

Production and Partial Characterization of Yellow Pigment Produced by *Kocuria flava* Isolate and Testing its Antioxidant and Antimicrobial activity.

**Sahar A. Mal¹, Ghada S. Ibrahim^{1,2}, Maha I. Al Khalaf¹, Ahmed M. Al-Hejin^{3,4}
Noor Mohammed Bataweel^{3,4} and Mohamed Abu-Zaid^{3,5}**

¹Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.

²Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 Bohouth St., Dokki, Giza, 12622, Egypt.

³ Department of Biological Sciences, Faculty of Science, P.O. Box 80203, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

⁴ King Fahad Medical Research Center, P.O. Box 80216, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

⁵ Microbial Genetics Department, Genetics Engineering and Biotechnology Division, National Research Center, Dokki, Giza, Egypt.

Abstract: Recently, Natural pigments produced great interest within the market and made need to find eco-friendlier and less hazardous pigments than synthetic colorants, particularly microbial pigments. This work was undertaken with an aim of isolating pigment producing bacteria from air, then production and extraction pigment from isolated bacteria with antioxidant and antimicrobial properties against pathogenic microorganisms. Bacterium was identified by morphological characteristics and 16S rRNA sequencing as *Kocuria flava* SIF3, submitted to GenBank (accession number MN162713). Pigment production was carried out using nutrient broth medium (NB). Yellow pigment extracted by using methanol as solvent, showed maximum absorption spectrum (λ_{max}) at 437 nm by UV-VIS spectroscopy and the degree of cell pigmentation was 0.472. Partial characterization of the extracted yellow pigment using UV- VIS spectroscopy and Fourier-Transform Infrared Spectroscopy analysis (FTIR) revealed it to be a carotenoid which has numerous applications. This novel extracted yellow pigment was screened for antimicrobial activity against pathogenic and antioxidant activity. This particular pigment showed inhibitory effect against all tested microbes so it could be chosen as a broad spectrum antimicrobial agent. The maximum zone of inhibition was (20 mm) against *Penicillium* sp. then *Pseudomonas aeruginosa* (12mm). The yellow pigment was discovered to have DPPH radical-scavenging activity with an IC50 value of 1.25mg / ml in vitro antioxidant assay. Present findings highlight the significance of yellow pigment extracted from *Kocuria flava* SIF3. Further purification of pigment will be useful in discovering a promising drug.

Keywords: *Kocuria flava*, yellow pigment, characterization, antimicrobial, antioxidant, carotenoids.

*Corresponding Author

Sahar A. Mal, Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.

Received On 17 January 2020

Revised On 04 February 2020

Accepted On 14 February 2020

Published On 06 April 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Sahar A. Mal, Ghada S. Ibrahim, Maha I. Al Khalaf, Ahmed M. Al-Hejin, Noor Mohammed Bataweel and Mohamed Abu-Zaid , Production and Partial Characterization of Yellow Pigment Produced by *Kocuria flava* Isolate and Testing its Antioxidant and Antimicrobial Activity..(2020).Int. J. Life Sci. Pharma Res.10(2), 58-66 <http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.2.L58-66>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Color is an integral part of both human culture and in human life. Colors have been used to enhance the aesthetic value of everyday human life. It is the most important characteristic of food, clothes in everyday life. Objective of color in food is to make things appealing and recognizable¹. Natural pigments are preferred over synthetic colorants due to the potential health hazard effects². This is due to the harmful effects of synthetic pigments on humans and the environment³. The new found perception in human protection and environmental reservation has instigated novel enthusiasm for colors from natural sources. Dyes or natural colorants resulting from living organisms are thought to be harmless due to non-carcinogenic, non-toxic and naturally biodegradable⁴. Natural pigments refer to pigment products of plants, animals, insects, microorganisms and microalgae. Natural pigments extracted from microorganisms have been used for the pharmaceutical, textile and food industry for decades. Many microorganisms have been exploited for the production of color¹. Microbial pigments are a promising alternative to other color additives which are extracted from animals or vegetables as they are considered natural, show a higher productivity and give no seasonal production problems. The importance of biocolors from microorganisms is gaining importance due to their ability of inhibiting mutagenesis, tumor, photo oxidation and ability to enhance immune system⁵. Microorganisms have become a substantial source for pigment production due to high growth rate, cheap culture medium, and easy extraction process; all these offer more advantages for microorganisms than for other biological resources³. The various types of pigments produced by microorganisms are carotenoids, melanins, flavins, monascins, violacein and indigo⁶. These colorants also show properties such as antioxidant activity, antimicrobial activity, anti-coagulating property and food preservation capability⁷. In addition, biopigments can be implemented in other related medical purpose⁸, like anti-tumor and anti-cancer treatments or as indicators like stains and markers in laboratory research works^{9,10}. Often they might also possess rich nutritional value so as to be used as dietary supplements¹¹ or as food additives¹². Among these, carotenoids are the largest and most complex class of natural colors with over 700 structures identified in plants, algae, fungi and bacteria¹³. Today, microbial carotenoids are exploited as the major source for pigment production owing to its availability. It also confers several biological properties which are advantageous to humans. They act as provitamin A as well as a chemoprotective agent in biological systems¹⁴. In addition, they also show antioxidant and antimicrobial properties^{15,16}. Considering the scope of microbial-derived pigments, the present investigation was carried out with an aim to isolate and identify pigment-producing bacteria from natural habitat. Production and extraction of pigment from isolated bacteria, then partially characterized to evaluate the antioxidant activity and antimicrobial activity against human pathogenic microbes.

2. MATERIALS AND METHODS

2.1 Chemicals and media

Nutrient broth (NB) and nutrient agar (NA) used for screening, isolation and production studies were procured

from Al-Rowad Modern Est. Glycerol, DPPH (2,2-diphenyl-1-picrylhydrazyl) and Chemicals were obtained from Al-Rowad Modern Est, Saudi Arabia. All other chemicals used throughout the analysis were of analytical reagent grade.

2.2 Screening, isolation and purification of pigment-producing bacteria

Pigment-producing bacteria are isolated from various samples collected from different locations in Saudi Arabia. The isolated strain of our study was isolated from air on NA medium with 5% glycerol and incubated at 37°C for 24-48 hrs. Pigment producing bacteria were recognized by the presence of colored colonies (diffusible) in agar plates. Pigmented bacterial isolates were purified by streaking onto NA plate with 5% glycerol and it was incubated for 24 hrs at 30-37 °C. It was sustained on NA slants at 5°C until further use.

2.3 Identification of potential pigment-producing bacteria

The isolate producing higher intensity of color pigmentation selected and identified according to their morphological, cultural, biochemical tests¹⁷ and the strain was validated by 16S rRNA gene sequencing analysis which was carried out by Special Infectious Agents Unit - Biosafety Level 3, King Fahd Medical Research Center, Saudi Arabia

2.3.1 16S rRNA sequencing of the potent isolate

The potent isolate was screened for 16S rRNA molecular sequencing in Special Infectious Agents Unit - Biosafety Level 3. Sequencing of the generated PCR products was performed by direct sequencing using the ABI Prism BigDye Terminator Cycle Sequencing Kit v3.1. The cycle sequencing reaction was performed on Veriti® 96-Well Thermal Cycler (Applied Biosystems USA). The 16S forward primer was 5'-GGTACCTTGTACGACTT -3' and 16S reverse primer 5'-AGAGTTGATYMTGGCTCAG -3' where Y is C or T. The sequencing reaction consisted of 1.75 µl Sequencing Buffer (5X), 0.32 µl of primer (3.2 µM), 2 µl sequencing RR and a varying volume of water based on the volume of the purified PCR product. The concentration of the PCR product for sequencing was measured by absorbance at 260 nm on a BioSpec-nano (Shimadzu, USA). The amount of the PCR product added to the sequencing reaction is based on its size (5-20 ng for fragments 500-1000bp in size and 10-40 ng for fragments 1000- 2000bp in size). The cycle sequencing reaction was performed in both the forward and reverse directions. Internal primers were used sometimes in sequencing of RSV type A because of its long fragment length. The cycle sequencing condition in Veriti® 96-Well was as follows: the initial denaturation at 96°C for 1 min, repeat the following for 25 cycles: 96°C for 10 sec, 50°C for 5 sec and 60°C for 4 min then hold at 4°C until used to purify using Sephadex with MultiScreen-HV Filter Plate (0-45 µm). Nucleotide sequences were compared with GenBank database (<http://www.ncbi.nlm.nih.gov/>) by using the program of BLASTN followed by sequence alignment. A phylogenetic tree was developed by the neighbor-joining algorithm^{18,19}.

2.4 Pigment production

NB has been used for preparation of inoculum and production of pigment. Loop full of culture was added to 50 ml NB in 250 ml flasks, then incubated at 30 °C on a rotary

shaker at 200 rpm for 24hrs. One ml of inoculum size was transferred to 250 ml Erlenmeyer flask containing 50 ml of NB then incubated at 30 °C on a rotary shaker at 150 rpm for 48 hrs²⁰. The medium was centrifuged at 5000 rpm for 15 min after incubation period to separate the cells pelt, then suspended in distilled water and again centrifuged to collect the supernatant. One milliliter culture diluted to 10 ml by 25% sodium chloride solution to measure growth (OD) at 660 nm using a spectrophotometer²¹.

2.5 Extraction of pigment and determination of its absorption spectra

The culture medium was harvested and centrifuged to remove cells at 5000 rpm for 10 min then supernatant was discarded. Cell pellets were resuspended by using deionized water, followed by centrifugation 5000 rpm for 10 min to recover the cells by discharging the supernatant again. The 10 ml of methanol (with a purity of 99.7%) was added to the cell for extracting bacteria pigment and the mixture was vortexed, extracted twice with the same solvent. The mixture of the cells and methanol was treated by ultra sonication (59 KHz, 35-40 °C, 90 min) and kept overnight in light protection. The pigment extract was separated by centrifugation at 5000 rpm for 10 min and filtered by whatman filter paper. Pigment extract was analyzed by using absorbance scan in wavelength region of 200-700 nm using Genesys 10s UV-VIS spectrophotometer. The solvent was evaporated to dryness in evaporator at 40 °C and crude pigment was collected in screw cap bottle and kept light protected at -20 °C^{20,21}. The pigmentation degree of cell was calculated according to the ratio of OD of carotenoid to OD of the growth (OD λ_{max} /OD660)²⁰.

2.6 Partial Characterization of Pigment

2.6.1 UV-Vis Spectrometric Analysis of Pigment

Pigment solution has been analyzed by using UV-VisSpectrometry with 200-700 nm ranges of wavelengths of

$$\text{Scavenging activity (\%)} = \frac{\text{Ac-As}}{\text{Ac}} \times 100$$

Where Ac is the absorbance of the control and As is the absorbance of the sample.

2.8 Antimicrobial activity of yellow pigment extract

The antimicrobial activity of the yellow pigment was tested by Agar-well Diffusion Method. Briefly 20 ml of NA for bacteria and Potato Dextrose Agar (PDA) media for fungi were poured into the Petri-dish and 6 mm well bored in the agar. 100 µL of extract with different concentrations (7.5, 15 and 30 mg/ml) were dissolved in methanol and poured into the wells, methanol has been used as control. The plates were incubated for 24 hrs for bacteria and 48-72 hrs for fungi at 37°C, the zone of inhibition was measured in mm²³. The experiment was done in triplicates and the average was calculated. Five pathogens belonging to both gram positive and gram negative groups such as *Staphylococcus aureus*, *Bacillus subtilis*, *Bacillus cereus*, *Escherichia coli* and *Pseudomonas aeruginosa*, in addition to four fungi, *Candida albicans*, *Aspergillus niger*, *Aspergillus flavus* and *Penicillium* sp were used in this study as test pathogens.

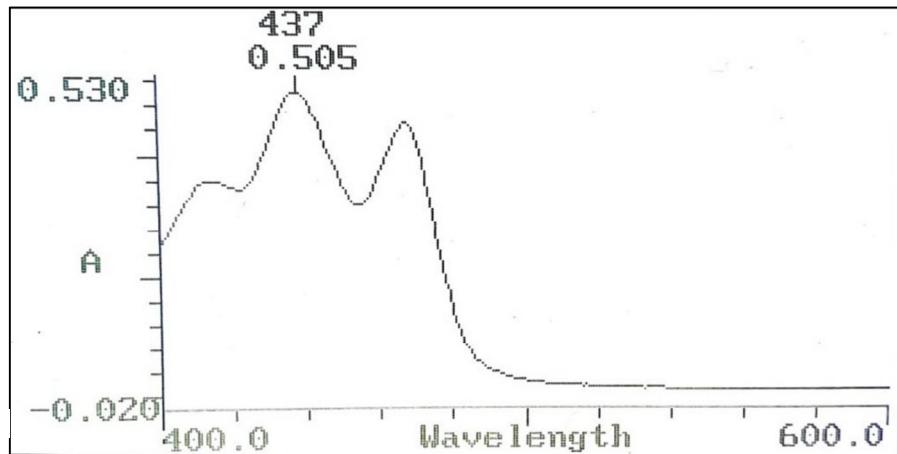
light, to Find the highest pigment absorption peaks. The specification of the instrument has been Genesys 10s UV-VIS spectrophotometer.

2.6.2 Fourier-transform infrared spectroscopy (FTIR)

The structural analysis of the extracted pigment was done using FTIR analysis, where an infra-red spectrum helped in identifying the presence and position of various functional groups of the pigments. The analysis was carried out by using the infrared spectra (KBr disks) in the range of 4000 to 400 cm⁻¹ that was recorded on Perkin- Frontier spectrometer (USA)

2.7 Determination of antioxidant activity of extracted pigment

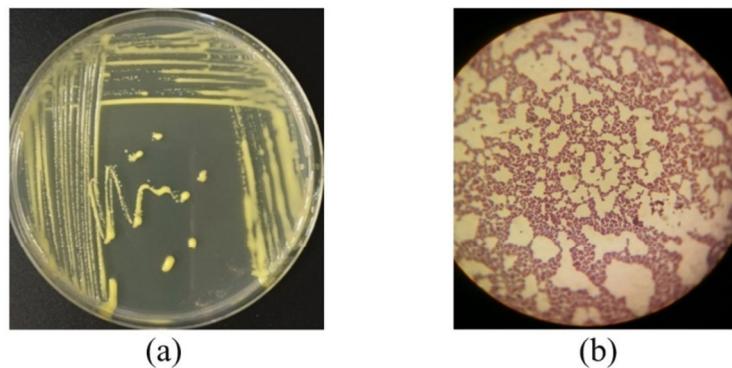
DPPH (1, 1diphenyl-2picrylhydrazyl) accepts an electron to form a stable diamagnetic molecule. The violet color DPPH methanolic solution has a high UV absorbance at 517 nm. The odd electrons of DPPH radical pairs with a reducing agent presence in this methanolic solution, then the solution stoichiometrically fade color and the solution absorbance decreases at 517 nm. The crude methanolic pigment extract was aliquoted into different concentrations (0.312, 0.625, 1.25, 2.5 and 5 mg/ml) for determining its ability to scavenge 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals using Brand-Williams et al.²² method with slight alterations. One milliliter of 0.1mM DPPH solution in methanol was mixed with one milliliter of pigment extract solution by using various concentrations (0.312, 0.625, 1.25, 2.5 and 5 mg/ml). Corresponding blank samples were prepared and L-Ascorbic acid (20, 40, 60, 80 and 100 µg/ml) was used as reference standard. One ml methanol and one ml DPPH solution was mixed and used as control. The reaction was conducted in triplicate and UV-Vis spectrophotometer was used to measure the decrease in absorbance at 517 nm after 30,60, 90 and 120 min in dark. Inhibition % was calculated by using the following formula.


3. RESULTS AND DISCUSSION

3.1 Pigment producing bacteria isolation and identification

Isolation, screening, and identification of the bacteria-producing pigment five strains from a total of fifty single colonies were chosen from specimens isolated from different locations from Saudi Arabia. Based on their morphological variations (color) in agar plates. Finally, SIF3 strain was selected as one of the yellow pigment producers according to the highest intensity of extracted pigment,²⁴in the wavelength region of 400-600nm as analyzed by the spectrophotometer, was selected for further studies. The spectral scan of the pigment produced by the most promising organism is represented in Fig. (1). It produced light yellow pigment and showed a λ_{max} at 437nm indicating that the pigment produced may be a carotenoid. Bacteria producing pigment were screened on the morphology of the colony (color). SIF3 colonies were light

yellow smooth circular slightly convex with entire edges, it was gram positive, aerobic, non-motile and coccoid cells and catalase positive (Table (1) and Fig. 2 (a and b)). According to 16S rDNA sequence, the nucleotide sequence was placed under the MN162713 accession number in the GeneBank. The phylogenetic tree was constructed using the neighbor-joining approach in view of the 16S rDNA sequence Fig.(3). The almost complete 16S rRNA gene sequence of SIF3strain was compared by BLAST to the other bacterial strains similar


sequences of database in the GenBank. Results of BLAST clarified that SIF3 strain was most similar to *Kocuria flava* (100% similarity). The phylogenetic tree has been established by the neighbor-joining algorithm Fig. (3). The topology of the tree, backed by high bootstrap esteems, clearly showed that *Kocuria flava* strain is inside the *Kocuria* genus. In view of the 16S rDNA sequence data analysis and morphological characteristics, SIF3 was described as *Kocuria flava* MN162713.

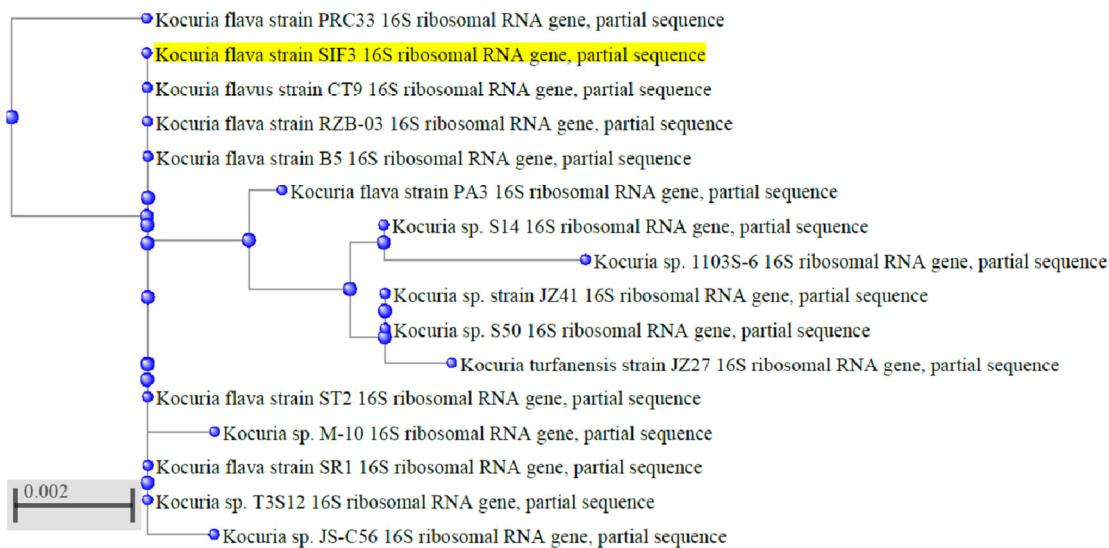

Fig.1. Light absorption spectra of yellow pigment produced by SIF3 isolate in methanol

Table 1. Morphological, cultural and physiological characteristics of SIF3 isolate

Character	Result
Gram's stain	Positive
Cell shape	Cocci
Motility	Non-motile
Colony shape	Light yellow smooth circular slightly convex colonies with entire edges .
Oxygen requirement	Aerobic
Catalase production	Positive

Fig 2. Pigment producing bacteria isolated from air

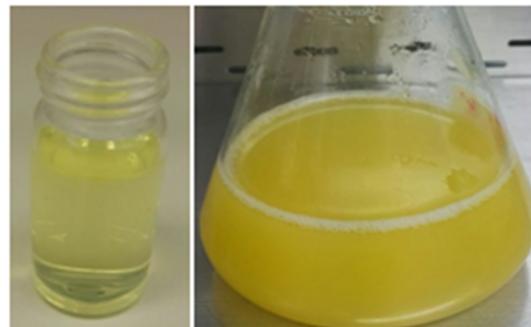


Fig 3. Phylogenetic tree of *Kocuria flava* SIF3 obtained by neighbor-joining analysis of ITS region of 16 rDNA

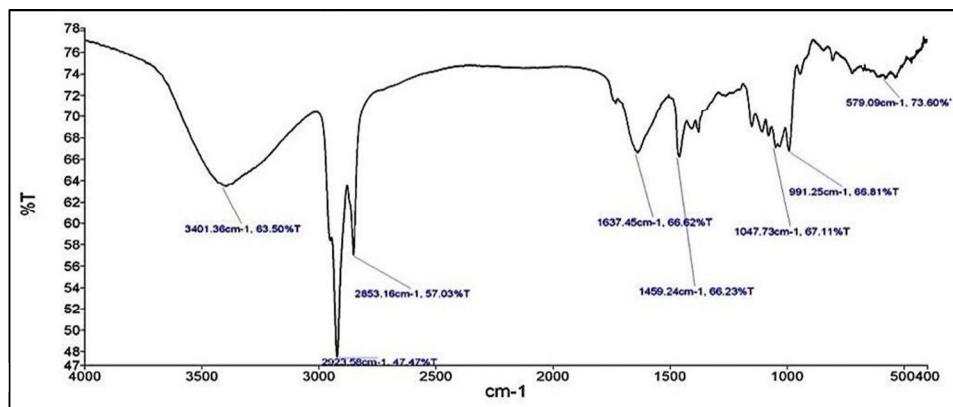
3.2 Bacteria pigments production

After extraction of yellow pigment from isolated strain SIF3 with methanol (99.7%) the crude pigment extracted showed light yellow colour in Fig.(4). The productivity of crude pigment extract was 16.23 mg/cells and 80 mg/l, while the

cell pigmentation degree was determined according to the ratio ($OD\lambda_{max}/OD660$). The extracted pigment of the isolated bacteria strain had $OD\lambda_{max}$ at 437 nm (0.505) and OD of cell growth at 660 nm was (1.070), while the degree of cell pigmentation was (0.472).

Fig 4. Extraction of yellow pigment from SIF3 isolate

3.3 Characterization of pigment


3.3.1 UV-Vis spectrometric analysis of pigment

Methanolic extract of yellow pigment was scanned in a visible region where it was seen to have three-peak spectra shown in Fig. (5). The three-peak spectrum is a characteristic feature of a carotenoid. The extracted pigment λ_{max} (maximum absorbance) appeared at 437 nm. The main reason for greater pigment absorptions at longer wavelengths was the effects of electron conjugation²⁵. Yellow Carotenoid pigments show three distinctive peaks within the range of absorption from 400 to 500 nm²⁶.

3.3.2 Fourier-transform infrared spectroscopy (FTIR)

FTIR spectra of crude pigment gave the prominent peaks at 2923.67, 2853.25, 1638.26 and 1460.36 cm^{-1} as depicted in Fig. (5) Other peaks were observed at 1150.04, 1074.92,

991.50 and 3435.84 cm^{-1} . Comparatively very less literature is available on bacterial carotenoid pigment using FTIR spectroscopy. Broad peak ranging from 3200-3500 cm^{-1} , indicative of OH group, which may also help explain why pigment in ethanol and methanol is extremely soluble (3435.84 cm^{-1}). Alkane stretching peaks were exhibited in the range of 2800-2950 cm^{-1} . Bands at 2923.67 cm^{-1} are due to asymmetrical stretching vibration of aliphatic CH group while at 2853.25 cm^{-1} are due to asymmetrical stretching vibration of the same group as is interpreted by Latha and Jeevaratnam²⁷. The peak at 1460.36 cm^{-1} may be due to asymmetrical deformation vibration of CH₃ groups. The C = C bonding was also observed as a characteristic of the pigment with a peak at 1600-1680 cm^{-1} . Bands at 1638.26 cm^{-1} may be due to the presence of the olefinic functional group. However the complete structure of compounds cannot be determined based on IR data. Vibrational peaks are most likely due to oxidation and/or deformation in polyene chain²⁸.

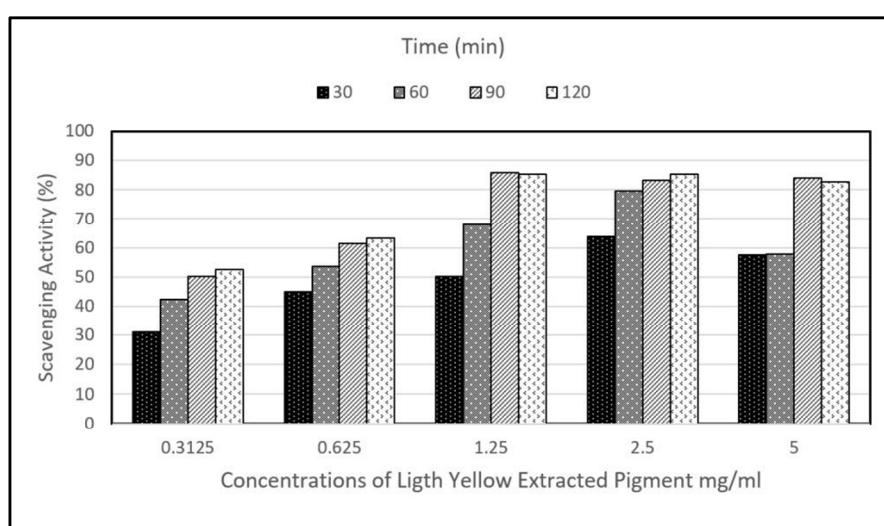


Fig 5. FTIR spectral scan of pigment produced by *Kocuria flava* SIF3


3.4 Scavenging activity of pigment using DPPH

Antioxidant activity test was based on the capability to quench DPPH, a stable free radical, and thus decolorize in the presence of antioxidants resulting in reduced absorbance values. Yellow pigment antioxidant activity at distinct levels (0.312, 0.625, 1.25, 2.5 and 5 mg/ml) was assessed as free radical DPPH scavenging and its outcomes are shown in Figure (6). It is evident that the largest scavenging activity for yellow pigment was found at 1.25 mg / ml for 90 min. (85.8%) followed by 2.5mg / ml for 120 min. (85.3%), 5.0mg / ml for 90 min. (83.9%) ,0.625mg / ml for 120 min. (63.4%) and 0.312mg/ml for 120min (52.5%). The yellow pigment was discovered to have DPPH radical-scavenging activity with an IC₅₀ value of 1.25mg / ml in vitro antioxidant assay. Ascorbic acid (20, 40, 60, 80 and 100 µg/ml) was used as reference standard. Figure(7). The highest producing carotenoid *Exiguobacterium* sp isolated from soil and air was selected by

Sasidharan et al.²⁹ for scavenging activity which was about 70%. Carotenoid is usually potential for antioxidants, several times in vivo, because of the pro-oxidant effect they lack these properties³⁰. Nevertheless, in antioxidant and anticarcinogenic properties, carotenoid compounds play a significant role³¹. Mercy and Aruna²⁴ illustrated that the antioxidant assay of carotenoids produced by *K. flava* majod showed the IC₅₀ value to be 3.2 (mg/mL). In another study, the carotenoid pigments isolated from *M. roseus* and *M. luteus* showed significant UV protective nature and antioxidant IC₅₀ value of 3.5-4.5 mg/ml³². The difference in IC values was related to the presence of acyclic carotenoids with both large numbers of conjugated double bonds and of hydroxyl groups in the major carotenoid³³. The results of this investigation suggested that the pigment extracted from SIF3 isolate can be taken for industrial purposes after purification and chemical characterization processes.

Fig 6. DPPH scavenging activity of light yellow extracted pigment

Fig 7. DPPH scavenging activity of ascorbic acid

3.4.1 Antimicrobial activity against bacterial and fungal pathogens

Antimicrobial activity of the extracted light yellow pigment from the isolated SIF3 pigment forming bacteria was determined by agar-well diffusion method using different concentrations of pigment. The isolated pigment showed antimicrobial activity against the test pathogens at different concentrations. Maximum zone of inhibition (20 mm) was shown by extracted pigment against *Penicillium* sp. by using 30 mg/ml followed by *Pseudomonas aeruginosa* (12 mm) inhibition zone at concentration 30 mg/ml Table (2). Antimicrobial activity of pigment extract against the test pathogens are shown in Table (2). The light yellow pigment from the isolate SIF3 was found to inhibit all tested microbes, thus might be selected as antimicrobial agents with a broad spectrum. Zone of inhibition formed by light yellow pigment varies in size even in case of isolates of the same genus (*Penicillium*) by using different concentrations of pigment. It was therefore concluded that the isolated bacteria were able to synthesize pigments that had antimicrobial activity against certain human pathogens. Pigments extracted

from bacteria are reported to have antibacterial activity against Gram-positive and negative bacteria. Antibacterial activity of pigments separated from fifteen various bacteria was determined by Rashid et al.³⁴. Throughout their study, they reported that the pigments extracted from different isolates had antibacterial effects against different gram-positive and negative human pathogens, where it showed antibacterial activity more effective against gram-negative pathogens than gram-positive³⁴. Monascus pigments which are colored in yellow, orange and red, possess weak antimicrobial activity³⁵. A pigment extracted from *Streptomyces* sp. D25 confirmed to have antibacterial activity, where the zone of inhibition ranged from 15 to 20 mm against *Lactobacillus* sp., *Staphylococcus* sp., *Alcaligenes* sp., and *Bacillus* sp., at 25 mg/mL by using disc diffusion method³⁶. Carotenoid pigment (yellow) from *Micrococcus luteus* exhibited inhibitory action against *Streptococcus faecalis* and *Staphylococcus aureus* with a wide range of inhibition zones at different concentrations from 2 to 10 mg/ml³². These studies have shown that bacterial pigments have potential bactericidal activity against various human pathogens.

Table 2. Antimicrobial activity of Light yellow pigment extracted from SIF3 isolate against various pathogens
microbes using disc diffusion method.

Strain	Inhibition zone (mm)		
	Concentration of light yellow pigment (mg/ml)		
	7.5	15	30
<i>Staphylococcus aureus</i>	9	10	8
<i>Bacillus subtilis</i>	-	-	8
<i>Bacillus cereus</i>	-	8	-
<i>Escherichia coli</i>	8	10	9
<i>Pseudomonas aeruginosa</i>	-	9	12
<i>Candida albicans</i>	-	9	-
<i>Aspergillus niger</i>	10	7	-
<i>Aspergillus flavus</i>	-	10	9
<i>Penicillium</i> sp.	8	15	20

4. CONCLUSION

The production, extraction and characterization of yellow pigment produced by *Kocuria flava*SIF3 was successfully carried out in our study and it showed effective production of

pigment. The isolated pigment was known to be of carotenoids as they showed λ_{max} absorbance at 437 nm which is the indication for carotenoids. The extracted pigment showed antibacterial activity against all tested microbes. In addition it showed an antioxidant activity. In this regard, this study is an

initiative approach towards the use of bio-colors which find its applications in numerous sectors as an alternative for synthetic chemicals. To conclude, microbial pigment production is one of the emerging fields of research to demonstrate its potential for various industrial applications.

5. ACKNOWLEDGEMENT

The authors are cordially thankful to the King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia especially to Special Infectious Agents Unit - Biosafety Level 3 at King Fahd Medical Research Center for its resources support for the study.

8. REFERENCES

- Samyuktha S, Mahajan SN. Isolation and identification of pigment producing bacteria and characterization of extracted pigments. *International Journal of Applied Research.* 2016;2(7): 657-664.
- Chakraborty I, Redkar P, Munjal SR, Kumar S, BhaskaraRao KV. Isolation and characterization of pigment producing marine actinobacteria from mangrove soil and applications of bio-pigments. *Der Pharmacia Lettre.* 2015;7 (4):93-100.
- Seyedin A, yazdian F, Hatamian-Zarmi A, Rasekh A, Mir-derikvand M. Natural pigment production by *monascus purpureus*: bioreactor yield improvement through statistical analysis. *Applied Food Biotechnology.* 2015;2(2): 23-30. DOI: 10.22037/afb.v2i2.7457
- Venil CK, Zakaria ZA, Ahmad WA. Bacterial pigments and their applications. *Process Biochemistry.* 2013;48 :1065–1079. DOI: 10.1016/j.procb.2013.06.006
- Sun J, Kim J, Kim G, Rhee K, Jung H, Jeun J. Inhibition of hepatitis C virus replication by *Monascus* pigment derivatives that interfere with viral RNA polymerase activity and the mevalonate biosynthesis pathway. *Journal of Antimicrobial Chemotherapy.* 2011;10:1093. DOI:10.1093/jac/dkr432.
- Dufosse L. "Microbial Pigments, Encyclopedia of Microbiology," 3rd Edition, 2009;p. 457-471. DOI: 10.1016/B978-012373944-5.00155-3
- Juzlova P, Martinkova L, Kren V. Secondary metabolites of the fungus *Monascus*: A review. *Journal of Industrial Microbiology and Biotechnology.* 1996;16: 163–170. DOI: 10.1007/BF01569999
- Carvalho JC, Pandey A, Babitha S, Soccol CR. Bile pigments from *Monascus*: strains selection, citrinin production and color. *Brazilian Archives of Biology and Technology.* 2005;48(6):885-894. DOI: 10.1590/S1516-89132005000800004
- Miyaura J, Tatsumi C. Studies on the antibiotics from actinomycetes an antibiotics pigment from *streptomyces* F-23b. *Bulletin of the University of Osaka Prefecture. Series B* 12. 1960;129-137.
- Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. *Environmental Microbiology.* 2005;7(7):1039–1048. DOI: 10.1111/j.1462-2920.2005.00785.x
- Belay A, Ota Y, Miyakawa KE, Shimamatsu H. Current knowledge on potential health benefits of *spirulina*. *Journal of Applied Phycology.* 1993;5: 235-241. DOI:10.1007/BF00004024
- Wong HC, Koehler P. Production and isolation of an antibiotic from *Monascus purpureus* and its relation to pigment production. *Journal of Food Science.* 1981;46:589-592. DOI: 10.1111/j.1365-2621.1981.tb04917.x
- Kushwaha K, Saini A, Saraswat P, Agarwal MK, Saxena J. Colorful world of microbes: carotenoids and their applications. *Advances in Biology.* 2014;Article ID 837891, 13 pages. DOI: 10.1155/2014/837891
- Natalia M, Sandra RSF. Carotenoids functionality, sources, and processing by supercritical technology: A Review. *Journal of Chemistry.* 2016;Article ID 3164312, 16 pages. DOI: 10.1155/2016/3164312
- NarsingRao MP, Xiao M, Li W-J. Fungal and bacterial pigments: secondary metabolites with wide applications. *Frontiers in Microbiology.* 2017;8:1113. DOI: 10.3389/fmicb.2017.01113
- Pandey N, Jain R, Pandey A, Tamta S. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of *Penicillium* sp. (GBPI_P155) isolated from the mountain ecosystem. *Mycology.* 2018;9(2): 81-92. DOI: 10.1080/21501203.2017.1423127
- Boonsaeng T, Nimrat S, Vuthiphandchai V. Pigments production of bacteria isolated from dried seafood and capability to inhibit microbial pathogens. *Journal of Environmental Science, Toxicology and Food Technology.* 2016;10(5): 2319-2399. DOI: 10.9790/2402-1005023034
- Yin W-F, Tung H-J, Sam C-K, Koh C-L, Chan K-G. Quorum quenching *Bacillus sonorensis* isolated from soya sauce fermentation brine. *Sensors.* 2012;12:4065–4073. DOI: 10.3390/s120404065
- Chang C-Y, Koh C-L, Sam C-K, Chan X-Y, Yin WF, Chan KG. Unusual long-chain N-acyl homoserine lactone production by and presence of quorum quenching activity in bacterial isolates from diseased tilapia fish. *PLoS One.* 2012;7, e44034. DOI: 10.1371/journal.pone.0044034
- Phutrakul S, Wichai S, Sriyam S, Obchoei P, Liquiphant S. Screening and increasing productivity of natural dyes from microorganism for dyeing industrial. The

6. AUTHORS CONTRIBUTION STATEMENT

Sahar A. Mal, Ghada S. Ibrahim and Maha I. Al Khalaf conceived and planned the experiments. Sahar A. Mal and Ghada S. Ibrahim carried out the experiments. Ahmed M. Al-Hejin, Noor Mohammed Bataweel and Mohamed Abu-Zaid helped to achieve the experiment and provided chemicals and lab equipment. Ghada S. Ibrahim and Sahar A. Mal wrote the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

7. CONFLICTS OF INTEREST

Conflict of interest declared none

Complete Research Report, Chiang Mai University. Thailand, 2002.

21. Asker D, Ohta Y. Production of canthaxanthin by extremely halophilic bacteria. *The Journal of Bioscience and Bioengineering*. 1999;88:617-621. DOI: 10.1016/s1389-1723(00)87089-9

22. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. *LebensmWiss Technology*. 1995;28:25-30. DOI: 0023-6438/95/010025

23. Prasad RN, Viswanathan S, Devi JR, Nayak V, Swetha VC, Archana BR, Parthasarathy N, Rajkumar J. Preliminary phytochemical screening and antimicrobial activity of samaneasaman. *Medicinal Plants Research*. 2008;2(10):268-270.

24. Mercy J, Aruna K. Optimization of pigment production by *Kocuria flava* majod isolated from garden soil. *Journal of Global Biosciences*. 2019;8(2): 5946-5965.

25. Ahmad WA, Ahmad WY, Zakaria ZA, Yusof NZ. Application of bacterial pigments as colorant. In: *Application of bacterial pigments as colorant*. Springer. Berlin, 2012;57-74. DOI: 10.1007/978-3-642-24520-6

26. Kohler BE. Electronic structure of carotenoids. *ChemInform*. 1995;26(32):1-12. DOI: 10.1098/rsif.2017.0504

27. Latha BV, Jeevaratnam K. Purification and characterization of the pigments from *Rhodotorula glutinis* DFR-PDY isolated from a natural source. *Global Journal of Biochemistry and Biotechnology*. 2010;5(3):166-74.

28. Yuan L, Koehler M, Baudela M, Richardson M. Fusion of infrared and Raman spectroscopy for carotenoid analysis. *Pittcon Orlando FL USA*. 2012;3:1-13.

29. Sasidharan P, Raja R, Karthik C, Sharma R, Arulselvi PI. Isolation and characterization of yellow pigment producing *Exiguobacterium* sp. *Journal of Biochemical Technology*. 2013;4(4):632-635.

30. Sandesh K. Biotechnological production of microalgal carotenoids with reference to astaxanthin and evaluation of its biological activity. 2007;PHD thesis, university of Mysore.

31. Bendich A. Carotenoids and the immune response. *Journal of Nutrition*. 1989;119:112-115. DOI: 10.1093/jn/119.1.112

32. Mohana DC, Thippeswamy S, Abhishek RU. Antioxidant, antibacterial and ultraviolet protective properties of carotenoids isolated from *Micrococcus* spp. *Radiation Protection and Environment*. 2013;36(4), 168e174. DOI: 10.4103/0972-0464.142394

33. Mandelli F, Miranda VS, Rodrigues E, Mercadante A. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. *World Journal of Microbiology and Biotechnology*. 2012;28(4):1781-90. DOI: 10.1007/s11274-011-0993-y

34. Rashid M, Fakruddin M, Mazumdar RM, Kaniz F, Chowdhury M. Anti-bacterial activity of pigments isolated from pigment forming soil bacteria. *British Journal of Pharmaceutical Research*. 2014;4(8). DOI: 10.9734/BJPR/2014/5148

35. Kim C, Jung H, Kim JH, Shin CS. Effect of *monascus* pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. *Colloids Surf B*. 2006;47(2):153-159. DOI: 10.1016/j.colsurfb.2005.12.009

36. Radhakrishnan M, Gopikrishnan V, Vijayalakshmi G, Kumar V. In vitro antioxidant activity and antimicrobial activity against biofilm forming bacteria by the pigment from Desert soil *Streptomyces* sp D25. *Journal of Applied Pharmaceutical Science*. 2016;6(6):148-150.