

Screening of Antioxidant, Antimicrobial and Phytochemicals Composition of Various Plant Parts of *Cichorium Intybus*

Maitry Choudhary*, Priyanka Rajput and R.A. Sharma

Plant Physiology and Biochemistry Lab, Department Of Botany, University Of Rajasthan, Jaipur, Rajasthan, Pin- 302004

Abstract: The present study was conducted to evaluate the antioxidant and antimicrobial potential as well as the phytochemical composition of root, seed and leaves of *Cichoriumintybus*. The antioxidant activity was analyzed by detecting the 2, 2-Diphenyl-1-picrylhydrazyl DPPH radical scavenging potent of the constituents found in various plant parts of *Cichorium intybus*, whereas for analyzing in-vitro antimicrobial activity, agar well diffusion method has been opted. The antimicrobial activity of plant was tested against both pathogenic as well as non-pathogenic species of bacteria by analyzing the corresponding inhibition zone exhibited by various extracts of plant parts against the bacterial growth. Apart from this, the present study also involves the quantitative phytochemical evaluation of total ascorbic acid in root, seed and leaves of *Cichoriumintybus*. The antioxidant potential of the plant was found to be comparatively lower in seed and leaves of plant than in root in accordance to the determined IC₅₀ value . From the antimicrobial activity analysis, it was concluded that majority of times the non-polar extracts of all plant parts were found to be more effective in inhibiting growth of bacteria. Most significant activity has been exhibited against gram negative bacteria *Pseudomonas aeruginosa*. The ascorbic acid content in plant was found in the range of 2.253±0.867 to 12.594±2.05µg/ml. From the results of the conducted research, the importance of plant as an antimicrobial and anti-oxidative agent has been established. So, the plant can further be introduced as a potential drug for herbal medicine in the treatment of human disorders.

Keyword: *Cichorium intybus*, Antioxidant, DPPH, Agar Well Diffusion Assay, Ascorbic Acid

***Corresponding Author**

Maitry Choudhary*, , Plant Physiology and Biochemistry Lab,
Department Of Botany, University Of Rajasthan, Jaipur,
Rajasthan, Pin- 302004

Received On 04 November 2019

Revised On 27 November 2019

Accepted On 17 January 2020

Published On 04 April 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Maitry Choudhary*, Priyanka Rajput and R.A. Sharma , Screening of Antioxidant, Antimicrobial and Phytochemicals composition of various plant parts of *Cichorium intybus*.(2020).Int. J. Life Sci. Pharma Res.10(2), 9-15
<http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.2.P 9-15>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)
Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Antioxidants are basically the compounds that have the capability to terminate the oxidative damage imposed upon the human body by the free radicals or highly reactive oxygen species and reduce the risk of various detrimental diseases.¹ Free radical/reactive oxygen species forms as a result of either endogenous process that occurs inside the body (biotic stress) or due to deleterious and damaging effects caused by exogenous chemicals (abiotic stress). The radicals can oxidize the bio-molecules i.e. proteins, lipids, nucleic acids that can result in serious degenerative diseases like cancer, arthritis, cirrhosis, emphysema, neurological disorders, chronic diseases, atherosclerosis.^{2,3} All the organisms have developed a certain internal defensive mechanism to save from the effect of oxidative damage caused by these radicals by the help of antioxidant components like flavonoids, ascorbic acid, tocopherol, glutathione, phenols, etc. or the antioxidant enzymes viz. catalase, peroxidase, dismutase, etc. Antioxidants can be provided to the body through dietary antioxidant supplements. Most of such dietary sources of antioxidants were derived from plant and have various physical and chemical properties.⁴ The primary derivative sources for antioxidants such as vegetables, fruits, food grains, etc.⁵ in the form of vitamin C, vitamin E, carotenes, and phenolic acids have a great potential in reducing the risk of disease occurrence.⁶ It has become a necessity that drugs and pharmaceutical products from the medicinal plants must be identified, isolated and characterized for their pharmacological potential so as to replace and expand the available sources apart from the traditional system of medicines that are used till date. *Cichorium intybus*, a herbaceous perennial plant that belongs to *Cichorium* genus of family Asteraceae. The genus comprises 6 species that were used as traditional medicine in Europe and Asia. *Cichorium intybus* is a plant traditionally used as food and medicinal crop in temperate parts of the old world^{7,8} and as carminative, and against other cardiac ailments as well.⁹ Chicory has been found to be a potential anti-cancer,¹⁰ anti-malarial, anti-microbial¹¹, anti-diabetic¹² and is considered as a potent source of natural antioxidants¹³. Chicory has also been found to be very effective in case of severe jaundice, gout, asthma, and rheumatic conditions.¹⁴ Inulin extracted from the root of plant is being used as a substrate of fiber in health and functional foods.¹⁵ Inulin is also used as pre-biotic that helps in gastrointestinal infection inhibition and boosts the immune system.¹⁶ Besides, being popularly cultivated and used widely, not much research on phytochemical analysis and antioxidant potential of cultivated chicory has been done. The present research was designed to fulfill the lack of scientific evidences on the pharmacological potential of the cultivated chicory plant. In the present study the antioxidant and antimicrobial activities of sequential (non-polar to polar) extract of root, stem and leaves of *C. intybus*. The phytochemical screening for the determination of total ascorbic acid content of different plant parts of *C. intybus* was also done phenolic content. The current research was done for providing further step on providing a clear justification of the ayurvedic and traditional folklore use of this plant in medicinal practices.

2. MATERIAL AND METHODS

2.1 Chemical Reagents

2, 2-Diphenyl-1-picrylhydrazyl (DPPH), BHT (Butylated

hydroxytoluene), ascorbic acid, methanol, acetate buffer (pH-3.6), Folin-ciocalteau phenol reagent, sodium carbonate, hydrogen peroxide, phosphate buffer, Nutrient Agar, Pet ether, Chloroform, Acetone, Spirit, DMSO (dimethyl sulfoxide), metaphosphoric acid, 2,4-dinitrophenylhydrazine, Thiourea, Copper sulphate, Ascorbic acid.

2.2 Plant material

Dry roots and whole plant of *C. intybus* were collected from semi-arid areas of Gujarat and was deposited for identification and authentication at Herbarium Botany Department, University of Rajasthan, Jaipur, Rajasthan, provided the voucher specimen number RUBL-211705. Fresh samples of whole plant have been collected. Collected plants were then allowed to dry under shade at room temperature. Different plant parts were then separated and were mashed into fine powder with the help of grinder.

2.3 Extraction Preparation

About 50 gm of powdered material of root, leaf and seed were taken and soaked in 150 ml of each of the following solvents one after the other in order of their increasing polarity sequentially- Pet Ether, Chloroform, Acetone, Spirit, and Water for 2 weeks. It is then shaken well 2-3 times a day and then filtered. The filtrate was then allowed to dry or evaporate in incubator at 40°C. All the extracts were dissolved in DMSO making the concentration of the extract 100 µg/ml, and then they were stored in clean and sterile glass vials. The concentration of the DMSO used was tested for its ineffective nature on the growth of any bacteria tested for the analysis

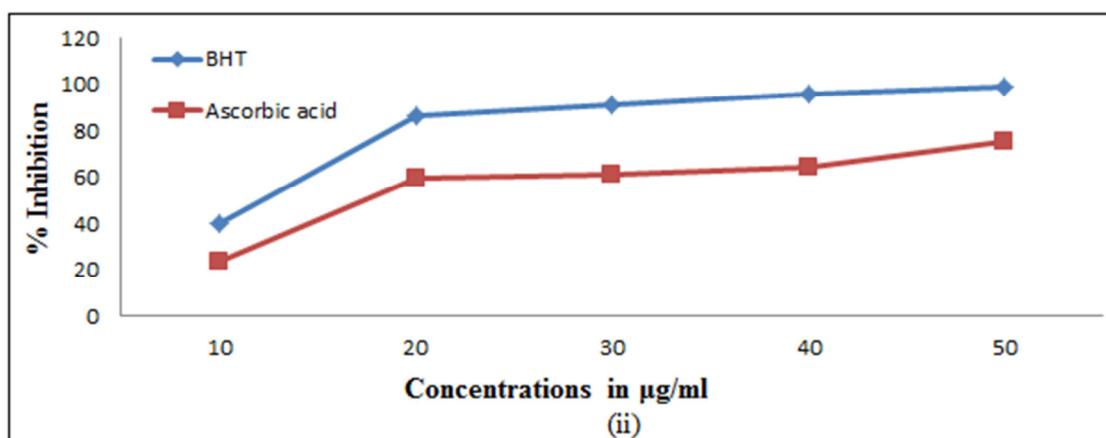
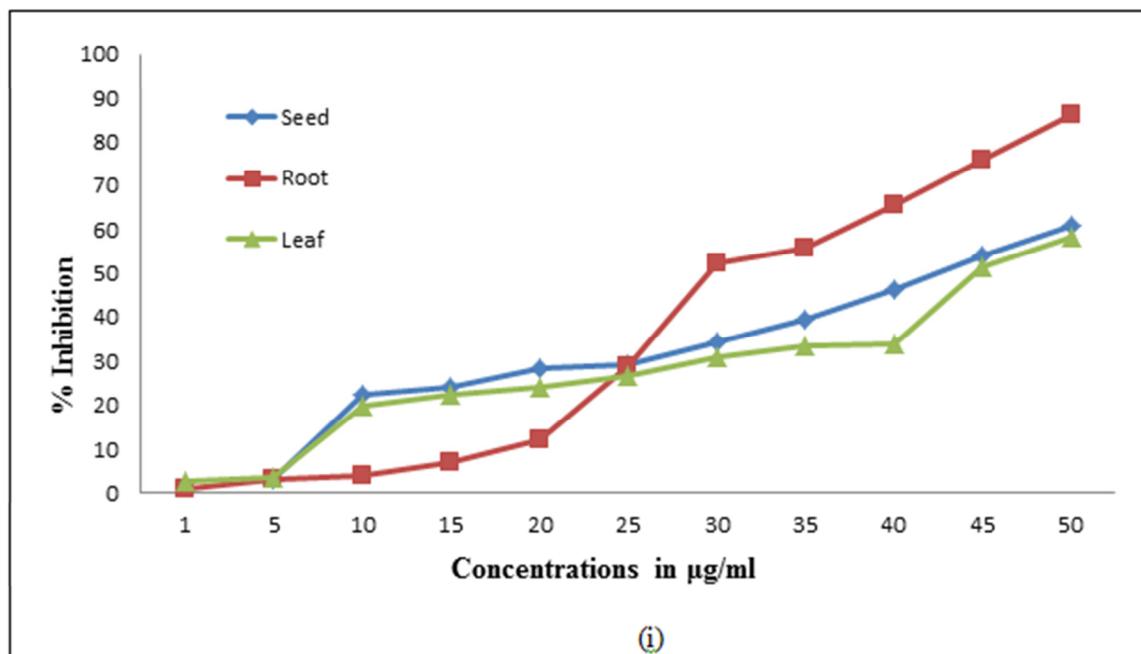
2.4 Bacterial Specimen

Four bacterial strains *E.coli*(MTCC 1652), *Bacillus subtilis*(MTCC 0121), *Pseudomonas aeruginosa*(MTCC 4646), *Staphylococcus aureus*(MTCC 0087) have been taken against which the antimicrobial potential of various plant extracts were tested. These bacterial strains were cultured and stored in nutrient broth. All the bacterial strains were obtained from S.M.S. Medical College, Jaipur.

2.5 Antibacterial Assay

Different solvent extracts of *C. intybus* were tested for their antimicrobial potential via disk diffusion method by measuring the inhibition zone exhibited. Soluble solvent fractions were subjected for screening of antimicrobial potential against four different bacterial strains. Extract/fractions were dissolved in 10% sterile dimethyl sulfoxide. Agar Well diffusion method was used for determining the antimicrobial bioassay. The bacterial colonies were inoculated in nutrient broth. Bacterial specimens were spread over the solidified and cooled agar plates after appropriate dilution with saline solution. On the inoculated agar plates wells of 5mm were made by using sterile borer. The discs (6 mm in diameter) were filled with 50 mg/mL concentration extract/fractions (60µL/disc) placed on the inoculated agar. The plates were then incubated at 40°C. After 24 hrs the bacterial growth was checked and the antibacterial activity were measured as the diameter of the zone of inhibition exhibited by different solvent extracts and compared with the zone of inhibition exhibited by the standard antibiotic.

2.6 Antioxidant Potential Analysis



2.6.1 DPPH Assay

DPPH assay has been used for evaluation of the free radical scavenging activity of methanolic extracts of seed, root and leaves of *Cichorium intybus* plant. In this method, 0.1 mM solution of DPPH was prepared in ethanol. This solution (1 ml) was added to 1 ml. of different concentrations (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 µg/ml) of extracts in methanol. Various concentrations of the extracts were prepared by dilution method. The mixture was shaken vigorously and allowed to stand at room temp for 20 min. Then the absorbance of the extract was measured at 517 nm via a UV-

Vis spectrophotometer.¹⁷ Standard compound being used as reference was ascorbic acid. The radical scavenging activity change in pattern on the basis of increasing concentration expressed by extracts of different plant parts and standards like BHT- Butylated hydroxy toluene and ascorbic acid have been shown in figure 1. The IC₅₀ value of the sample, which is the concentration of sample required to inhibit 50% of the DPPH free radical, was calculated using interpolation method from the obtained regression curve. The lower the absorbance of the reaction mixture indicated the higher will be the free radical activity exhibited. The percent DPPH scavenging effect was calculated by using the following equation:

$$\text{DPPH scavenging effect (\%)} \text{ or Percent inhibition} = \frac{A_0 - A_1}{A_0} \times 100$$

A₀ → the Absorbance of control reaction
 A₁ → Absorbance of test or standard sample.

Fig1.Free radical scavenging activity of different concentrations of (i) Methanolic Extract of *Cichorium intybus* (ii) Standards- BHT and Ascorbic acid

2.7 Total Ascorbic acid content

Total ascorbic acid in the plant extract has been estimated by applying slight modifications in the colorimetric method¹⁸. According to this method, homogenization of plant extract was done in 20 ml of freshly prepared metaphosphoric acid. Afterwards, the homogenized extract was centrifuged at 2500 rpm for 10 minutes. Supernatant was collected of which 1.2 ml was taken and 0.4 ml of 2,4-dinitrophenylhydrazine-Thiourea-Copper sulphate reagent was added. The mixture

was incubated for 2 hours at 37° C and then chilled for 10 min. To each test tube 6 ml of cold sulfuric acid (12mol / l) was mixed. Then the solution was divided into three separate test tubes of 3.6 ml each and the optical density of the mixture was measured at 520 nm through spectrophotometer. 1.2 ml of metaphosphoric acid 6.0 gm/dl concentration was stated as blank. The concentration of the test samples were computed from the standard calibration curve of the ascorbic acid given in figure 2.

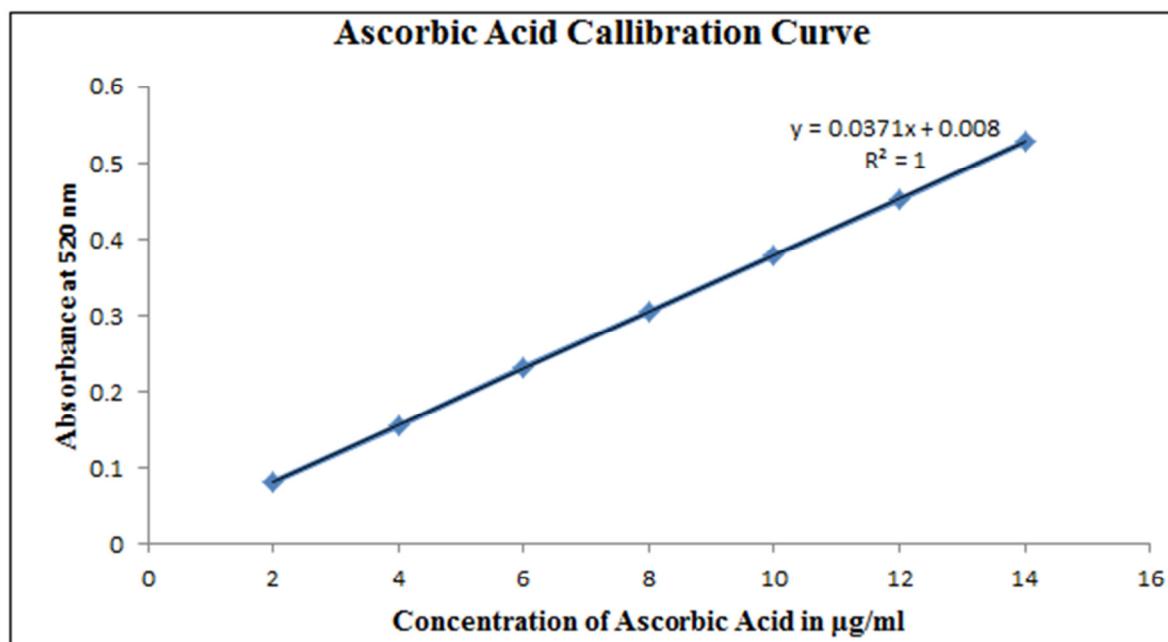


Fig2. Standard Calibration curve of Ascorbic Acid

3. STATISTICAL ANALYSIS

The amount of extract required to inhibit 50% of the free radicals concentration (IC50) was estimated graphically using a linear regression analysis. Data for minimum inhibitory concentration (MIC) were expressed as mean \pm SD. All other data were expressed as mean of three independent analyses.

4. RESULTS

4.1 Antibacterial Activity

Root, stem and seed extract of *C. intybus* were tested for the antimicrobial potential found in the extract against various

pathogenic and non-pathogenic gram-positive and gram negative bacteria. The activity was analyzed on the basis of potential of an extract in inhibiting the growth of tested bacteria via agar well diffusion method. The zone of inhibition exhibited by the sequential extracts of different plant parts was measured. The antimicrobial potential of Acetone and water extract of leaf, chloroform, spirit and water extract of root, and pet ether extract of seed against *E. coli*; acetone extract of leaf and seed, chloroform extract of root and seed and pet ether extract of seed against *P. aeruginosa*; chloroform extract of leaf, pet ether and water extract of root against *B. subtilis*; and chloroform extract of root and seed against *S. aureus* were found to have highly significant antimicrobial potential. The results of antimicrobial activity has been tabulated in table.I

Table I. Antibacterial activity of various extracts of different plant parts of *Cichoriumintybus*

Name of the bacteria	Zone of Inhibition and Activity Index of the extracts				
	Pet ether	Chloroform	Acetone	Spirit	Water
ZI	ZI	ZI	ZI	ZI	ZI
Leaves					
<i>E.coli</i>	15	18	20	14	21
<i>P. aeruginosa</i>	12	17	20	18	18
<i>B. subtilis</i>	+-	20	12	18	14
<i>S. aureus</i>	15	12	16	10	+-
Root					
Zone of Inhibition and Activity Index of the extracts					
Name of the bacteria	Pet ether	Chloroform	Acetone	Spirit	Water
	ZI	ZI	ZI	ZI	ZI
<i>E.coli</i>	14	20	15	20	20
<i>P. aeruginosa</i>	19	22	18	17	15

<i>B. subtilis</i>	20	16	17	16	20
<i>S. aureus</i>	12	20	22	18	12
Seed					
Zone of Inhibition and Activity Index of the extracts					
Name of the bacteria	Pet ether	Chloroform	Acetone	Spirit	Water
	ZI	ZI	ZI	ZI	ZI
<i>E. coli</i>	20	16	14	14	+-
<i>P. aeruginosa</i>	22	20	18	20	15
<i>B. subtilis</i>	15	12	16	10	+-
<i>S. aureus</i>	18	23	16	12	12

4.2 MIC Determination

MIC is the minimum concentration of the sample which is required for exhibiting any type of inhibition activity against the microbes. The MIC of chloroform and methanol extract of the root, seed and leaf were tested. The highly significant

MIC was found in chloroform extract of root and methanol extract of seed against *E. coli*; root methanol extract against *P. aeruginosa*; methanol extract of leaf against *B. subtilis* and chloroform extract of root and leaf against *S. aureus*. The results of MIC analysis have been tabulated in table 2.

Table 2 MIC determination of Chloroform and Methanol samples of roots leaves and stem at concentrations ranging from (50 to 200 µg/ml)

Bacteria	Minimum Inhibitory Concentration					
	Root		Seed		Leaves	
	Methanol [µg/ml]	Chloroform [µg/ml]	Methanol [µg/ml]	Chloroform [µg/ml]	Methanol [µg/ml]	Chloroform [µg/ml]
<i>E. coli</i>	122.75±3.39	74.3±9.25	80.4±1.26	125±7.70	145±6.57	98.4±1.115
<i>P. aeruginosa</i>	88.2±5.793	104.8±4.46	98.5±8.87	92.46±6.64	95.8±3.4	89.5±2.91
<i>B. subtilis</i>	156.25±3.37	188±5.87	194±1.35	193±7.98	64.23±0.9	169±4.87
<i>S. aureus</i>	108±2.512	79.36±2.33	160±5.56	110±1.76	89±0.87	153±2.26

*Values are mean± S.D. (standard deviation) of 3 observations (p<0.05)

4.3 Antioxidant Activity Analysis

The potential to eradicate the antioxidant radical found in different plant parts of plant *C. intybus* was measured and expressed in terms of their respective IC50 values (the concentration of extract at which the radical scavenging potential reaches half the potential activity). The IC50 value in plant ranges from 29.54±0.83µg/ml to 44.55±1.365µg/ml. The

leaves show higher IC50 value, referring to the higher concentration of extract required for reaching the 50% of antioxidant potential whereas the root extract was found to be the most effective due to the least IC50 values (table 3). Apart from that all the extracts show lower DPPH scavenging activity than the standard BHT and ascorbic acid. All the remaining extracts show only a moderate amount of activity against the activity exhibited by standard antioxidants.

Table 3 IC50 value of DPPH radical scavenging assay and total ascorbic acid content

Sample Material	IC50 value (µg/ml)	Total Ascorbic Acid Content (in µg/ml)
Root	29.54 ± 0.83	12.594±2.05
Leaves	44.55 ± 1.365	9.7096±1.799
Seed	42.30 ± 0.45	2.253±0.867
BHT	19.15 ± 1.12	-
Ascorbic Acid	17.37±0.278	-

*Values are mean± S.D. (standard deviation) of 3 observations (p<0.05)

4.4 Ascorbic Acid Content

The total ascorbic acid concentration of the sample material was computed from standard calibration curve of Ascorbic acid prepared in different ascorbic acid concentration at 520 nm wavelength in a UV-Vis spectrophotometer. The highest amount of ascorbic acid concentration was exhibited by root extract of *C. intybus*. The results of total ascorbic acid concentration exhibited by different plant parts of *C. intybus* were tabulated in table 3.

5. DISCUSSION

From the present investigation, it was concluded that *C. intybus* root extracts exhibit comparatively higher radical scavenging activity, with IC50 (the concentration of extract

providing 50% inhibition) values of 29.54 ± 0.83 µg/mL when compared with the synthetic antioxidant BHT (IC50=19.15±1.12 µg/mL) and ascorbic acid (IC50=17.37±0.278µg/mL), all the extracts offered slightly lower antioxidant activity. These research findings were in contrast to the previous research result conclusions of methanol extract to be a greater antioxidant potential than ascorbic acid.^{19,20} From the results obtained from the current research work, a positive correlation has been found between the total ascorbic acid content and the antioxidant activity attributed to the hydroxyl groups present in these compounds due to their hydrogen donating ability. Phenolic compounds and ascorbic acid majorly plays an important role in imparting potential antioxidant activity in preventing oxidative cell damage to the extract. The antioxidant potential of *C. intybus* is attributed to the presence of different

phytochemicals in the plants such as sterols, volatile oils and phenolic acids. With the variations in the concentration of phenolic compounds, DPPH scavenging activity varies accordingly hence does the antioxidant activity exhibited by the extract of the plant²¹. In addition, conducted research suggested that polar extracts of leaves and root are found to be effective against gram positive bacteria whereas the non-polar extracts like petroleum ether and chloroform extracts of *C. intybus* seeds exhibit comparatively higher inhibitory activity against growth of both gram positive and gram negative bacterial. The difference in less effective antimicrobial effects towards the gram negative bacteria is due to the difference and complexity of the cell wall morphology of the gram negative bacteria. The results obtained were in agreement to the research findings that the antimicrobial activity of the methanol extract *C. intybus* exhibits broader antimicrobial spectrum compared with the standard antibiotics gentamicin and tobramycin., the leaves and root extracts have significant activity against *S. aureus*, *B. subtilis* and *P. aeruginosa* and also the comparative exhibited zone of inhibition was found lower against *E. coli*²². The research results may further suggests potential of plant to be used as a source of natural antimicrobial agent. Significant antibacterial activity of root extracts of *C. intybus* has been reported against *E. coli*, *B. subtilis* strains where all the tested extracts showed antibacterial activity²³. These results are in agreement with our analysis. Overall *C. intybus* seeds showed moderate antibacterial activity. The antimicrobial activity and the medicinal importance of *Cichorium intybus* has been experimentally proved due to presence of a number of medicinally important compounds such as inulin, esculin, volatile compounds (monoterpene and sesquiterpenes), coumarins, flavonoids and vitamins²⁴. These bioactive compounds have already been reported to impart antimicrobial potential against the tested microbes²⁵⁻²⁷.

6. CONCLUSION

The methanolic extract of root exhibited significant antioxidant activity rather than other plant parts. In

10. REFERENCES

- Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationships of flavonoids and phenolic acids. *Free Radic Biol Med* 1996;20(7):933-56. DOI: 10.1016/0891-5849(95)02227-9
- Halliwell B, Gutteridge, JM. Oxygen toxicity, oxygen radicals, transition metals and diseases. *Biochem J* 1984; 219(1):1-4. DOI: 10.1042/2Fbj2190001
- Maxwell, SR. Prospect for the use of antioxidant therapies. *Drugs*, 1995; 49(3):45-61. DOI: 10.2165/00003495-199549030-00003
- Sravani T, Parakh PM. Antioxidant activity of *Hedychium spicatum* Buch. Ham rhizomes. *Indian journal of natural products and resources* 2012;3(3):354-358.
- Sies H. Antioxidant functions of vitamins. *Ann. NY. Academic sci* 1992; 669(1):7-20.
- The wealth of India- A dictionary of Indian Raw Materials and industrial products, revised edn. publication and Information Directorate, CSIR, New Delhi, 1988; 2(B):119-120. Available from: <https://pdfs.semanticscholar.org/2ee1/6cb9f37a16f48f88a77d95892e8a789344f8.pdf>
- Scholz E. Monographien: *Cichorium*, *Cichoriumintybus* L., *Cichorii folia* et *radix*, *Cichorii radix*. In HagersHandbuchder Drogen und Arzneistoffe, Hager ROM, Eds W, E, Blaschek S, Ebel E, Hackental U, Holzgrabe K, Keller J, Reichling and Schulz J. Heidelberg: Springer MedizinVerlag; 2006.
- Blumenthal M. The complete German Commission E monographs. American Botanical Council, Austin, TX 109; 1998.
- Vilkhu KR, Mawson L, Simons Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry- A review. *Innovative Food Science and Emerging Technology* 2008;9(2):161-169. DOI: 10.1016/j.ifset.2007.04.014
- Mehrandish R, Mellati AA, Rahimipour A and Nayeri ND. Anti-Cancer Activity of Methanol Extracts of *Cichoriumintybus* on Human Breast Cancer SKBR3 Cell Line. *RazavInt J Med* 2016;5(1):e38369. DOI: 10.5812/rijm.38369
- Bischoff T, Karchesy Y, Laurantos M, Nguyen D. Antimalarial activity of lactucin and

conclusion, all the *C. intybus* extracts showed significant potential antimicrobial activity against tested microorganism, but *E. coli* and *P. aeruginosa* were found to be most sensitive and had the widest zone of inhibition. It was observed that the non-polar extracts of seed showed significantly higher antimicrobial activity against all tested microbes except against *B. subtilis* for which it showed moderate effect. Aqueous extract of leaves shows significant activity against *E. coli* and *P. aeruginosa* whereas aqueous extract of root shows activity against *E. coli* and *B. subtilis*. The results obtained from the current research work contributes to the findings that, chicory contains higher concentration of water soluble compounds (inulin, flavonoids, etc.) that may be responsible for showing significant inhibitory effect on microbial growth which was not exhibited by other extracts. A comparison among the results leads us to the conclusion that constituents of this plant extract may serve as a source of drugs useful in the chemotherapy of some infections caused by bacteria and also as an antioxidant agent.

7. ACKNOWLEDGEMENT

Authors are greatly thankful for the laboratory facility and support provided by the Department of Botany, University of Rajasthan, Jaipur.

8. AUTHORS CONTRIBUTION STATEMENT

Miss. Maitry Choudhary conceptualized and gathered all the results and data by performing all the required experiments by her related to this work. Dr. R. A. Sharma provided necessary inputs and guidance for the concerned work. All the authors discussed the methodology, results and data interpretation and analysis method and contributed the final manuscript.

9. CONFLICT OF INTEREST

Conflict of interest declared none.

lactucopicrin: sesquiterpene lactones isolate from *Cichoriumintybus* L. *J Ethnopharmacol* 2004; 95(3):455. DOI: 10.1016/j.jep.2004.06.031

12. Street RA, Sidana J, Prinsloo G. *Cichoriumintybus*: Traditional uses, phytochemistry, pharmacology, and toxicology. *Evid Based Complement Alternat Med*. 2013; 2013. DOI: 10.1155/2013/579319

13. Wootton-Beard PC, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. *Food Research International*, 2011; 44(1):217-224. DOI: 10.1016/j.foodres.2010.10.033

14. Poletti AH, Schilcher, Müller A, In HeilkraftigePflanzen,WalterHadeckeVerlag 1989; 171

15. Sun LY, Touraud G, Charbonnier C, Tepfer D. Modification of phenotype in Belgian endive (*Cichoriumintybus*) through genetic transformation by *Agrobacterium rhizogenes*: conversion from biennial to annual flowering. *Transgenic Research* 1991; 1(1):14–22. DOI: 10.1007/BF02512992

16. Demigne C, Jacobs H, Moundras C, Davicco MJ, Horcajada MN, Bernalier A, Coxam V. Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism. *European Journal of Nutrition* 2008; 47(7):366-374.

17. DOI: 10.1007/s00394-008-0736-5 Shimamura T, Sumikura Y, Yamazaki T, Tada A, Kashiwagi T, Ishikawa H, Matsui T, Sugimoto N, Akiyama H, Ukeda H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation. *Analytical sciences* 2014; 30(7): 717-721.

18. Roe JH, Keuther CA. The determination of ascorbic acid in whole blood and urine through 2, 4- dinitro phenyl hydrazine derivative of dehydro-ascorbic acid. *Journal of Biological Chemistry*. 1943; 147:399-410.

19. Shad MA, Nawaz H, Rehman T and Ikram N. Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of *Cichoriumintybus* L.: A comparative study. *J. Anim. Plant Sci.* 2013;23(4):1060-1066.

20. Abbas ZK, Sagg S, Sakeran MI, Zidan N, Rehman H, Ansari AA. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (*Cichoriumintybus* L.) leaves. *Saudi J. Biol. Sci.* 2015;22(3):322-326. DOI: 10.1016/j.sjbs.2014.11.015

21. Akroum S, Satta D, Lalaoui K. Antimicrobial, antioxidant, cytotoxic activities and phytochemical screening of some Algerian plants. *European. J. Sci. Res.* 2009;31(2):289-295.

22. Khakzadihe M, Eslami H, Rasoulifard M, Zadeh HM, Behboudi MR. Investigate the antimicrobial effect of chicory leaf extract with different solvents on *Staphylococcus aureus* and *Escherichia coli*. *Int. J. Biosci.* 2014;5(9):399-405.

23. Petrovik J, Stanojkovic A, Comic LJ, Curcic S. Antibacterial activity of *Cichoriumintybus*. *Fitoterapia* 2004;75(7-8):737-739. DOI: 10.1016/j.fitote.2004.05.001

24. Nandagopal S and Kumari BDR. Phytochemical and antibacterial studies of chicory (*Cichoriumintybus* L.). A multiple medicinal plant. *Adv. Biol. Res.* 2007;1(1-2):17-21.

25. Ogbunugafor HA, Okochi VI, Okpuzor J and Emeka P. Tolerance and anti-plasmodial screening of *Ritchea longipedicellata* in *Plasmodium berghei*. *Biokemistri*. 2008;20:23-27. DOI: 10.4314/biokem.v20i1.56434

26. Lam S. New aspects of natural products in drug discovery. *Trends Microbiol.* 2007;15:279-289. DOI: 10.1016/j.tim.2007.04.001

27. Lee CP. Who's in the business of saving lives?. *J. Med. Philos.* 2006;31(5):465-482. DOI: 10.1080/03605310600912667