBR2, 

EIF4EBP1, and ROR1 which are predicted only in 

case of Subtype-1 are found to be involved in 

several cell cycle and growth regulatory pathways 

and thereby having a strong correlation with cancer. 

The gene gp9 plays an important role in ECM-

receptor interactions, which is critical in disease 

progression and malignant cell behavior
28

. 

Neuroactive ligand-receptor interaction signaling 

pathway is a collection of receptors and ligands on 

the plasma membrane that are associated with 

intracellular and extracellular signaling pathways. It 

is found to be associated with prostate cancer, 

bladder cancer, and renal cell carcinoma 
29

. In our 

study, the gene RXFP2 that is predicted only in 

Subtype-2 is found to be involved in neuroactive 

ligand-receptor interaction. RXFP2 is also found to 

be involved in Relaxin signaling which induces cell 

invasion and is reported in several cancers 
30

.  The 

modulators of ABC transporters is reported to have 

the potential to augment the efficacy of anticancer 

drugs 
31

. ABCA8 is one such gene and it was 

predicted only in Subtype-2. Our model identified 

cancer/testis antigen gene CAGE-1 which is 

overexpressed in Subtype-1 and might act as a 

plasma biomarker for lung cancer early detection. 

Previous studies showed that CAGE-1 provides an 

important addition to the armamentarium the 

clinician to aid early detection of lung cancer in 

high-risk individuals 
32–37

. GUCA2A was down-

regulated in Subtype-2 samples, many studies on 

GUCA2A indicates its role as a biomarker in 
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diagnosing cancer. Aberrantly expressed GUCA2A 

can be a candidate marker of poor prognosis in 

patients with LUSC and Colorectal cancers, which 

may be a therapeutic target for precision medicine 
38–40

 Under expression of TGFBR2 in Subtype-1 

samples is associated with poor prognosis, and 

TGFBR2 is also associated with poor prognosis in 

cervical cancer 
41,42

. CENP-F, a cell cycle-regulated 

centromere protein, has been shown to affect 

numerous tumorigenic processes, increased 

expression of CENP-F in subtype-1 correlates with 

poor survival. Previous studies demonstrate that 

CENP-F may serve as a valuable molecular marker 

for predicting the prognosis of esophageal 

squamous cell carcinoma patients and 

nasopharyngeal carcinoma progression 
42-45

. Down 

regulation of SFTA1P in Subtype-2 correlates with 

poor survival, previous studies suggest SFTA1P 

regulates both oncogene and tumor suppressor 

genes during carcinogenesis of lung squamous cell 

carcinoma 
46-49

 which can be used as a prognostic 

biomarker. Furthermore, Consensus clustering and 

LASSO helps us to choose a model with the most 

relevant features. Consistent with this finding, the 

clustered samples into two different subtypes 

showed distinct features, highlighting the better 

sample grouping and risk assessment. Moreover, 

the results of survival analysis validates that the 

survival time of the predicted genes correlates with 

gene expression pattern, which  is recognizably 

different in both Subtypes, indicating that this 

model could effectively distinguish the samples 

with different expression pattern by overcoming the 

feature selection problem and was accurate for 

predicting the risk of LUSC cancer. 

 

CONCLUSIONS 
 

In conclusion, this study suggests that the 

unsupervised method such as Consensus clustering 

and LASSO model-based feature selection could be 

used to evaluate the prediction and prognosis of 

LUSC cancer. With this model, we can identify the 

prognostic biomarkers of LUSC cancer, and the 

model-predicted genes would be helpful for 

clinicians in the management of cancer patients. 
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