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Abstract: Antibiotics as emerging contaminants are of global concern due to the development of antibiotic resistant genes 
potentially causing superbugs. The inefficiency of conventional purification processes in the complete removal of antibiotics 
increases the resistance of microorganisms in humans and the environment, hence new and low-cost technology is needed. 
Adsorptive materials have been extensively used for the conditioning, remediation and removal of inorganic and organic 
hazardous materials. Zirconium oxide is a widely used inorganic material which is chemically stable, non-toxic and not 
soluble in water. Thus it could be an attractive candidate for drinking water puri? cation. In this study, Zirconium Oxide 
Nanoparticles (ZrO2NP)has been used as the adsorbent for the possibility of removing Cipro? oxacin (CIP) from aqueous 
solution using the batch adsorption technique under different conditions of initial CIP concentration (25, 50, 75, 100 mg/L), 
adsorbent dose (0.1, 0.2, 0.3, 0.5, 0.7, 0.9 and 1 g/L)  and contact time (10-150 min). The percentage of CIP adsorbed 
increased with increase in the mass of the adsorbent dose from 0.1 to 1 g/L. Kinetics study for sorption was evaluated using 
diffusion models, pseudo-first order kinetic and pseudo-second order kinetic. Results show that pseudo second-order 
kinetic model gave the best description for the adsorption process. The experiments showed that the highest removal rate 
was 96.5% under optimal conditions. The sorption of CIP on ZrO2NP was rapid during the first 30 min and the equilibrium 
attained within 75 min. The results suggest that ZrO2NPcould be a good candidate to remove CIP from wastewater 
containing different amounts of antibiotic. 
 
Keywords: ZrO2NP, Adsorption, Kinetics, Cipro? oxacin, Aqueous solution 
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1. INTRODUCTION 
 
In recent years, antibiotics have been widely used to treat 
bacterial infections in humans and animals 1-2. Antibiotics are 
known as biodegradable materials. Residues of antibiotics in 
soil environments can lead to increased resistance of 
microorganisms3-4. As a broad-spectrum antibacterial, 
Ciprofloxacin (CIP) is one of the most frequently detected 
fluoroquinolone antibiotics which pose a serious threat to 
the ecosystem and human health by inducing proliferation of 
bacterial drug resistance 5, 6. Although the CIP concentration 
in the environment is low, it can induce chronic allergic 
reactions and antibiotic resistance in bacteria 7.Antibiotics are 
potentially unchanged during the activity of conventional 
wastewater treatment plants 8-9. These materials enter the 
surface and underground waters through various means. 
Therefore, the development of purification technologies in 
order to remove this pollutant is a necessity 10, 11. Adsorption 
and chemical oxidation, together with biological treatment 
and precipitation are the most popularly known methods of 
removing antibiotics from aqueous solutions 12. Other 
popularly known methods of removing antibiotics from 
aqueous solutions include distillation, solvent extraction, and 
ion exchange, as well as membrane processes, microbial fuel 
cells, reverse osmosis, and electrochemical methods 13-14. 
There has been an increase in the demand for organic 
compounds removal that includes antibiotics due to 
increasing in industrial wastewaters 15. Adsorption, a physio-
chemical process, plays a vital role in the contaminants’ 
transport and fate in engineered and natural aquatic systems 
by physical and chemical interactions16-17. Adsorption, in the 
systems of engineered treatment, is seen as a most cost-
effective treatment approach in the reduction of dissolved 
contaminants to levels that are extremely low 18. The simple 
nature of the adsorption systems makes their capital and 
operational costs, as well as their fouling problems low, 
thereby shielding them from being affected by toxic harmful 
substances 19-20. For this purpose, various adsorbents have 
been examined, including zero-valent iron, activated carbon, 
goethite, Zeolite, red mud, and fly ash.21-22 Because of their 
large surface areas and preferred surface properties, 
synthesized metal oxides at nano-size have demonstrated 
effective antibiotics adsorption23. Zirconium oxide is a widely 
used inorganic material which is chemically stable, non-toxic 
and not soluble in water24. Thus it could be an attractive 
candidate for drinking water purification. Compared with 
extensively studied oxides based on aluminum, iron and 

titanium, there are limited reports on using zirconium based 
oxides for the removal of organic compounds25, 26. There is 
no report on using nano structured ZrO2 to remove 
antibiotics from water. Due to the inefficiency of 
conventional purification processes to remove CIP antibiotic 
in hospital, urban and Pharmaceutical Industries sewage, the 
use of ZrO2NP as a new adsorbent and due to their 
excellent ability to remove various organic and inorganic 
pollutants in sewage, has attracted widespread attention. The 
purpose of this study is to investigate the use of ZrO2-NP to 
evaluate CIP adsorption potential from aqueous solutions. 
 
2. MATERIALS AND METHODS 
 
2.1 Preparation of CIP Solution  
 
This study is an applied research which is empirical and done 
on an experimental scale. All chemicals used in this study 
except Zirconium Oxide Nanoparticles, which is the product 
of Sigma Aldrich, were supplied from Merck Co., Germany. 
Ciprofloxacin (CIP) antibiotics, (C17H18FN3O3·HCl, purity 
>98%) with a molecular weight of 696.6 g/mol was purchased 
from Sigma-Aldrich and used without further purification. 
The molecular structure of Ciprofloxacin is given in Figure 
1.Stock solution of CIP was prepared by dissolving 1 g of the 
CIP in 1L of distilled water to obtain concentration of 1000 
mg/L. The serial dilutions of the stock was performed to 
obtain 25, 50, 75 and 100 mg/L. The pH of CIP solutions was 
adjusted with 0.1 M NaOH or HCL using a pH meter. 
 
2.2 Batch Adsorption Experiments 
 
Batch experiments were carried out in orbital shaker at a 
constant speed of 120 rpm at 200C in 250 mL conical flasks. 
Varied dosages (0.1, 0.2, 0.3, 0.5, 0.7, 0.9 and 1 g/L) of ZrO2-
NP, varied initial CIP concentration (25, 50, 75 and 100 mg/L) 
were used for the adsorption studies at predetermined time 
intervals (10-150 min) at fixed pH=7. The adsorbent was 
separated from the solution by centrifugation at 2000 rpm 
for 10 minutes. The residual CIP concentration after 
adsorption was determined spectrophotometrically using 
UV-Vis spectrophotometer at λmax=276 nm. The temperature 
of the solution was maintained at 20 °C. The CIP 
concentration was measured until the equilibrium reached. 
The removal efficiency (%R) of the CIP was calculated using 
the equation below 

 
 
 
 
 
Where, Co and Ce are the initial and equilibrium concentrations of CIP (mg/L), V is the volume (L) of the CIP solution used. 
 

 
 

Fig 1. The structure of CIP 
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3. RESULTS AND DISCUSSION 
 
3.1 Effect of the contact time 
 
Contact time is an important factor that affects uptake 
efficiency in batch adsorption process. Fig. 2 reveals that the 
maximum adsorption of CIP occurred at around 75 min with 
percentage removal of 96.5%. The rate of the adsorption 
process increased rapidly in the first 30 min and then grew 
more slowly as the agitation time increased beyond 30 min. 
The rapid removal of CIP at the initial stage may be 
attributed to the rapid attachment of CIP molecules to the 
surface of the adsorbent and the increased number of binding 
sites available, consequently leading to an increase in driving 
force of the concentration gradient between adsorbate in 
solution and adsorbate-adsorbent interaction 27, 28. This 

implies that the adsorption process nearly reached 
equilibrium within the first 75 min of agitation. This 
observation is similar to literature reports on the adsorption 
of CIP. 
 
3.2 Effect of the adsorbent dose 

 
The effect of adsorbent mass on the adsorption study is 
shown in Fig. 3. The figure reveals that percentage removal is 
a function of the mass of the adsorbent used. The percentage 
of CIP adsorbed increased with increase in the mass of the 
adsorbent dose. This behavior can be attributed to increased 
adsorbent surface area which invariably increases the number 
of adsorption sites available for adsorption 29, 30. Results 
similar to this have been reported by several authors 31, 32. 

 

 
 

                                      Fig 2. Effect of contact time on CIP removal by ZrO2-NP (pH =7,  
                                      C0=100 mg/L, Adsorbent dosage 1 g/L and temperature= 28±2∘C) 

 

 
 

Fig 3. Effect of adsorbent dosage on CIP adsorptionby ZrO2NP  
(C0 = 100 mg/L, contact time = 75 min, pH = 7, temperature= 28 ± 2∘C) 

 
3.3 Adsorption Kinetics  
 
A study of the kinetics of adsorption is desirable as it provides information about the mechanisms and characteristics of 
adsorption which is important for efficiency of the process. The Pseudo-first-order and Pseudo-second-order kinetic models 
were tested at different concentrations in this study to determine which model is in good agreement with experimental qe 
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(adsorption capacity) value, thus suggesting which model that the sorption system follows. The Pseudo-first-order-model can be 
expressed by following equation 32, 33 

 
 
 
 
 
Where, qe,qt (mg/g) are the masses of the CIP adsorbed at 
equilibrium (adsorptive capacity), and at any time (t), 
respectively; K1, (1/min) is the equilibrium constant of the 
pseudo-first-order adsorption. The value of K1and qeare 

determined, respectively from the slope and intercept of the 
plot of Log (qe− qt) versus t. A pseudo-second order 
equation can be expressed as follows 34-36: 

 
 

 
 
 
 

Where, K2 (mg/g.min), and qe, are rate constants and 
adsorption capacity at equilibrium, respectively. The value of 
qe is determined from the plot of t/qt versus time. The values 
for qe and K2 can be calculated from the slope and intercept. 
The two models described the adsorption data. The 
agreement between experimental data and model calculated 
values is expressed by the correlation coefficient R2. The 

results are presented in Table 1. Kinetic adsorption of CIP 
onto ZrO2-NPfits pseudo-second order model more than 
pseudo-first-order-model. The correlation coefficients R2 
indicate the applicability of these kinetic equations and the 
good agreement between the experimental and calculated 
equilibrium describes correctly the adsorption kinetics. 

 

Table 1. Parameters for CIP adsorption onto ZrO2-NP 
CIP Concentration (mg/L) 

25 50 75 100 
48.22 94.48 135.6 172.8 
11.93 28.58 37.81 69.36 
0.176 0.129 0.104 0.083 
0.891 0.874 0.869 0.848 
48.22 94.48 135.6 172.8 
41.96 89.72 129.7 166.4 
0.034 0.00145 0.0096 0.0081 
0.999 0.998 0.996 0.997 

 
 
4. CONCLUSION 
 
The effect of contact time on the CIP adsorption showed 
that the adsorption process increases with increase in 
contact time, reaching equilibrium in about 90 min. Kinetics 
of the adsorption shows that the process follows pseudo-
second-order kinetic model, indicating that the rate-limiting 
step of the process could be the chemical reaction. Kinetic 
studies also showed that the adsorption transport 
mechanism was particle-diffusion controlled for adsorption of 
metal ions onto the adsorbents. 
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