

Evaluation of Anticancer, Antibacterial and Haemolytic Activities of Crude Mucus from Marine Catfish *Tachysurus Dussumieri*

Kavitha Raja, Tharun Jayakumar, Gracy Jenifer Sahayanathan, Deepakrajasekar Padmanaban, Kathirvel Neelan and Arulvasu Chinnasamy*

Dept. of Zoology, University of Madras, Guindy Campus, Chennai - 600 025, India

Abstract: Marine organisms are one of the diverse groups of animals that are highly specialized for their aquatic existence. The skin mucus share protective activities against environment that are rich in infectious agents. The current study aims to analyses the anticancer, antibacterial and haemolytic properties of crude epidermal mucus from marine catfish *Tachysurus dussumieri*. Cell viability and Cytotoxicity was assessed by MTT method on HT 29 (human colon carcinoma) and Vero (kidney epithelial cells of African Green Monkey) cell line. In Vero up to 1000 µg/ml of crude mucus shows cell viability of 80% and hence mucus concentration for treatment of HT 29 cells was fixed between 100 to 1000 µg/ml. The proliferation inhibition on HT 29 at a concentration of 400 µg/ml mucus from *T. dussumieri* at 24 h. Cellular and nuclear morphological variations was observed in different concentration of mucus, followed by DNA fragmentation to confirm the induction of apoptosis. Moreover, mucus sample was tested against Gram positive and negative bacteria, The maximum zone of inhibition was observed in *S. aureus* (15.61 ± 0.7 mm), followed by *B. subtilis* (8.32 ± 0.32 mm) and *E. coli* (8.14 ± 0.08 mm). Interestingly mucus from *T. dussumieri* showed haemolytic activity on different blood samples of goat, rat, sheep, buffalo, rabbit, cow, hen and human. Mucus showed maximum haemolytic activity against goat, rat, sheep and buffalo when compared to other RBCs. All these results showed that the epidermal mucus has more efficacy on therapeutic application in near future..

Keywords: Catfish, Mucus, Antimicrobial property, Cytotoxicity, DNA damage

***Corresponding Author**

Arulvasu Chinnasamy*, Dept. of Zoology, University of Madras, Guindy Campus, Chennai - 600 025, India

Received On 01 December 2019

Revised On 26 December 2019

Accepted On 29 January 2020

Published On 03 April 2020

Funding This work is supported by University of Madras, Research Fellowship . (GCCO/URF/RK/ZD/URF-Extension/2019-20/778

Citation Kavitha Raja, Tharun Jayakumar, Gracy Jenifer Sahayanathan, Deepakrajasekar Padmanaban, Kathirvel Neelan and Arulvasu Chinnasamy*, Evaluation of Anticancer, Antibacterial and Haemolytic Activities of Crude Mucus from Marine Catfish *Tachysurus Dussumieri*.(2020).Int. J. Life Sci. Pharma Res.10(2), 38-45 <http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.2.L38-45>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Global burden of cancer in economically developing countries continues due to aging and growth of the world population alongside cancer-causing behaviors, such as smoking, consumption of alcohol etc. In normal cells, the function of tissue homeostasis, proliferation and apoptosis are balanced, but in cancer cells it is characterized by the uncontrolled growth and spread of abnormal cells¹. In India 30 percent of the population belonging to the age group of 45 to 64 years die due to colorectal cancer, hence it has become important to analyze, the cause and to take measures for prevention². The Annual incidence rates (AAR) for colon cancer in men are 4.4 per 10, 0000 and women is 3.9 per 10, 0000. It ranks 8th among men and 9th among women. In the 2013 report of Indian council of medical research 1996, the highest AAR in men for colon rectal cancer (CRCs) was recorded in Thiruvananthapuram. As per the international correlation studies, there is a positive association between dietary fat, red meat consumption and colorectal incidence. The richness of diversity offers a great prospect for the discovery of new bioactive compounds. Every year, hundreds of new compounds are being discovered. Nowadays, an increasing number of natural products isolated from marine animals is rapidly increasing³. From the world fisheries data, almost 20 million metric tons of fish by-products are castoff annually whereby their by-products are rich in proteins, minerals, enzymes, pigments and flavors⁴. Recently, an increasing diverse number of bioactive peptides from fish processing materials are shown to possess good antioxidant⁵, anticoagulant⁶, antihypertensive⁷, anticancer⁸ and antimicrobial properties⁹. Skin of teleost is distinctive when compared to other mammals, because it secretes mucus which is involved in immune functions. The aquatic environment is rich in pathogenic organisms; it has various adaptations like physical, chemical, and biological properties¹⁰. The epidermal mucus is secreted by the goblet cells which are present in the epidermis. Mucus has mucin, glycoproteins and gel forming macromolecules, along with innate immunity which is a key component in the epidermal mucus that protects it from foreign substances¹¹. The osmolarity and pH of the mucus change accordingly in response to microbial exposure or environmental fluctuations where the rate of mucus secretion increases¹². Mucus secretion perform numeral functions most importantly lubrication¹³, mechanical protection, osmoregulation, locomotion, immunological role and intraspecific chemical communication¹⁴. Marketed antimicrobial drugs are well developed for treatments, where most of the bacteria have already developed resistance against existing drugs¹⁵. Hence the current attention of investigators is to look for other substitute antibiotics and antibacterial drugs¹⁶. In twentieth century one of the greatest medical achievements is antibiotic drugs; these drugs either kill the bacteria or prevent them from replicating. Penicillin, the first antibiotic, is still used to treat some infections and other widely used antibiotics are amoxicillin, bacitracin, cephalosporins, fluoroquinolones erythromycin, and tetracycline. Identifying a novel antimicrobial compound is essential, when put together to fight the drug resistant bacterial pathogens. In this regard several studies have been made to discover new antimicrobial drugs from natural resources including animal and plant origins. A key factor of designing a drug for active

molecules by a way of haemolytic activity and the interaction between molecules and biological entities at cellular level provides the leading information for pharmacological studies. Haemolytic assay is an indicator of general cytotoxicity to normal healthy cells¹⁷. The present study investigates antibacterial, haemolytic and anticancer properties of crude epidermal mucus from marine catfish *T. dussumieri*.

2. MATERIALS AND METHODS

2.1 Collection of marine catfish

The marine catfish *T. dussumieri* were collected from South East coast of India. Collected catfish were transported to the laboratory in the sea water and dissolved oxygen was maintained by the aerator. The fish were acclimatized to the laboratory conditions and were maintained with filtered seawater at 35 ppt, pH 8, 1000 mOsm/l. It was identified and authenticated by zoologist Dr. C. Arulvasu Assistant Professor, Department of Zoology, University of Madras based on examination of the morphological characteristics and palatine teeth patterns referred from Marine Catfish Resources of India (Exploitation and Prospects) CMFRI Bulletin 40, Chapter Two and also referred Records of Indian museum, Vol no. 51, Pg no. 6-7

2.2 Preparation of mucus from *T. dussumieri*

Mucus was collected from healthy live fish, which were placed on a surgery bed. Epidermal mucus from the dorsal side of the fish was collected by a cell scraper and transferred into a tube with buffer solution containing 0.013 M Tris, 0.12 M NaCl, and 0.003 M KCl (pH-7.4)⁸. In order to avoid any blood, intestinal and sperm contamination the mucus is not collected from the ventral side. Then samples were stored at -80°C until use. Stored mucus samples were allowed to thaw at room temperature and homogenized with pestle and mortar. The insoluble particles were eliminated by centrifugation at 1000 x g for 10 min at 4°C and the supernatant was collected, lyophilized and stored at -60°C for further examination.

2.3 Cancer cell lines and chemicals

Human Colon adenocarcinoma cell line (HT 29) was obtained from National Centre for Cell Science, Pune, India. DMEM, Trypsin-EDTA, Fetal Bovine Serum (FBS), 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT), sodium bicarbonate, Dimethyl sulphoxide (DMSO) and antibiotic solution were purchased from Hi Media Laboratories, Mumbai, India. 96 well plates, 6 well plates, Tissue culture flasks (25 and 75 mm²), (15 and 50 ml) Centrifuge tubes were bought from Tarsons Products Pvt, Kolkata, India.

2.4 Cytotoxicity on Vero cell line

Vero cells were maintained in DMEM medium, supplemented with 10% of FBS, at 5% CO₂ and 37°C. For the experiments, cells were detached and centrifuged pellet was suspended and seeded in 96 well plates. The concentration of epidermal mucus was fixed between 200 to 1000 µg/ml after 24 h incubation. Cells received 10µl of 5 mg/ml MTT solution, after incubation time formazan crystals were formed and dissolved with organic solvent.

The absorbance was taken at 570 nm. Viable cells showed dark purple color.

2.5 MTT Assay

The Cytotoxicity of samples on Colon cancer cell lines were determined by MTT assay¹⁸. Human cancer cells (1×10^6 /well) were plated with Dulbecco's Modified Eagle Medium (DMEM) containing 10% FBS in 96 well plates. The cells were incubated for 24 h under 5% CO₂, 95% O₂, and 37°C, allowing the cells to attach to the bottom of the well. The medium was removed from the cell culture plates and different concentration of crude mucus was added to each well for 24 h incubation. Control cells were maintained absence of crude mucus samples. After 24 h, 20µl of 5 mg/mL MTT dye was added to each well and the plates were further incubated for 3 h at 37°C and then 100 µl of DMSO was added and the formed crystals were dissolved gently by pipetting 2 to 3 times and measuring absorbance at 570 nm.

2.6 Morphological observation of HT 29 cells

Human cancer cells were trypsinized and plated in 6 well plate, the cells were incubated for 24 h for attachment with DMEM medium containing 10% FBS. Subsequently, various concentrations of crude mucus sample was added to the cell lines. Control cells were maintained with serum less medium, and on completion of 24 h incubation, the cells were observed under Inverted microscope⁸.

2.7 Propidium iodide staining for nuclear damage

Fluorescent staining of apoptotic nuclei were performed¹⁹. Cancer cells (5×10^4 cells/ml) were seeded in 6 well plates with medium containing 10% FBS. Cells were treated with the crude mucus protein, control cells are maintained with the serum less media. After completion of incubation the media is removed from the cells, washed with PBS and fixed with methanol: acetic acid (3:1 v/v) for 10 minutes and stained with 50 µg/ml of propidium iodide for 20 minutes. Then the stained cells were observed under confocal microscope (LSM 710, Carl Zeiss) at 20 X magnification.

2.8 DNA-fragmentation analysis

DNA extraction and agarose gel electrophoresis done with horizontal gel apparatus²⁰. Cancer cells (3×10^6 cells/ml) were plated and maintained in controlled condition. The different concentration of sample was added. After 24h incubation, the cells were scraped and taken in an eppendorf for DNA extraction. Agarose gel (0.8%) was electrophoresed for DNA containing ethidium bromide in a mini gel tank containing TAE buffer for 1 hour under 90 V. Then the gel was examined under UV transilluminator (Biorad) and photographed.

2.9 Tested strains

Pure cultures of microbes were obtained from Center for Advanced studies in Botany, University of Madras, and Chennai. Two gram negative organisms suspension (*Escherichia coli* and *Klebsiella pneumonia*) and two gram

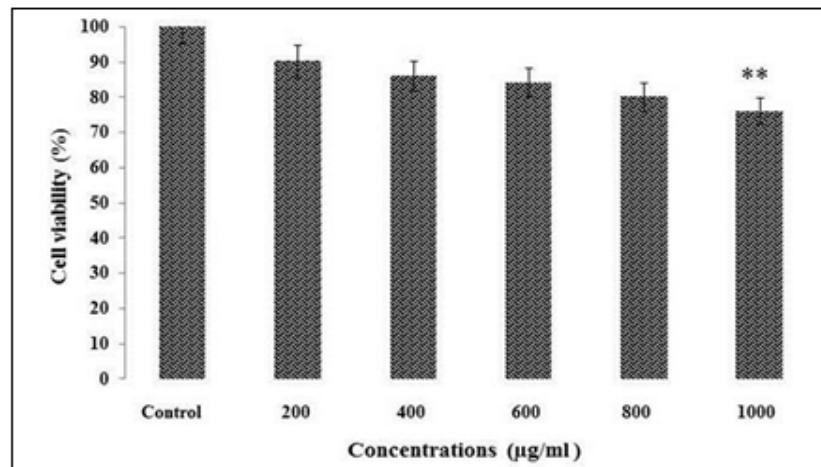
positive organisms suspension (*Staphylococcus aureus* and *Bacillus subtilis*) were taken for the antibacterial activity using well diffusion method. The optical density of each bacterial suspension was adjusted to 0.5 OD using saline (0.9%) at 570nm. (UV-VIS Shimadzu160)

2.10 Antibacterial activity

The nutrient agar medium was prepared as per required volume. Then the medium is transferred into the petri plates and allowed to solidify. Then the bacterial suspension of 0.5 McFarland (1.5×10^8 CFU/ml) was prepared and bacterial strains from this prepared suspension was used to streak for confluent growth on the surface of agar plate with sterile swab. Then four well were cut using well-cutter of diameter 6 mm. The concentration of 20 µl from stock solution of mucus 10 mg/ml was added into the first well and the second well, the positive control of gentamycin was added to the third well and the negative control of sample buffer was added into the fourth well. The Petri plates were then incubated in incubator at 37°C for 12 h. The results were noted by measuring the zone of inhibition surrounding the well by well diffusion method²¹.

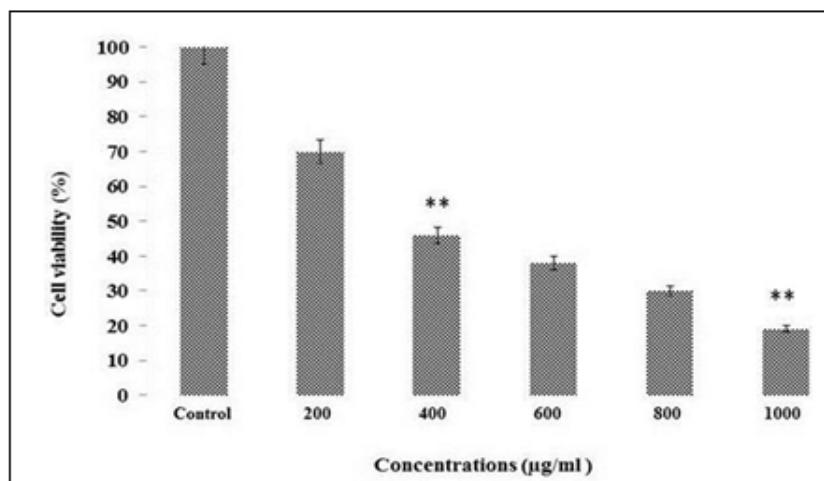
2.11 Haemolytic activity

The haemolytic activity of epidermal mucus on various blood samples such as chicken, goat, cow, rat, rabbit and human RBCs²² were determined. The sample was prepared in different concentrations. The 1% RBC suspension of 10 µL was added to each tube. The eppendorf was gently shaken and incubated for two hours at room temperature. The results were indicated as Uniform red color suspension, which was considered as positive haemolysis and a button formation in the bottom of the tube was considered as lack of haemolysis. The absorbance was measured at 540 nm.


3 STATISTICAL ANALYSIS

The data generated in this study was analyzed using one-way ANOVA (SPSS) and *p* value is less than 0.01 is considered to be significant.

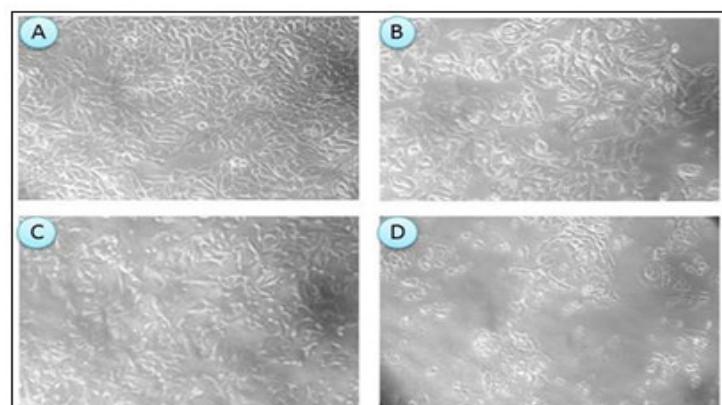
4. RESULTS


4.1 Cytotoxicity and Cell viability

Cytotoxicity and cell viability was analyzed by using Vero and HT 29 cell line followed by MTT method. Study showed the cell sustainability of Vero cells after treatment with crude mucus. It clearly demonstrated up to 80% of cells are viable at the concentration of 800 µg/ml incubation of 24 h (Graph 1). Hence the crude epidermal mucus is safe for normal cell line. The cytotoxic effect of mucus of *T. dussumieri* was tested upon colon adenocarcinoma cancer cell line HT 29. Graph indicated that decrease in the cell viability at concentration ranging from 200-1000 µg/ml of treated cells have very minimum cell death was observed. In the present study the inhibition concentration (IC₅₀) value is found to be 400 µg/ml of crude mucus at 24 h incubation (Graph 2).

The values are Mean \pm S.D. of triplicates **(P<0.01)..

Graph 1. Cytotoxic effect on vero cells treated with crude mucus extract of catfish *T. dussumieri*


The values are Mean \pm S.D. of triplicates**(P<0.01) ...

Graph 2. Cell viability assessment of crude mucus extract from catfish *T. dussumieri* on the HT 29 cells

4.2 Morphological observation

Morphological variations were observed in HT 29 cells both (control and treated) cells with crude mucus (Figure 1).

Control cells showed irregular confluent aggregates, with rounded and cell morphology. The treated cells at 24 h incubation, the polygonal cells begin to shrivel and appear spherical in shape.

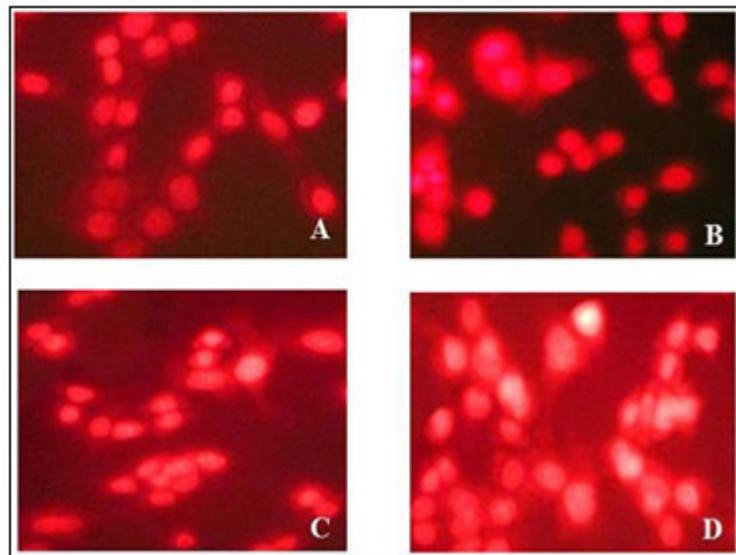

A- Control cells, B- Minimum concentration (200 μ g/ml), C- IC_{50} concentration (400 μ g/ml), D- Maximum concentration (1000 μ g/ml)

Fig 1. Morphological observation of HT 29 cells treated with crude mucus extract of *T. dussumieri*

4.2 PI staining

The method used to study the nuclear damage was done by propidium iodide staining. In the event of control cells, a very small number of cells were stained with propidium iodide. where cells treated with 400 $\mu\text{g/ml}$ of crude mucus

observed very least number of stained cells along fluorescence in the nucleus with incubation time of 24h and a progressive increase in the number of propidium iodide stained bright fluorescence occurred in nuclear condensation of cells were observed for maximum concentration (1000 $\mu\text{g/ml}$) (Figure 2).

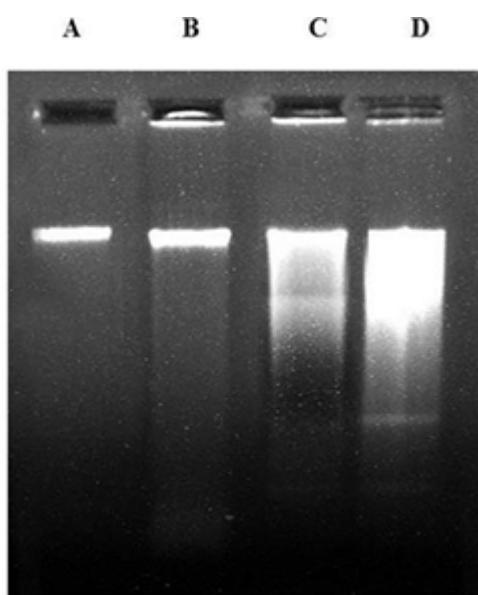

A- Control cells, B -Minimum concentration (200 $\mu\text{g/ml}$), C - IC_{50} concentration (400 $\mu\text{g/ml}$), D - Maximum concentration (1000 $\mu\text{g/ml}$)

Fig 2. Nuclear Morphological observation of HT 29 cells treated with crude mucus extract from *T. dussumieri* by propidium iodide staining

4.3 DNA fragmentation assay

DNA fragmentation assay was done to confirm whether the cytotoxic induced by extracted crude mucus of *T. dussumieri* involves nuclear damage which leads to be an apoptotic changes and this can be detected by this DNA fragmentation assay. Treatment with the crude mucus protein (Figure 3) displayed DNA bands from the control

group of HT29 cells remained intact where as the treated cells appeared as fragments and streaks were observed. These results indicated that crude mucus could induce apoptosis in HT29 cells and the number of fragments increased as the concentration of mucus increased. Higher concentration has more fragmented streaking compared to IC_{50} value.

A- Control cells, B -Minimum concentration (200 $\mu\text{g/ml}$), C - IC_{50} concentration (400 $\mu\text{g/ml}$), D - Maximum concentration (1000 $\mu\text{g/ml}$)

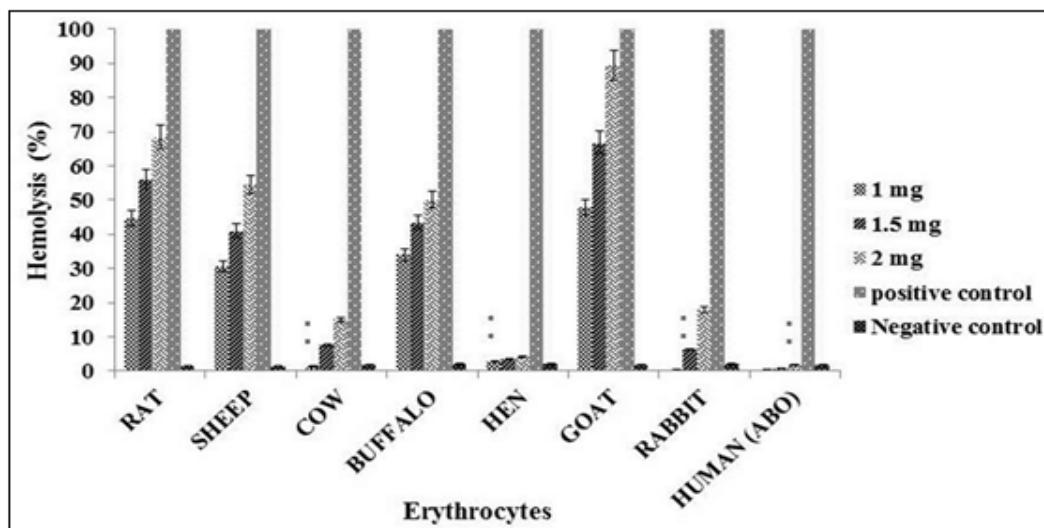
Fig 3. DNA Fragmentation of HT 29 cell line treated with crude mucus extract from *T. dussumieri*

4.4 Antibacterial activity

The antibacterial activity was confirmed by zone of inhibition formed on the bacterial culture lawn. Zone of inhibition was observed maximum against *S. aureus* (15.61 ± 0.7 mm), followed by *B. subtilis* (8.32 ± 0.32 mm) and *E. coli* ($8.14 \pm$

0.08 mm). The minimum zone of inhibition was observed in *K. pneumonia* (5.18 ± 0.16 mm). The inhibition zone indicating antibacterial activity of epidermal mucus of *T. dussumieri* (Table. 1) showed antibacterial activity of epidermal mucus on gram negative and gram positive bacteria respectively.

Table 1. Zone of Inhibition (mm) indicating antibacterial activity of epidermal mucus from catfish *T. dussumieri*


Bacterial pathogens	Zone of inhibition (mm)
(Gram-negative bacteria)	
<i>E. coli</i>	8.14 ± 0.08
<i>K. pneumonia</i>	5.18 ± 0.16
(Gram-positive bacteria)	
<i>S. aureus</i>	15.61 ± 0.7
<i>B. subtilis</i>	8.32 ± 0.32

This data expressed as mean \pm standard deviation for the three discrete experiments (n=3)

4.5 Haemolytic activity

The epidermal mucus of catfish *T. dussumieri* was subjected to haemolytic activity against Rat, Sheep, Cow, Buffalo, Hen, Goat, Rabbit and Human blood. Maximum haemolysis observed against Goat (89.4%), Rat (68.4%), Sheep (54.6%)

and buffalo (50%) blood. Minimum haemolysis was seen in Rabbit (18%), Cow (15%), Hen (4.3%) and Human blood A, B and O (1.8, 1.6 and 1.9%). The percentage of haemolysis increases on increase in the concentration of sample. The comparison of haemolytic activity on different blood samples were shown in the (Figure. 4).

** Denotes degree of haemolysis of RBCs when compare to positive control Data are presented as mean \pm SD from three different experiments. Significantly different from control ** $p < 0.01$

Fig 4. Haemolytic activity of different concentration of epidermal mucus extract from *T. dussumieri* on various blood samples

5. DISCUSSION

Mucus has potential defense on microbes and cancer cells. In present study the fact that crude mucus of *T. dussumieri* has good content of protein, the quantitative and qualitative analysis of mucus has been already published in our laborator. The results on antibacterial activity suggest that the epidermal mucus was capable to inhibit microbial growth against human pathogens. Most important requirements of killing pathogens is to first allow the attraction of bacterial membranes having negative charge, and the second property allows the interaction and absorption inside bacteria antimicrobial peptides and should have the net cationic charge and the ability to take amphipathic structures²³. The skin mucus extract of two freshwater fishes *Tilapia mossambicus* and *Clarias batrachus* exhibited antibacterial

activity. The zone of inhibition for the mucus extract of *Channa batrachus* maximum was observed against *A. hydrophila* (17.52 ± 1.02 mm), *E. coli* (15.48 ± 0.56 mm), *P. aeruginosa* (14.45 ± 1.52 mm), then *P. vulgaris* (12.80 ± 0.60 mm), *K. pneumonia* (8.51 ± 0.92 mm), then *S. aureus* (10.76 ± 0.94 mm). The maximum zone of inhibition for the mucus extract of *T. mossambicus* was observed against *A. hydrophila* (12.76 ± 1.68 mm), *E. coli* (10.83 ± 1.21 mm), *P. vulgaris* (10.49 ± 0.82 mm), and *Staphylococcus aureus* (8.55 ± 0.45 mm)²⁴. In our studies, mucus of the catfish *T. dussumieri* having remarkable antimicrobial activity against *S. aureus* (15.61 ± 0.7 mm), *B. subtilis* (8.32 ± 0.32 mm), *E. coli* (8.14 ± 0.08 mm) and *K. pneumonia* (5.18 ± 0.16 mm). Haemolytic activity has been shown to be present in the mucus of various catfishes such as *A. thalassinus*²⁵, *A. bilineatus*²⁶, *P. lineatus*²⁷⁻²⁸, *P. canius*²⁹, Eels such as *Anguilla japonica*³⁰,

*Lycodontis nudivomer*³¹, Soap fishes *Pogonoperca punctata*³². Our results of haemolytic assay showed good activity in blood samples. The crude extracts of epidermal mucus showed maximum activity in goat, rat, sheep, and buffalo, whereas minimum haemolysis seen in rabbit, cow, hen and human. During drug treatment the toxicity connected with cancer specificity is lacking between the tumor and cancer cells in chemotherapy. Hence, recently many studies about natural compounds obtained from marine organisms obstruct more selectively the cancer cells than the normal cells. The different concentration of crude mucus on Vero cells showed maximum cell viability upto 800 μ g/ml. Hence the concentration was fixed between 100 to 1000 μ g/ml concentrations for HT 29 cells. Here, they determined the cell viability concentration in which the catfish crude mucus significantly inhibited growth of colon adenocarcinoma cells³³. The present study shows that catfish mucus is active against colon cancer cells. The MTT assay indicated that cytotoxin strongly inhibits HT 29 cell proliferation with an IC₅₀. The role of apoptosis study was observed with propidium iodide staining of treated and untreated cells it make to permeable in dead cells and exhibit the dead cell count of the HT 29. There was an optimum dose and time for induction of apoptosis. In our study, fluorescence red color shows the stain bind to nuclei acid of dead cells HT 29. Apoptotic cell activates the proteolytic enzymes indicating the morphological changes in cells which eventually mediate the DNA cleavage. This nuclear damage was observed by fluorescent microscopy with propidium iodide staining method. An association between apoptosis and DNA fragmentation was confirmed with several studies³⁴. A significant manner of cell death after cytotoxic treatment of drug has shown Apoptosis³⁵. In programmed cell death, cells undergo membrane blebbing, of cytoplasmic condensation through this activation of specific proteases

10. REFERENCES

1. Weinstein IB, Disorders in cell circuitry during multistage carcinogenesis the role of homeostasis. *Carcinogenesis* 2000; 21(5):857-64.
DOI: 10.1093/carcin/21.5.857
2. Alice OD, Elegbede IO. Impact and Challenges of Marine Medicine to Man and its Environment. *Poul Fish Wildl Sci.* 2016;4(160):2.
DOI: 10.4172/2375-446X.1000160
3. Dunlap WC, Battershill CN, Liptrot CH, Cobb RE, Bourne DG, Jaspars M, Long PF, Newman DJ. Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. *Methods.* 2007 Aug 1;42(4):358-76.
DOI: 10.1016/j.ymeth.2007.03.001
4. Ellis AE. Non-specific defence mechanisms in fish and their role in disease processes. *Dev. Biol. Stand.* 1981;49:337-52.
5. Wu HC, Chen HM, Shiao CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (*Scomber austriasicus*). *Food research international.* 2003 Jan 1;36(9-10):949-57.
DOI: 10.1016/S0963-9969(03)00104-2
6. Jung WK, Kim SK. Isolation and characterization of an anticoagulant oligopeptide from blue mussel, *Mytilus edulis*. *Food chemistry.* 2009 Dec 15;117(4):687-92.
DOI: 10.1016/j.foodchem.2009.04.077
7. Lee SH, Qian ZJ, Kim SK. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. *Food Chemistry.* 2010 Jan 1;118(1):96-102.
DOI: 10.1016/j.foodchem.2009.04.086
8. Arulvasu C, Selvamathi S, Babu G, Dhanasekaran G. Effect of crude and partially purified epidermal mucus proteins of marine catfish *Tachysurus dussumieri* on human cancer cell line. *JASR.* 2012;1(4):164-9.
9. Subramanian S, Ross NW, MacKinnon SL. Comparison of antimicrobial activity in the epidermal mucus extracts of fish. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology.* 2008 May 1;150(1):85-92.
DOI: 10.1016/j.cbpb.2008.01.011
10. Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW. Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.* 2002 Jul 1;132(3):645-57.
DOI: 10.1016/S1095-6433(02)00109-5
11. Martínez-Antón A, Debolos C, Garrido M, Roca-Ferrer J, Barranco C, Alobid I, Xaubet A, Picado C, Mullol J. Mucin genes have different expression patterns in healthy and diseased upper airway mucosa. *Clinical & Experimental Allergy.* 2006 Apr;36(4):448-57.
DOI: 10.1111/j.1365-2222.2006.02451.x

alter the genome which turned into smaller apoptotic bodies³⁶. In this process of apoptosis, the unwanted or dysfunctional cells had been expelled³⁷.

6. CONCLUSION

The present investigation revealed that the epidermal mucus possesses anticancer (Human colon adenocarcinoma cells) and antibacterial properties (gram positive and negative bacteria). The haemolytic activity results showed that the epidermal mucus does not explore significant haemolysis on all human RBCs. Thus crude mucus can be considered for further investigation on effective and safe discovery of novel drug through purification and structural identification.

7. ACKNOWLEDGEMENT

Authors thank for the financial assistance by URF fellowship, University of Madras (GCCO/URF/RK/ZD/URF-Extension/2019-20/778 DATED 1st NOV 2019)

8. AUTHOR CONTRIBUTION STATEMENT

The framework for this study and subsequent data collection and processing was done by Ms.R. Kavitha. Mr. Tharun Kumar aided in the collection of animal and performed the antibacterial study. The statistical analysis was done by Ms. Gracy Jenifer, Mr.Deepakrajasekar and Mr. Kathirvel Neelan. Valuable input for the compilation of this work was provided by Dr.C.Arulvasu.

9. CONFLICT OF INTEREST

Conflict of interest declared none.

12. Agarwal SK, Banerjee TK, Mittal AK. Physiological adaptation in relation to hyperosmotic stress in the epidermis of a fresh-water teleost Barbus sophor (Cypriniformes, Cyprinidae): a histochemical study. *Zeitschrift fur mikroskopisch-anatomische Forschung*. 1979;93(1):51-64.
13. Rosen MW, Cornford NE. Fluid friction of fish slimes. *Nature*. 1971 Nov;234(5323):49. DOI: 10.1038/234049a0
14. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. *The Journal of clinical investigation*. 2002 Mar 1;109(5):571-7.
15. Esimone CO, Ibezim EC, Chah KF. The wound healing effect of herbal ointments formulated with Napoleona imperialis. *Journal of Pharmaceutical and Allied Sciences*. 2006;3(1):294-9.
16. Kenechukwu FC, Umeyor CE, Momoh MA, Ogbonna JD, Chime SA, Nnamani PO, Attama AA. Evaluation of gentamicin-entrapped solid lipid microparticles formulated with a biodegradable homolipid from Capra hircus. *Tropical Journal of Pharmaceutical Research*. 2014;13(8):1999-205.
17. Manthey JA, Guthrie N, Grohmann K. Biological properties of citrus flavonoids pertaining to cancer and inflammation. *Current medicinal chemistry*. 2001 Feb 1;8(2):135-53. DOI: 10.2174/0929867013373723
18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *Journal of immunological methods*. 1983 Dec 16;65(1-2):55-63.
19. Keum YS, Kim J, Lee KH, Park KK, Surh YJ, Lee JM, Lee SS, Yoon JH, Joo SY, Cha IH, Yook JL. Induction of apoptosis and caspase-3 activation by chemopreventive [6]-paradol and structurally related compounds in KB cells. *Cancer letters*. 2002 Mar 8;177(1):41-7. DOI: 10.1016/S0304-3835(01)00781-9
20. Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. *Trends in cell biology*. 1995 Jan 1;5(1):21-6. DOI: 10.1016/S0962-8924(00)88932-1
21. Adegoke AA, Iberi PA, Akinpelu DA, Aiyegoro OA, Mboto CI. Studies on phytochemical screening and antimicrobial potentials of Phyllanthus amarus against multiple antibiotic resistant bacteria. *International Journal of Applied Research in Natural Products*. 2010 Sep;3(3):6-12.
22. Manivasagan P, Annamalai N, Ashokkumar S, Sampathkumar P. Studies on the proteinaceous gel secretion from the skin of the catfish, Arius maculatus (Thunberg, 1792). *African Journal of Biotechnology*. 2009;8(24).
23. Chen L, Shen Z, Wu J. Expression, purification and in vitro antifungal activity of acidic mammalian chitinase against *Candida albicans*, *Aspergillus fumigatus* and *Trichophyton rubrum* strains. *Clinical and Experimental Dermatology: Experimental dermatology*. 2009 Jan;34(1):55-60. DOI: 10.1111/j.1365-2230.2008.03092.x
24. Elavarasi K, Ranjini S, Rajagopal T, Rameshkumar G, Ponmanickam P. Bactericidal proteins of skin mucus and skin extracts from fresh water fishes, *Clarias batrachus* and *Tilapia mossambicus*. *Thai J. Pharm. Sci.* 2013 Oct 1;37:194-200.
25. Thulesius OL, Al-Hassan JM, Criddle RS, Thomson M. Vascular responses elicited by venom of Arabian catfish (Arius thallasinus). *General pharmacology*. 1983;14(1):129-32. DOI: 10.1016/0306-3623(83)90081-2
26. Thomson M, Al-Hassan JM, Al-Saleh J, Ali M. Purification of a toxic factor from Arabian Gulf catfish epidermal secretions. *Toxicon*. 1998 Jun 1;36(6):859-66. DOI: 10.1016/S0041-0101(97)00172-4
27. Shiomi K, Takamiya M, Yamanaka H, Kikuchi T, Konno K. Haemolytic, lethal and edema-forming activities of the skin secretion from the oriental catfish (*Plotosus lineatus*). *Toxicon*. 1986 Jan 1;24(10):1015-8. DOI: 10.1016/0041-0101(86)90008-5
28. Al-Lahham A, Al-Hassan JM, Thomson M, Criddle RS. A haemolytic protein secreted from epidermal cells of the Arabian Gulf catfish, Arius thalassinus (Ruppell). *Comparative biochemistry and physiology. B, Comparative biochemistry*. 1987;87(2):321-7. DOI: 10.1016/0305-0491(87)90146-5
29. Deo AD, Venkateshvaran K, Devaraj M. Bioactivity of epidermal secretion of two marine catfish from Mumbai. *Journal of the Indian Fisheries Association*. 2008;35:97-111
30. Suzuki Y. Hemolysin and hemagglutinin in skin mucus of the Japanese eel *Anguilla japonica*. *Bulletin of the Japanese Society of Scientific Fisheries (Japan)*. 1985;51(12).
31. Randall JE, Aida K, Oshima Y, Hori K, Hashimoto Y. Occurrence of a crinotoxin and hemagglutinin in the skin mucus of the moray eel *Lycodontis nudivomer*. *Marine Biology*. 1981 May 1;62(2-3):179-84. DOI: 10.1007/BF00388181
32. Oshima Y. Comparison of grammistins from four species of grammistid fishes. *Nippon Suisan Gakkaishi*. 1974;40:223-30.
33. Ordóñez JV, Rubinstein HM, Burnett JW. Flow cytometric detection of jellyfish venom induced cytotoxicity. *Toxicon: official journal of the International Society on Toxinology*. 1990;28(7):863-7. DOI: 10.1016/s0041-0101(09)80009-3
34. Georgiou CD, Papapostolou I, Grintzalis K. Protocol for the quantitative assessment of DNA concentration and damage (fragmentation and nicks). *Nature protocols*. 2009 Feb;4(2):125. DOI: 10.1038/nprot.2008.222
35. Zhang L, Wu WT. Isolation and characterization of ACTX-6: a cytotoxic L-amino acid oxidase from *Agkistrodon acutus* snake venom. *Natural product research*. 2008 Apr 15;22(6):554-63. DOI: 10.1080/14786410701592679
36. Bedner E, Li X, Gorczyca W, Melamed MR, Darzynkiewicz Z. Analysis of apoptosis by laser scanning cytometry. *Cytometry: The Journal of the International Society for Analytical Cytology*. 1999 Mar 1;35(3):181-95. DOI: 10.1002/(SICI)10970320(19990301)35:3%3C181 ::AID-CYTO1%3E3.0.CO;2-5
37. Mercer WE. Cell cycle regulation and the p53 tumor suppressor protein. *Critical reviews in eukaryotic gene expression*. 1992;2(3):251-63.