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GENE PREDICTION IN HETEROGENEOUS CANCER TISSUES AND
ESTABLISHMENT OF LEAST ABSOLUTE SHRINKAGE AND SELECTION
OPERATOR MODEL FOR LUNG SQUAMOUS CELL CARCINOMA.
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ABSTRACT

This study is aimed to establish a Least Absolute Shrinkage and Selection Operator (LASSO)
model based on tumor heterogeneity to predict the best features of LUSC in various cancer
subtypes. The RNASeq data of 505 LUSC cancer samples were downloaded from the TCGA
database. Subsequent to the identification of differentially expressed genes (DEGs), the samples
were divided into two subtypes based on the consensus clustering method. The subtypes were
estimated with the abundance of immune and non-immune stromal cell populations which
infiltrated the tissue. LASSO model was established to predict each subtype's best genes.
Enrichment pathway analysis was then carried out. Finally, the validity of the LUSC model for
identifying features was established by the survival analysis. 240 and 262 samples were clustered
in Subtype-1 and Subtype-2 groups respectively. DEG analysis was performed on each subtype.
A standard cutoff was applied and in total, 4586 genes were up regulated and 1495 were down
regulated in case of subtype-1 and 5016 genes were up regulated and 3224 were down regulated
in case of subtype-2. LASSO model was established to predict the best features from each
subtype, 49 and 34 most relevant genes were selected in subtype-1 and subtype-2. The
abundance of tissue-infiltrates analysis distinguished the subtypes based on the expression
pattern of immune infiltrates. Survival analysis showed that this model could effectively predict
the best and distinct features in cancer subtypes. This study suggests that unsupervised clustering
and LASSO model-based feature selection can be effectively used to predict relevant genes
which might play an important role in cancer diagnosis.
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INTRODUCTION

Lung cancer is among the most deadly cancers'. Its
shows the worst survival rate when compared with
colon, breast, and pancreatic cancers combined.
Lung cancer is classified as non—small-cell lung
cancer (NSCLC) and small-cell lung cancer
(SCLC). NSCLCs are generally subcategorized into
adenocarcinoma (LUAD), squamous cell carcinoma
(LUSC), and large cell carcinoma. LUSC and
LUAD account for 15% and 85% of all lung
cancer, respectively 2. Lung cancer is a highly
heterogeneous disease and identification of cancer
subtypes is pivotal for clinicians. Genetic
mutations, cancer microenvironment, immune, and
therapeutic selection pressures all dynamically
contribute to tumor heterogeneity. Heterogeneity
may lead to cells with a differential molecular
signature within single tumor tissue and in some
cases, it may contribute to therapy resistance 4
Therefore, deciphering LUSC cancer heterogeneity
will have a major impact in designing precision
medicine strategy. Heterogeneous data suffers from
a large number of covariates, and identification of
variable selection is necessary to obtain more
accurate predictions with a large number of
covariates. Over the past decades, many computer-
aided diagnostic models have been used for
predicting the risk of a variety of cancers, such as
logistic regression, Cox proportional hazard model,
Artificial neural networks, decision trees and
Support vector machines . Previous studies
indicate standard stepwise selection approaches
which are not best for regression models with a
very large number of covariates °. Alternatively,
least absolute shrinkage and selection operator
(LASSO), has received much attention for
identification and selection of best variables.
LASSO was first formulated by Robert Tibshirani
in 1996 '°. 1t is a powerful method that performs
two main tasks: regularization and feature selection.
LASSO estimates the regression coefficients by
maximizing the log-likelihood function with the
constraint that the sum of the absolute values of the
regression coefficients, >j=1kpj, is less than or
equal to a positive constant s. In this study, we
downloaded the RNASeq data for LUSC cancer
samples from The Cancer Genome Atlas (TCGA)
database. We differentiated the samples based on
clusters into two subtypes to study the tumor
heterogeneity. Differentially expressed genes
(DEGs) were identified between two subtypes and
normal groups, followed by predicting relevant
variables that are associated with the response
variable using the LASSO model and validating the
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variables using survival analysis. We estimated the
population abundance of tissue-infiltrating immune
and stromal cell populations in each subtype to
decipher the inflammatory, antigenic, and
desmoplastic reactions occurring. Our study
provides new insight into tumor heterogeneity and
its importance in sample classification for
predicting of biomarkers of LUSC cancer.

MATERIALS & METHODS

Data source

The RNASeq data of Lung Squamous cell cancer,
including 505 LUSC samples, and 49 normal
samples were downloaded from the TCGA
database (https://portal.gdc.cancer.gov/) in May
2019. All the raw, preprocessed data and supporting
files can be accessed at
https://bitbucket.org/lusc data/supporting data/src/
master/ .

Data preprocessing and grouping

Based on the clinical data, the LUSC cancer
samples downloaded from TCGA database were
divided into two sets, the first set was divided into
114 low-risk samples and 390 high-risk sample
groups according to the AJCC Cancer Staging
(https://cancerstaging.org/). The second set (set2)
was divided into 505 Primary solid Tumor samples
and 49 Solid Tissue Normal samples. We
calculated a variance stabilizing transformation
(VST) from the data and transformed the counts
yielding a matrix of values approximately
homoskedastic.

Molecular subtyping analysis

Feature dimension reduction was needed to remove
irrelevant features and to reduce noises, we used
median absolute deviation (MAD) method and the
features with MAD>0.5 were selected from set 2
groups. Consensus clustering (CC) '' was used for
the identification of subtypes on set 2 group.
Silhouette width '* was used to validate sample
clustering to its identified subtype compared to
other subtypes.

Differential gene expression analysis

Differential gene expression was assessed by using
the DESeq2 package”  (Version 1.24.0,
https://bioconductor.org/packages/release/bioc/html
/DESeq2.html) on setl (High-Risk samples Vs.
Low-risk samples) and set2 (Subtype-1 vs. Normal
and Subtype-2 vs. Normal). Log2 fold change > 2
and P-value <0.05 were used as the cut-off values
to identify the DEGs.

This article can be downloaded from www.ijlpr.com

L-35



Int. J. Life Sci. Pharma Res. 2019 Oct; 9(4): (L) 34-48

Construction of the LASSO Model

Glmnet Package'® (Version 2.0-18, https:/cran.r-
project.org/web/packages/glmnet/index.html)  was
used to fit a generalized linear model via penalized
maximum likelihood, LASSO model was
established (Least Absolute Shrinkage and
Selection Operator) on the DEGs from individual
Subtype-1 and Subtype-2 cancer samples. We built
a single pass (single fold) lasso-penalized model
and performed 10-fold cross-validation to identify
the best predictor.

Survival Analysis

To find clinically or biologically meaningful
biomarkers Kaplan-Meier survival curves'> were
generated by selecting the best predictors from
individual subtypes. Kaplan-Meier curves were
generated using the TRGAted
"(https://github.com/ncborcherding/ TRGAted)

package implemented in R.
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Quantification of the absolute abundance of eight
immune and two stromal cell populations

We estimated the abundance of tissue-infiltrating
immune and non-immune stromal cell populations
in Subtype-1 and Subtype-2 samples. MCP-
counter'’  (https:/github.com/ebecht/MCPcounter)
Package @ was used to estimate  the
Microenvironment  Cell ~ Populations. VST
normalized gene expression matrix was used for the
estimation of an immune and stromal cell
population.

Gene classification and enrichment analyses
clusterProfiler'® (Version 3.12.0,
http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) was used to annotate the
DEGs from Subtype-1 and Subtype-2 groups to
biological processes, molecular functions, and
cellular components in a directed acyclic graph
structure with a g-value cutoff of 0.2, Kyoto
Encyclopedia of Genes and Genomes (KEGG) "
was utilized to annotate genes to pathways, and
Disease Ontologies.
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Figure 1

Expression Pattern and PCA analysis: (a) Volcano plot of differentially expressed genes (DEGs) in
High risk Vs. low risk samples. (b) Principal component analysis for High risk and Low risk samples
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Cluster identification and validation. Fig 2.a. Consensus clustering results for LUSC samples.
(b)Silhouette width for Cancer subtype Validation. (c) Principal component analysis for LUSC samples.
(d) Differential gene expression in subtype 1 Vs. Normal samples. (e) Differential gene expression in
subtype 2 Vs. Normal samples
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Figure 3
Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using
gene expression in Subtype-1 and Subtype-2 samples
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Cancer regulatory pathways in (a) Subtype-1 samples and (b) Subtype-2 samples
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Cancer regulatory pathways in Subtype-2 samples
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Survival analysis for LASSO predicted genes in Subtype-1 samples
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Survival analysis for LASSO predicted genes in Subtype-2 samples
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Table 1
Most relevant genes in established by LASSO model in Subtype-1 of LUSC
Genes Coefficients

GAL 0.003457
MYCTI1 0.003006
IMPDH 1P8 0.001834
TCF21 0.001811
FOXA2 0.001753
RORI1 0.001641
NR3C2 0.001566
GPD1 0.001236
PPIAP45 0.001113
LINCO01977 0.000995
GPR19 0.000891
RTBDN 0.000838
PGM5 0.000726
AFF3 0.000712
LINCO01572 0.000662
T™M M249 0.000385
TNNC1 0.000216
CAGE1 0.000165
TFAP2A 2.63E-05
PGM5 -2.29E-05
HRCT1 -3.03E-05
Clorf87 -8.42E-05
DPYSL2 -0.00011
NEKS5 -0.00014
NKAPL -0.00016
RBMY 1KP -0.00017
TGFBR2 -0.00024
EIF4EBP1 -0.00051
CENPF -0.0006

RPL31P40 -0.0006

FFAR4 -0.00061
LINCO01863 -0.0007

GAS2L2 -0.0007

KCNA4 -0.00079
DUSP27 -0.00079
LINCO00670 -0.0009

CAV3 -0.00101
MIR4717 -0.00114
PECAMI -0.00139
LINC00891 -0.00154
HBM -0.00157
GP9 -0.0016

LINC02016 -0.00169
HELT -0.0017

ORO6N1 -0.0021

OR6KA4P -0.00346
CELF2 -0.0037

LINC02058 -0.00486
LINC00710 -0.00499
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Table 2
Most relevant genes in established by LASSO model in Subtype-2 of LUSC
Genes Coefficient
MIR3131 -0.01287
LINC00844 -0.01122
RXFP2 -0.00708
PDZRN3.AS1 -0.00704
GYPB -0.00534
KHDRBS2.0T -0.00515
DPPA3P2 -0.00496
HBM -0.00425
RPL31P40 -0.00424
LINC00710 -0.00408
SYNEI1.ASI -0.00382
GP9 -0.00296
PGMS5.AS1 -0.00277
MIR6071 -0.00207
LINC01070 -0.00201
LINCO01985 -0.00184
LINC02435 -0.00152
KCNA10 -0.00119
OR6K3 -0.00113
MIR4717 -0.00094
LINC02016 -0.00077
LINC00670 -0.00066
NCAPGP2 -0.00063
GGTLC3 -0.00055
GUCA2A -0.00038
ART1 -0.0003
ACSM2B -0.00021
GPIHBP1 2.05E-05
ATOHS 8.75E-05
TCF21 0.000133
ADGRDI1 0.000279
MAMDC2 0.000348
ABCAS 0.000531
SFTA1P 0.001316
Table 3
KEGG pathway analysis for Subtype-1 group
Genes KEGG ID Description
Bacterial invasion of epithelial cells, Focal
CAV3 hsa05100,hsa04510,hsa05205 adhesion, Proteoglycans in cancer
CAV3/PECAMI1 hsa05418 Fluid shear stress and atherosclerosis
DPYSL2 hsa04360 Axon guidance
Acute myeloid leukemia, EGFR tyrosine
kinase inhibitor resistance, ErbB signaling
pathway, Longevity regulating pathway,
Choline metabolism in cancer, HIF-1 signaling
EIF4EBP1 hsa(05221 pathway
hsa05221, hsa01521, hsa04012, AMPK signaling pathway, Insulin signaling
EIF4EBP1 hsa04211, hsa05231, hsa04066, pathway, mTOR signaling pathway, RNA
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hsa04152, hsa04910, hsa04150,
hsa03013, hsa05163, hsa04151,

hsa05168

transport, Human cytomegalovirus infection,
Human papillomavirus infection, PI3K-Akt
signaling pathway,

Maturity onset diabetes of the young,
Longevity regulating pathway - multiple

FOXA2 hsa04950, hsa04213 species
GAL hsa04080 Neuroactive ligand-receptor interaction
ECM-receptor interaction, Hematopoietic cell
GP9 hsa04512, hsa04640, hsa04611 lineage, Platelet activation
GPD1 hsa00564 Glycerophospholipid metabolism
Cortisol synthesis and secretion, Cushing
KCNA4 hsa04927, hsa04934 syndrome
NR3C2 hsa04960 Aldosterone-regulated sodium reabsorption
ORG6N1 hsa04740 Olfactory transduction
Malaria, Leukocyte transendothelial migration,
PECAMI1 hsa05144, hsa04670,hsa04514 Cell adhesion molecules (CAMs)
RORI hsa04310 Wnt signaling pathway
TGFBR2 hsa04520 Adherens junction
TGFBR2 hsa05212, hsa05220, hsa05210, Pancreatic cancer, Chronic myeloid leukemia,
hsa04350, hsa04933, hsa05142, Colorectal cancer, TGF-beta signaling
hsa04659, hsa04380, hsa04926,  pathway, AGE-RAGE signaling pathway in
hsa04068, hsa05226, hsa04390, diabetic complications, Chagas disease
hsa05161, hsa05225, hsa05202, (American trypanosomiasis), Th17 cell
hsa05166, hsa04060, hsa04010 differentiation, Osteoclast differentiation,
Relaxin signaling pathway, FoxO signaling
pathway, Gastric cancer, Hippo signaling
pathway, Hepatitis B, Hepatocellular
carcinoma, Transcriptional misregulation in
cancer, Human T-cell leukemia virus 1
infection, Cytokine-cytokine receptor
interaction, MAPK signaling pathway
TGFBR2/CAV3 hsa04144 Endocytosis
TGFBR2/EIFAEBP1 hsa04218 Cellular senescence
Cardiac muscle contraction, Hypertrophic
cardiomyopathy (HCM), Dilated
hsa04260, hsa05410, hsa05414, cardiomyopathy (DCM), Adrenergic signaling
TNNCI hsa04261, hsa04020 in cardiomyocytes, Calcium signaling pathway
Table 4
KEGG pathway analysis for Subtype-2 group
Genes ID Description P value p. adjust  Q value
ACSM2B  hsa00650 Butanoate metabolism 0.021127 0.110183  0.077321
ABCA8 hsa02010 ABC transporters 0.033772 0.110183 0.077321
GYPB hsa05144  Malaria 0.036728  0.110183  0.077321
GP9 hsa04512 ECM-receptor interaction 0.06515 0.121208 0.085058
GP9 hsa04640 Hematopoietic cell lineage 0.071609 0.121208 0.085058
GP9 hsa04611  Platelet activation 0.090762 0.121208  0.085058
RXFP2 hsa04926 Relaxin signaling pathway 0.094273 0.121208 0.085058
Neuroactive ligand-receptor
RXFP2 hsa04080 interaction 0.231252 0.260158  0.182567
OR6K3 hsa04740 Olfactory transduction 0.296107 0.296107 0.207794
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RESULT

Identification of DEGs in High-risk LUSC tumors
The genes with p-value cutoff < 0.05 and log2 fold
change > 2 were considered to be differentially
expressed. A total of 22 genes were differentially
expressed between high risk and low-risk samples,
which includes 4 downregulated and 18
upregulated genes. Figure 1.a displays the heat map
of the risk-related DEGs. It is suggestive of similar
gene expression pattern in both groups, which
makes it difficult to classify the samples on the
gene expression pattern. PC analysis shows the
homogeneity of the data between the High and
Low-risk group (Fig 1b.).

Molecular cancer subtype identification in LUSC
Tumor samples and validation of clusters

We used an unsupervised clustering method
Consensus clustering (CC) " CC method is most
widely wused for subtype discovery in high
dimensional datasets. We used settings of the
agglomerative hierarchical clustering algorithm
using Pearson correlation distance. Two distinct
clusters were discovered in our datasets, 240 and
262 samples were clustered in Subtype-1 and
Subtype-2 groups respectively. (Table S1 and S2)
We have validated consistency within clusters of
data using Silhouette Plot '2. The Average
Silhouette width for our generated clusters is 0.68
(Fig 2a, 2b. and 2c.).

Identification of DEGs in Subtype-1 and Subtype-
2 LUSC Tumors

We compared the subtype-1 and subtype-2 with the
normal samples and based on the p-value cutoff <
0.05 and log2 fold change > 2 we identified
significant DEGs. 4586 genes were upregulated and
1495 were downregulated in case of subtype-1 (Fig
2d.) and 5016 genes were upregulated and 3224
were downregulated in case of subtype-2 (Fig 2e)
shows differential expression pattern in subtype-1
and subtype-2. The DEGs in both subtypes were
used for building LASSO predictive model and for
the identification of best predictor genes.

LASSO model for identification of best predictive
genes

It is a powerful method that performs two main
tasks: regularization and feature selection. RNASeq
datasets are high dimensional datasets, with smaller
sample size and a large number of features also
called small-n-large-p datasets (p >> n). High
dimensional data will be sparse and only a few
features affect the response variable and LASSO is
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known to identify the best features that affect the
response variable. We deal with a p >> n situation
for feature selection in our Subtype-1 and Subtype-
2 datasets, thus probably not all DEGs are relevant
for the identification of features which affect the
response variable. The result shows the trends of
the 49 and 34 most relevant features selected by our
model in subtype-1 and subtype-2 LUSC cancer
respectively (Fig S1 and S2). The next step would
be to find the most appropriate values for A for our
LASSO model. We analyzed the A value using 10
fold cross-validation (Fig S3 and S4), between A
min that gives minimum mean cross-validated error
or Alse, which gives a model such that error is
within one standard error of the minimum. Using
this analysis we obtained the most relevant genes
which are unique to subtype-1 and subtype-2 in the
detection of a LUSC cancer. A list of best-predicted
genes available for each cancer subtype is shown in
Table 1 and Table 2.

Analysis of the microenvironment of Subtype-1
and Subtype-2 LUSC cancer

The abundance of tissue-infiltrating immune and
non-immune stromal cell populations is highly
informative. It has been shown that the extent of
infiltrating immune cells is associated with disease
prognosis 2. T-cell infiltrates, endothelial cells and
fibroblasts are associated with a favorable outcome
and also poor prognosis in some cancer types > .
To understand the immunological
microenvironment in our expression subset-1 and
subset-2 we wused MCP-counter method as
described by Becht et al '’. The estimations consist
of single sample scores which are computed on
each sample independently in two subtypes. The
heatmap shown in Figure 3 clearly distinguish our
subtype-1 and subtype-2 into two different
categories based on tissue-infiltrating immune and
non-immune stromal cell populations. Subtype-1
shows clear increase in CD8 T cells, Cytotoxic
lymphocytes and Natural killer cells and Subtype-2
shows decreased levels of T-cells, macrophages, B
cells, and natural killer (NK) cells, as well as
endothelial cells and fibroblasts. Our study clearly
distinguishes LUSC subtypes based on their
inflammatory and stromal profiles and Subtype-1
LUSC samples show increased expression of
immunological markers than Subtype 2 LUSC
samples.

Disease pathway analysis

KEGG pathway analysis
Subtype-2 revealed many
pathways, including genes

for Subtype-1 and
significant cancer
involved in Focal
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adhesion, mTOR signaling pathway, Axon
guidance pathway , Cellular senescence pathway,
ErbB signaling pathway, Longevity regulating
pathway, HIF-1 signaling pathway, AMPK
signaling pathway, Pancreatic cancer, Chronic
myeloid leukemia, Colorectal cancer, TGFbeta
signaling pathway etc. (7Table 3 and Table 4).
Genes such as EIF4EBP1, FOXA2, PECAMI,
TGFBR2, TNNC1, ACSM2B and ABCAS8 picked
up by our model plays a pivotal role in cancer
regulatory pathways (Fig 4a. and 4b.). Both
Subtype-1 and Subtype-2 groups showed distinct
biological processes and cellular components after
GO Enrichment Analysis of the gene sets from
Subtype-1 and Subtype-2 groups. (Fig. S5, S6, S7
and 88 and Table S3, S4, S5 and S6).

Validation with survival analysis

The genes predicted by our LASSO model
accurately predicted the outcome of a patient's
survival using gene expression data. Genes such as
GAL, TFAP2A, AFF3, TNNCI1, TGBR2, HELT,
and SFTAIP yielded accurate predictions for the
risk of LUSC cancer and can be used in cancer
prediction. Survival plots and its p-value is shown
in (Fig 5a. and 5b , Supplemental Figure S9).

DISCUSSION

In this study, we developed a LASSO based model
for accurate feature selection in LUSC cancer. Our
model removed variables that are redundant and
removed features which do not add any valuable
information in disease prediction. Analysis using
the survival data for the predicted genes showed
that the model could effectively predict genes
responsible  for disease prognosis in high
dimensional  datasets. = Deciphering  cancer
heterogeneity is very critical in understanding
cancer dynamics and also for the development of
personalized cancer treatment >?°. We used
Consensus clustering method to determine the
number of clusters in our samples, and we clustered
the samples into two groups which produced
optimal silhouette width for the determined
clusters. Differential gene expression analysis
showed distinct expression patterns in Subtype-1
and Subtype-2. The numbers of differentially
expressed genes were very high and in these
situations, it is difficult to predict the relevant
variables. LASSO model was built around 6081
and 8240 DE genes in Subtype-1 and Subtype-2
respectively. Not all the expressed genes were
relevant, our model predicted the most relevant
genes which were involved in disease progression.
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Decreased expression of AFF3, TNNCI1, TGFBR2,
FFAR4 and HELT in Subtype-1 and GGTLC3,
GUCA2A, HBM, SFTAIP and SYNEI in Subtype-
2 showed worse overall survival in LUSC cancer
samples. Whereas increased expression of genes
such as PPIA P45, CAGEIl, TFAP2A, CENPF in
Subtype-1 decreased overall survival in LUSC
cancer samples. Long intervening noncoding RNAs
(IncRNAs) are known to be key regulators of
numerous biological processes, and substantial
evidence supports that IncRNA expression plays a
significant role in tumorigenesis and tumor
progression”’. Increased expression of LINC01977,
LINCO1572 in Subtype-1 samples correlates with
worse survival in LUSC cancer subtypes. Whereas,
decreased expression of LINC02058 in Subtype-1
and LINCO00670 in Subtype-2 showed worse
survival in LUSC samples. The LASSO method
predicts the most relevant and distinct genes from
Subtype-1 and Subtype-2 samples which might be
an important factor in cancer diagnosis. The best
predictors for subtype 1 and subtype 2 from the
LASSO model were found to be involved in several
regulatory pathways. The genes such as TGFBR2,
EIF4EBP1, and ROR1 which are predicted only in
case of Subtype-1 are found to be involved in
several cell cycle and growth regulatory pathways
and thereby having a strong correlation with cancer.
The gene gp9 plays an important role in ECM-
receptor interactions, which is critical in disease
progression and malignant cell behavior™.
Neuroactive ligand-receptor interaction signaling
pathway is a collection of receptors and ligands on
the plasma membrane that are associated with
intracellular and extracellular signaling pathways. It
is found to be associated with prostate cancer,
bladder cancer, and renal cell carcinoma ? Tn our
study, the gene RXFP2 that is predicted only in
Subtype-2 is found to be involved in neuroactive
ligand-receptor interaction. RXFP2 is also found to
be involved in Relaxin signaling which induces cell
invasion and is reported in several cancers *°. The
modulators of ABC transporters is reported to have
the potential to augment the efficacy of anticancer
drugs *'. ABCAS is one such gene and it was
predicted only in Subtype-2. Our model identified
cancer/testis antigen gene CAGE-1 which is
overexpressed in Subtype-1 and might act as a
plasma biomarker for lung cancer early detection.
Previous studies showed that CAGE-1 provides an
important addition to the armamentarium the
clinician to aid early detection of lung cancer in
high-risk individuals **>’. GUCA2A was down-
regulated in Subtype-2 samples, many studies on
GUCA2A indicates its role as a biomarker in

This article can be downloaded from www.ijlpr.com

L-44



Int. J. Life Sci. Pharma Res. 2019 Oct; 9(4): (L) 34-48

diagnosing cancer. Aberrantly expressed GUCA2A
can be a candidate marker of poor prognosis in
patients with LUSC and Colorectal cancers, which
may be a therapeutic target for precision medicine
349 Under expression of TGFBR2 in Subtype-1
samples is associated with poor prognosis, and
TGFBR2 is also associated with poor prognosis in
cervical cancer *'"*. CENP-F, a cell cycle-regulated
centromere protein, has been shown to affect
numerous tumorigenic  processes, increased
expression of CENP-F in subtype-1 correlates with
poor survival. Previous studies demonstrate that
CENP-F may serve as a valuable molecular marker
for predicting the prognosis of esophageal
squamous  cell  carcinoma  patients  and
nasopharyngeal carcinoma progression “***. Down
regulation of SFTAI1P in Subtype-2 correlates with
poor survival, previous studies suggest SFTA1P
regulates both oncogene and tumor suppressor
genes during carcinogenesis of lung squamous cell
carcinoma “**’ which can be used as a prognostic
biomarker. Furthermore, Consensus clustering and
LASSO helps us to choose a model with the most
relevant features. Consistent with this finding, the
clustered samples into two different subtypes
showed distinct features, highlighting the better
sample grouping and risk assessment. Moreover,
the results of survival analysis validates that the
survival time of the predicted genes correlates with
gene expression pattern, which is recognizably
different in both Subtypes, indicating that this
model could effectively distinguish the samples
with different expression pattern by overcoming the
feature selection problem and was accurate for
predicting the risk of LUSC cancer.
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