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ABSTRACT

IncRNAs are one of the main classes of non-coding RNAs, responsible for RNA regulation in a
variety of cellular processes, and their effect on human cancer remains largely unexplored;
Abnormal expression of IncRNAs has been shown to be associated with many human diseases
and cancers, such as leukemia. Acute promyelocytic leukemia (APL) is the M3 subtype of acute
myeloid leukemia (AML), with the aberrant accumulation of promyelocytes. One of the
IncRNAs that showed upregulation in AML is IncRNA MIR100HG, involved in different
cancers. The aim of our study is to investigate the functional role of MIR100HG antisense LNA
GapmeRs, on APL cells. In this experimental study, we have used an Antisense LNA GapmeRs,
in order to block MIR100HG in APL Cells. HL60 (APL cell line) cells were transfected with
MIR100HG antisense LNA GapmeRs and at three different time points (24, 48 and 72 h) and
were investigated apoptosis, necrosis, MIR100HG and TGFp expression. MIR100HG inhibition
could reduce the viability of HL- 60 cells, through induction of apoptosis; because of the TGFf3
upregulation. qRT-PCR was performed to determine the MIR1I00HG expression by antisense
LNA GapmeRs. Our results suggest that degradation of MIR100HG could serve as a novel
approach for controlling the proliferation of APL cells and therefore, can be used in translational
medicine for targeted therapy in APL.
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INTRODUCTION

Non-coding RNAs (ncRNAs) are divided into two
subclasses, according to the size of the translated
fragment. ncRNAs smaller than 200 nucleotides
(nt) are called small or short non-coding RNAs,
whereas IncRNAs are more than 200 nt in length,
and are rather poorly understood and often
dismissed as only transcriptional ‘evolutionary
junk’ . The expression of IncRNAs seems to be
strictly regulated, in physiological conditions, as
well as in several human diseases, including cancer.
More broadly, they modulate transcriptional
regulation, regulate protein activities, and play
structural or organizational roles. In addition, they
play critical roles in tumorigenesis, including cell
cycle progression, apoptosis, and metastasis *.
APL, is the M3 subtype of AML *, with an aberrant
accumulation of promyelocytes, as a hallmark. APL
is distinguished by a balanced reciprocal
translocation between chromosomes 15 and 17,
prompting the expression of the recombinant
protein PML-RARa " % > © 8 Overexpression of
some IncRNAs may function as an oncogene,
through the negative regulation of tumor suppressor
genes. Many IncRNAs have already been shown to
serve as biomarkers or therapeutic targets, for many
diseases, cancer diagnosis and prognosis "*®°. They
have also been utilized as therapeutic targets for
selective killing of cancer cells °. The role of
IncRNAs in a number of cancers is evident. For
example, HOX antisense intergenic RNA myeloid 1
(HOTAIRM1), transcription factor PU.1 and PVTI
are highly expressed in APL > ®. The LincRNA
MIR100HG gene is located on human
chromosome 11g24.1, in the mir-100-let-7a-2/miR-
125b-1 cluster and it is known that this IncRNA has
an important role during hematopoiesis and the
pathogenesis of acute megakaryoblastic leukemia
(AMKL) . Intergenic IncRNAs (lincRNAs) are
located between protein-coding genes and are
transcribed, independently '. The participation of
MIR100HG was indicated in the gap junction
pathway and TGF-B pathway also has a probable
role in regulation of lymph node metastasis in the
carly-stage of cervical cancer ''. GapmeR has
emerged as a new class of molecule that includes
the locked nucleic acid (LNA)-conjugated chimeric
single-strand antisense oligonucleotide, with the
ability to knock down a target gene of interest with
precise specificity, through the post-transcriptional
gene silencing '>. The combination of both
chemistry and structural modifications provide
GapmeR with high binding affinity for the target

mRNA and confers increased resistance to endo-
and exonucleases, low levels of toxicity and
improved stability in biological serum and cell
culture medium "°. When GapmeR molecule enters
the cell, GapmeR-mRNA duplex will be formed by
the central antisense DNA in the gap, bind to the
endogenous mRNA. Subsequently, the GapmeR-
mRNA duplex is recognized by the cellular enzyme
RNase H, degrading the targeted mRNA and thus
inhibits the specific gene '*. The purpose of this
study was to block MIR100HG and evaluate the
effect of blocking on cell proliferation, apoptosis,
necrosis and TGFB expression level in
promyelocytic cells (HL 60), using Antisense LNA
GapmeRs technology.

MATERIALS AND METHODS

In this experimental study, we investigated the
functional role of MIRIOOHG antisense LNA
GapmeRs, on APL cells.

Cell culture

The HL-60 cell line (Human APL) was purchased
from the National Cell Bank of Iran (Pasteur
Institute, Tehran, Iran). The cells were maintained
in Roswell Park Memorial Institute (RPMI) 1640
(Gibco, Paisley, UK) medium, supplemented with
15% (v v ') fetal bovine serum (Gibco, Paisley,
UK), 100 U ml ~ ! of penicillin and 100 g ml ~ ' of
streptomycin (Sigma-Aldrich, Saint Louis, MO,
USA), in a 25-cm” culture flask (Nunc, Roskilde,
Denmark), and incubated with 5% CO, at 37 °C.
To maintain the exponential phase, cells were
passaged two times per week.

Cell transfection

The accession number of MIR100HG was obtained
from www.ensembl.org, as ENSG00000255248.
Antisense LNA GapmeRs sequence
S'ATCGATTGGTTAGTGT 3’ and Antisense LNA
GapmeRs Negative Control (ALGNC) (scrambled)
sequence S'AACACGTCTATACGC 3’ for hsa-
mir-100-let-7a-2, were purchased from the Exiqon
(Copenhagen, Denmark). LNA GapmeRs and
ALGNC were labeled at their 5’ ends with a
fluorescent dye, 6-FAM (6-carboxyfluorescein).
For HL60 cell transfection, the Polyfect
Transfection Reagent (Qiagen, Hilden, Germany)
was used, according to the company’s guidelines. A
total number of 5 x 10° HL60 cells in the
exponential phase, were cultured in six-well culture
plates (Nunc), encompassed with 1.8 ml of RPMI-
1640 medium per well, with no antibiotics and fetal
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bovine serum. Six picomoles of antisense LNA
GapmeRs IncRNA inhibitor was mixed with 12 pl
of Polyfect Transfection Reagent, in a final volume
of 200 pul of Opti-MEM Medium (Gibco, Paisley,
UK), and subsequently incubated at room
temperature for 15 min. Then, the complex was
added to the cells and swirled cautiously, to ensure
even distribution over the entire plate surface. After
6 h incubation, fetal bovine serum and antibiotics
were added to the cells and then incubated for 24,
48 and 72 hours. The transfected cells and untreated
cells were cultured in parallel to the antisense LNA
GapmeRs IncRNA-transfected cells with ALGNC.
The transfection was examined, using fluorescence
microscopy and flow cytometry. As LNA-anti-
IncRNA was conjugated by 6-FAM, HL60-
transfected cells with Antisense LNA GapmeRs
were detected, using fluorescence microscopy and
flow cytometry.

Reverse  transcriptase  IncRNA real-time
polymerase chain reaction

The expression level of MIR100HG after an
Antisense LNA GapmeRs transfection was
determined by reverse transcriptase (RT) IncRNA
quantitative real-time PCR (ExiLERATE LNA™
qPCR). The total RNA was extracted, using the
miRCURY RNA Isolation Kit (Exiqon) at 24, 48
and 72 h after transfection, and then cDNA was
synthesized, using ExiLERATE LNA™ qPCR,
cDNA Synthesis kit (Exiqon). ExXiLERATE LNA™
qPCR, SYBR® Green master mix kit and
ExiLERATE LNA™ gPCR specific MIR100HG
primers, purchased from Exiqon were used for real-
time PCR. Synthetic RNA spike-in templates and
their primers (Exiqon, Copenhagen, Denmark) were
used, as real-time PCR internal control, following
the manufacturer’s protocol, using the following

primers for MIRI100HG: Forward;
S'TGCTCGTTCCTGTTGTGTTC 3' Reverse; 5'
AGGAGGTGAACGATTGGATG3'. MIRIOOHG

expression level in each sample was normalized to
GAPDH expression level, using the following
primers: forward:
5'GGTGTGAACCATGAGAAGTATGA 3,
reverse: 5' GAGTCCTTCCACGATACCAAAG 3.
The reaction was performed in the following
condition: preliminary denaturation at 95°C for 10
min, followed by 45 cycles of 95°C for 10 s and 60
°C for 1 min. StepOnePlus Real-Time PCR
Systems (ABI Applied Biosystems, Foster City,
CA, USA) and AACt method were used for gPCR
tests and data analysis.

Assessment of TGEf expression level with real-
time ¢gPCR

The TGFJ3 expression level was determined by real-
time qPCR. The miRCURY RNA Isolation Kit and
ExiLERATE LNA™ gPCR, the cDNA Synthesis
kit from Exiqon were used for total RNA extraction
and cDNA synthesis. The ExiLERATE LNA™
gPCR, SYBR® Green master mix kit (Exiqon) was
used for TGFp real-time PCR and GAPDH acted,
as an internal control. The primer sequences for

TGFp were as follows: forward;
CTCGCCAGAGTGGTTATCTT and reverse;
GTAGTGAACCCGTTGATGTC. The
StepOneplus™ Real Time PCR systems (ABI

Applied Biosystems, USA) instrument and the
AACt method were used for qPCR experiments and
data calculation, respectively.

Cell viability assay

The HL-60 Cell viability was assessed, using the
MTT (3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl
tetrazolium bromide) (Sigma-Aldrich, Saint Louis,
USA) assay, based on the reduction of MTT by the
mitochondrial dehydrogenase of intact living cells,
resulting in a purple formazan product. This
modification is directly related to the number of
living cells. The MTT assay was completed at three
time points 24, 48 and 72 h after transfection.
Subsequently, 200 pul of MTT (Sigma- Aldrich)
with 50 mg/ml concentration was added to the 5 x
10° HL-60 cells, suspended in 2 ml of RPMI-1640
medium, and then incubated for 6 h at 37°C in
darkness. After primary steps, 200 ul of dimethyl
sulfoxide (DMSO) (Sigma-Aldrich) was added to
each well and shaken until the crystals are
dissolved. Blank samples were prepared, using the
same method. The optical density was detected at
570 nm, using a spectrophotometer (PG Instrument
T80, Leicestershire, England). Reading was
transformed to the percentage of the controls.

Apoptosis and necrosis assay

The FITC/Annexin-V Apoptosis Detection Kit with
PI (Biolegend, San Diego, USA) was used for
detection of apoptosis and necrosis. Annexin-V was
used for identification of apoptotic cells, and
propidium iodide used for differentiation of
necrotic cells. The cells, seeded at a density of 5 x
10° HL-60 cells per well, transferred to flow
cytometry tubes and centrifuged for 5 min at 1500
rpm. The supernatant was removed, and cells were
washed with 1 ml of cold phosphate-buffered saline
(Gibco, Paisley, UK). One hundred milliliter of the
prepared solution (based on kit instruction) was
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added to each tube and incubated in the dark at RT
for 15 min. After incubation, 300 ul of annexin-V
binding buffer solution was added to each tube and
analyzed by FACS Calibur flow cytometer (BD,
California, USA) with 488 nm excitation, 515 nm
band-pass filter for fluorescein-conjugated annexin-
V detection, and a filter>600 nm for PI detection.

STATISTICAL ANALYSIS

All tests were performed in triplicate, and analyzed
with SPSS (version 22) software (IBM, New York,
NY, USA). Our results were analyzed with two-
way analysis of variance (ANOVA). The data were
represented as mean + SD. Statistical significance
was defined as p < 0.01.

RESULTS

Antisense LNA IncRNA inhibitor strongly inhibit
MIR100HG

The transfection efficiency of HL60 cells,
transfected with antisense LNA GapmeRs was
about 80% (Fig. 1). We have used specific GapmeR
molecules to block the expression level of
MIRI100HG by reverse transcriptase-quantitative
PCR. HL60-cells were transfected with the
miRCURY LNA IncRNA inhibitor, which can lead
to effective gene silencing. For this purpose, we
designed and synthesized a panel of specific
GapmeR molecules targeted cells, transfected with
antisense LNA GapmeRs (LNA GapmeRs group).
The control was transfected with ALGNC and
untreated HL60 cells used as untreated groups.
QRT-PCR was applied at 24, 48 and 72 h after
transfection. There was no statistically significant
difference between values of MIR100HG in
untreated groups and ALGNC groups. Expression
of MIR100HG was significantly lower in the
antisense LNA GapmeRs group at all three-time
points, compared with the untreated group (p <
0.001), (Fig. 2).

GapmeR molecules by inhibiting MIRI00HG,
decrease the cell viability in promyelocytic
leukemia cells

Cell viability and cytotoxicity of HL60 cells were
examined by MTT cell assay kit, as per
manufacturer’s instructions. Yellow colored water-
soluble tetrazolium dye 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) was
reduced to formazan crystals and then the crystals
were dissolved in DMSO. Three thousand cells per
well were seeded in 96-well plates, 24, 48 and 72

hours after transfection. After 72 h incubation, cells
were treated by antisense LNA GapmeRs on HL60
cells, the cell viability was significantly decreased
to 58%. The absorbance was recorded at 570 nm on
a microplate reader (BioRad, USA). The difference
in cell viability at all three time points was
significant in the antisense LNA GapmeRs group,
ALGNC group and the untreated groups (p < 0.001,
Fig. 3).

GapmeR molecules by inhibiting MIRI00HG,
induce apoptosis and necrosis in promyelocytic
leukemia cells

To validate the cell death by apoptosis, annexin V-
FITC/PI double staining was performed in HL60
cells, at three different time points, after
transfection. Due to the toxicity of transfection
reagent in GapmeRs treated group, the apoptotic
ratio in ALGNC group was slightly more than the
untreated group; although the values were not
statistically important. A gradual increase in
apoptosis of HL60 cells at 24, 48 and 72 h after
transfection with antisense LNA GapmeRs were
comparable with ALGNC transfected cells and
untreated cells. The highest amount of apoptosis
was observed at 72 h post-transfection. Above all, it
seems MIR100HG inhibition is associated with an
increase of apoptosis in HL60 cells. In the antisense
LNA GapmeRs group, the apoptotic ratio was
increased, compared with the control groups at
three-time points 24, 48 and 72 h after transfection
(p < 0.001); Fig. 4). The percentage of early
apoptotic HL60 cells minimally increased, at 24 h
post-transfection. Furthermore, at all three-time
points in HL60 cells, the late apoptotic ratio
confirmed to be associated with the MIR100HG
inhibition, because of an increase in the antisense
LNA GapmeRs group, compared to the other
groups. (p <0.001); Fig. 4).

The TGFp expression level increased in
promyelocytic leukemia cells, after inhibition with
MIR100HG

Finally, to examine the functional influence of
GapmeR-mediated gene silencing of TGFpB, we
performed qRT-PCR on LNA GapmeRs, ALGNC
and untreated groups in HL60 cells, at 24, 48 and
72 h after transfection. GAPDH was used as an
internal control for normalization. However, TGFf3
relative expression showed notably the difference
between LNA GapmeRs, ALGNC and the
untreated groups (p < 0.001). The highest level of
TGFB relative expression was at 72 h after
transfection in  HL60 cells (Fig. 5).
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Figure 1
HLG60 cells were transfected with 6-FAM labeled antisense LNA GapmeRs, and the transfection efficiency
was evaluated by fluorescent microscopy. Phase contrast (a) and fluorescent
(b) images of the same field of HL60 cells display that the majority of cells are transfected.
Scale bars: 50 uym.
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Figure 2
The MIRI100HG expression level was determined, using gRT-PCR assay, at 24, 48 and 72 h after
transfection. Data analysis was performed, using AACt method. The untreated cells were used as a
control group and as a reference for comparison with other groups. The data are presented as mean £ SD
of three independent experiments. *** p < 0.001
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Figure 3
HLG60 cells viability was measured by 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
(MTT) assay at 24, 48 and 72 h after transfection. The viability of the untreated cells at each time point
was considered as 100% and the viability of other groups is displayed as a percentage of the untreated
cells, at the same time point. The data are presented as mean £5D
of three independent experiments. *** p < 0.001
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Figure 4

HLG60 cells apoptosis and necrosis were evaluated by annexin V—propidium iodide
staining at 24, 48 and 72 h after transfection. Flow cytometry analysis was performed,

using 488- nm excitation and a 518 -nm band-pass filter for fluorescence detection, and a
filter of 617 nm was used for the PI detection. Representative cytofluorimetric graphs are
shown in (a-c). The ratio of apoptotic cells was increased by MIR100HG antisense
LNA GapmeRs transfection, at three time points. Data shown in the graph are presented
as mean = SD of three independent experiments (*** p < 0.001) (d). The ratio of
necrotic cells was increased by MIR100HG antisense LNA GapmeRs transfection
at the three-time points. The data shown in the graph are presented as mean + SD
of three independent tests (*** p < 0.001) (e).
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Figure 5
The expression level of TGFf was determined using gRT-PCR assay at 24, 48 and 72 h after transfection.
The AACt method was used for data analysis and untreated cells were considered, as a control group and
as a reference for comparison with other groups. The data are presented as mean = SD of three
independent experiments. *** p < 0.001

DISCUSSION

A routine approach for AML treatment is
chemotherapy ", however, this method is affected
by the resistance that decreases the treatment
efficiency in many cases, as it is frequently
exemplified by resistance to ATRA ' . In
addition, the combination of cancer cells, and
oncogenic IncRNA inhibitors, are more sensitive to
chemotherapy agents, compared to each alone '
Furthermore, ATRA is a routine drug that is used
for treating APL, but it is not always successful .
This study suggests that Anti IncRNA MIR100HG
can be used with or without ATRA for treating
APL, which is resistant to chemical treatment.
LncRNA MIRIO0OHG involves in progression of
myeloid leukemia, by regulating hematopoiesis and
oncogenes, and it is located on chromosome
11¢24.1". In a GSEA (Gene Set Enrichment
Analysis) study, Shang . have identified 3,489
genes. Among those, 1,127 and 2,362 gene sets are
positively or negatively  associated  with
MIR100HG, respectively, using the entire mRNA
expression dataset and the MIR100HG expression
level ''. In AMKL, the IncRNA MIR100HG is
among the highly expressed non-coding RNA.
Also, MIR100HG has an important mediator role in
the development and hematopoiesis in AMKL ''.
Furthermore, the intronic coding region in
MIRI00HG gene, acting as a proapoptotic

molecule, induces apoptosis through caspase-
dependent mitochondrial signaling pathway . In
addition, MIR100HG is associated with TGFf(
signaling pathways and the gap junction. Nearly all
of mRNAs co-expressed with MIR100HG, are
involved in gap junction pathway ' ''. The TGFp
and Wnt pathways counterbalance silencing and
differentiation, HSC self-renewal and proliferation,
as major regulatory signaling pathways *°. The
hematopoietic stem cells are established by TGFp,
by induction of apoptosis and growth arrest, in
early HSPCs, while HSCs are in quiescence 2 %
Contrary to TGFpP, megakaryopoiesis and self-
renewal in HSCs are positively regulated by Wnt
signaling 2. Finally, we have shown that target-
specific gene silencing can be induced, by
specifically designed chimeric GapmeR molecules.
A study shows that in leukemic cells, GapmeR can
be internalized by micropinocytosis and mediate
post-transcriptional gene silencing, which can be
used as a potent and non-invasive method. GapmeR
molecules, causes RNaseH-mediated  gene
silencing, independent of RNA-Induced Silencing
Complex (RISC), and therefore, it does not cause
RISC-associated or microRNA-like off-target
activity. Because GapmeRs are short (13-20
nucleotides), off-target and mismatches have rarely
occurred '* 2%’ In the present study, we have been
using antisense LNA GapmeRs to knock down
IncRNA MIRI100HG in acute promyelocytic
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leukemia  (AML-M3) cell line (HL60).
Additionally, we showed the evidence for the first
time that upregulated MIRIOOHG expression is
involved in the proliferation of primary APL cells.
Real-time PCR data confirmed that this IncRNA
was mostly downregulated after antisense LNA
GapmeRs transfection. The apoptosis/necrosis
assay showed that antisense LNA GapmeR
MIR100HG transfection significantly increased
apoptosis and necrosis. In these assays, the effect of
antisense LNA GapmeR MIR100HG transfection
on cell viability was much higher than in the basal
transfection reagent toxicity, observed with
ALGNC oligonucleotide transfection. Furthermore,
it was shown that reduction in cell viability was
associated with the inhibition of IncRNA
MIR100HG, using the MTT method. Although
HL60 cell viability was reduced slightly in the
ALGNC group, compared with the untreated group,
which is probably due to the toxicity of the reagents
used in the transfection; however, this reduction
was not statistically significant. Conversely, TGFf
expression level was increased, in the antisense
LNA GapmeRs group. In summary, the results of
the present study suggested that inhibition of
MIR100HG with antisense LNA GapmeRs is a
potential drug-based antisense therapy in APL,
which can be used individually or in combination
with chemical conventional therapies, in case of
resistance to treatment. In addition, further in vivo
studies has to be performed that might help to avoid
an off-target knockdown, as new possibilities for
using GapmeRs as an effective therapeutic tool
with accuracy in biological function, before
administration in clinical trials.
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