

Isolation, Screening and Identification of Cellulolytic *Streptomyces corchorusii* (Mn244066) From Soil Sample of Visakhapatnam

L.Sujatha¹and K.P.J. Hemalatha^{2*}

¹Department of Microbiology, Gayatri Vidya Parishad College for Degree and P.G courses (A), Visakhapatnam, Andhra Pradesh, India.

²Professor, Department of Biochemistry, Andhra University, Visakhapatnam, Andhra Pradesh, India.

Abstract: Fifty one isolates of cellulolytic bacteria were isolated from cow dung and two soil samples were obtained from Kambalakonda Wildlife Sanctuary and RCD Biodiversity Park in Visakhapatnam, Andhra Pradesh by Enrichment method in basal salt medium with cellulose as substrate for degradation. The cellulolytic activity of the isolated bacteria was determined by the diameter of the zone of hydrolysis by Gram's iodine dye staining method. After primary screening, a total of fifty one isolates showed cellulolytic activity. Out of fifty one strains of cellulolytic bacteria, twenty three isolates from Kambalakonda Wildlife Sanctuary, seventeen isolates from RCD Biodiversity Park and Eleven isolates from cow dung sample obtained from cattle ranch, Visakhapatnam showed cellulase activity. Seven strains showed maximum hydrolytic value greater than 4.0 cm, nineteen strains showed average hydrolytic value between 3.0 and 3.9 cm and twenty one strains showed minimum hydrolytic value between 1.5 and 2.9 cm. The potential isolates were obtained from Kambalakonda Wildlife Sanctuary and RCD Biodiversity Park than cow dung sample. The 13 C strain exhibited maximum hydrolytic value of 5.6 cm which was designated as KKVI. The strain KKVI was identified as *Streptomyces corchorusii* (MN244066) by morphological, cultural, biochemical and 16S rRNA sequence. The CMCase and FPase activity of the crude sample were examined by DNS method and found to be 0.21 U/ml and 0.041 U/ml respectively and the specific activity was 4.38 U/mg proteins and 0.86 U/mg proteins respectively. The present study emphasizes that the *Streptomyces corchorusii* have a higher cellulase activity and the soils of bio reserves have a lot of scope for isolating high cellulolytic bacteria which can be exploited for different industrial purposes.

Keywords: Bio reserves, Cellulolytic activity, Hydrolytic value, Cow dung, Soil, *Streptomyces corchorusii*.

*Corresponding Author

K.P.J. Hemalatha*, Professor, Department of Biochemistry,
Andhra University, Visakhapatnam, Andhra Pradesh, India.

Received On 15 November 2019

Revised On 10 December 2019

Accepted On 21 December 2019

Published On 03 January 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation L.Sujatha, K.P.J. Hemalatha*, Isolation, Screening And Identification Of Cellulolytic *Streptomyces corchorusii* (Mn244066) From Soil Sample of Visakhapatnam.(2020).Int. J. Life Sci. Pharma Res.10(1), L 51-59 <http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.1.L 51-59>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Cellulose is a homopolymer containing glucose residues bonded with β -1, 4 linkages and is the main structural component of the cell wall of plants and the most profusely obtained carbohydrate in nature¹. Enormous amounts of cellulosic waste obtained from agriculture, industry and municipality are accumulated or inefficiently used because of high cost during the utilization processes². Successful utilization of abundant cellulosic materials as renewable carbon sources requires the development of technologies for economic process. These technologies help in the production of cellulase that produce low molecular weight components like hexoses and pentoses by enzymatic hydrolysis of cellulosic materials³. Cellulase production was the most expensive step during ethanol production from cellulosic biomass and it accounted for approximately 40% of the total cost⁴. Most of the cellulose degradation occurring in nature is done by microorganisms with the help of a multi-enzyme complex. Cellulase is an enzyme that hydrolyzes the β -1, 4-glycosidic bonds in the polymer to release glucose units⁵. These enzymes are produced by different groups of microorganisms like fungi, bacteria, protozoa, some termites and the microbial intestinal symbionts of other termites. Cellulase enzyme system comprises three classes of soluble extracellular enzymes: 1, 4- β -endoglucanase, 1, 4- β -exoglucanase, and β -glucosidase (β -D-glucoside glucohydrolase or cellobiase). Endoglucanase randomly cleave β -1, 4-glycosidic bonds along with the homopolymer chain of cellulose. Exoglucanase is necessary for cleavage of the non reducing end of a cellulose chain and splitting of the elementary fibrils from the crystalline cellulose, and β -1, 4-glucosidase hydrolyses cellobiose and water-soluble cellobextrin to glucose⁶. The activity of the complete cellulase complex (cellobiohydrolase, endo-1,4- β -glucanase, and β -glucosidase or cellobiase) can be measured using crystalline celluloses such as cotton fiber, filter paper, or Avicel⁷. Cotton fiber or filter papers prepared from cotton fiber are considered to be the best substrates by many but some workers favour Avicel. The cellulose degrading enzymes can be efficiently used in the formulation of washing powders for extraction of juices from fruits and vegetables and for processing of starch⁸, commercial food processing in coffee, in the textile industry, laundry detergents, in the processing of pulp and paper for various purposes, and they are also used for pharmaceutical applications. Cellulases are also used in the fermentation of biomass into biofuels. Although most of the organisms can degrade cellulose but only a few of the microorganisms can produce free enzyme in large quantities which can degrade crystalline cellulose completely⁹. The actinomycetes were recorded for expansive secondary metabolite production, but very less research have been carried on hydrolytic enzyme production. Hence this study was undertaken to isolate, identify and characterize the cellulase producing *Streptomyces corchorusii* so that it can be efficiently used in the bioconversion of cellulosic waste and for industrial exploitation.

2. MATERIALS AND METHODS

2.1 Collection of soil and cow dung samples

Three soil samples from different areas of each site had been collected and mixed to analyse the overall microflora. Three cow dung samples from different cattle ranch was collected and mixed. Top soil samples (0 to 10 cm depth) were

collected in sterile polythene bags from Kambalakonda Wildlife Sanctuary and RCD Biodiversity Park in Visakhapatnam, Andhra Pradesh. The soil samples were sieved through a 2.0 mm width sterile mesh to remove stones and plant debris. Fresh cow dung sample was collected in a sterile polythene bag and brought to the lab for testing.

2.2 Isolation of cellulose degrading bacteria

One gram of collected soil samples and cow dung were suspended in labelled 9ml of sterile saline solution and uniformly mixed in a vortex. One millilitre from each sample was serially diluted upto 10^{-6} . About 0.5 ml of solution from each serial dilution was taken and spread on sterile basal salt media plates (NaNO_3 2.5 gm; KH_2PO_4 2 gm; MgSO_4 0.2 gm; NaCl 0.2 gm; $\text{CaCl}_2 \cdot 6\text{H}_2\text{O}$ 0.1 gm, agar- 15-20 gm in a litre) containing 0.2 % cellulose for the isolation of cellulolytic bacteria. This step was repeated for other two serially diluted samples. These cultures were incubated for 3-5 days at 37°C. Different colonies obtained for each sample were streaked on sterile cellulose agar media plates (KH_2PO_4 0.5 gm, MgSO_4 0.25 gm, cellulose 2.0 gm, agar 15 gm, gelatin 2 gm in 1 L, pH 6.8-7.2) to get pure cultures of Cellulose Degrading Bacteria(CDB) and analyzed for cellulose degradation.

2.3 Screening of Cellulose degrading bacteria

The pure cultures obtained native isolated colonies were streaked in a circular manner as a spot on cellulose agar medium plates. The plates were incubated at 37°C for 48 h and observed for growth. Following the incubation, the plates were flooded with Gram's iodine solution (0.133 g Potassium iodide and 0.067 g Iodine were dissolved in 20 ml distilled water) to check the cellulolytic activity and the zone of hydrolysis was observed around the line of growth and the zone of diameter was determined. The cellulose degrading bacteria can also be identified by staining the cellulose agar plate with 1% Congo red for 15- 20 min. The Congo red stain was removed and the plate was counter stained with 1M NaCl. The cellulose hydrolysis is the ratio of overall clear zone diameter to colony diameter and it is measured in order to select the highest cellulase producer¹⁰ and highest the cellulase enzyme production, greater the zone of hydrolysis for an isolate. Consequently, they were graded based on hydrolysis and the results were tabulated. Bacterial colonies were repeatedly streaked to get a purified culture. The purified cultures were preserved at 4°C for further analysis.

2.4 Identification of cellulose degrading bacteria

The potential strain was identified by morphological, cultural and biochemical characterization as per the Bergey's Manual of Systematic Bacteriology¹¹.

2.5 Morphological Characterization

The bacteria was stained by Gram staining technique and observed microscopically. Arrangement, shape and motility of bacteria were observed by performing SEM (Scanning electron microscope) analysis.

2.5 Cultural Characteristics

The bacterial isolate was cultured on selective and enrichment media like MacConkey agar medium and cellulose

agar medium respectively. The culture was examined for configuration, colour, margin, elevation, surface, texture, pigmentation and density.

2.7 Biochemical Characterization

The bacterial strain was analysed on the basis of different biochemical tests which include Indole test, Methyl Red test, Voges-Proskauer test, Citrate utilisation test, Catalase test, Oxidase test, Sugar fermentation test, Urease test, Nitrate test, Gelatin hydrolysis, Starch hydrolysis and Casein hydrolysis. The results were compared with Bergey's Manual of Determinative Bacteria¹².

2.8 Molecular characterization

The molecular analysis of the strain KKVI was authenticated by the Institute of Microbial Technology (IMTECH), Chandigarh, India. Culture was sent to IMTECH for 16s rRNA gene sequencing. Genomic DNA was isolated from the pure culture using ZR Bacterial DNA Miniprep Kit (Make Zymo Research). 16s rRNA gene was PCR amplified using universal 27 F (AGAGTTTGATCCTGGCTCAG) and 1492R (TACGGTTACCTTGTTACGACTT). PCR product was visualized on 1% Agarose gel. PCR amplicon was gel eluted and purified using QiAquick Gel extraction Kit (MakeQiagen). Purified PCR product was sequenced using Sanger DNA sequencing method. The sequences obtained were visualized and analysed using Finch TV software ver 1.4. Assembled nucleotide sequences of 16S rRNA gene were subjected to similarity using BLAST tool in EzBioCloud portal (<http://WWW.ezbiocloud.net/>) or (<https://blast.ncbi.nlm.nih.gov/>). The sequence was analysed for homology and submitted to NCBI GenBank to get accession number. The Phylogenetic analysis was performed to check the evolutionary relationships with the program MEGA 7¹³.

2.9 Production of cellulase enzyme

The isolate which showed maximum zone of hydrolysis was

$$\text{Enzyme activity (U/ml)} = \frac{\text{Amount of glucose produced (mg)}}{0.18 \times \text{volume of enzyme} \times \text{incubation time for reaction}}$$

2.11 Protein determination

Protein concentration of crude enzyme was determined using Lowry method with bovine serum albumin (BSA) as a standard¹⁵.

3. STATISTICAL ANALYSIS

All the values presented in the study are the mean \pm SEM of three replicates for each test. The statistical analysis was performed using SPSS (Statistical Package for the Social Sciences) software and the significant difference was found to be $P < 0.01$.

4. RESULTS AND DISCUSSION

Cellulose is the major fraction of organic carbon present in soil which is mostly obtained from plants. Microorganisms, which live in soil, are accountable for the recycling of soil organic carbon to the environment. Degradation of cellulosic

cultured for production of cellulase by submerged fermentation in Basal salt medium (NaNO_3 2.5 gm; KH_2PO_4 2 gm; MgSO_4 0.2 gm; NaCl 0.2 gm; $\text{CaCl}_2 \cdot 6\text{H}_2\text{O}$ 0.1 gm in a litre) containing 0.2% cellulose (pH 7.2) and incubated at 37°C at 150 rpm in a shaker incubator for 48 hrs. Broth culture after two days of incubation period was filtered through whatman filter paper and the filtrate was subjected to centrifugation at 10000 rpm for 10 min at 4°C. The Supernatant was collected and stored as crude enzyme preparation at 4°C for further enzyme assays.

2.10 Enzyme activity assay

Cellulase activity was measured by a DNS method by determining reducing sugars liberated from CMC and Filter paper¹⁴. The supernatant was then used as crude enzymesample to assay the activity of carboxymethylcellulose (CMCase) and total cellulose activity (FPase). CMCase (Endoglucanase) activity was assayed by measuring the amount of reducing sugar from CMC. This activity was determined by incubating 0.5 ml of supernatant with 0.5 ml of 1% CMC in 0.05 M phosphate buffer (pH 7) at 50°C for 30 min. FPase (Exoglucanase, Total cellulase activity)was assayed by measuring the amount of reducing sugar from filter paper. The activity was determined by incubating 0.5 ml of supernatant with 1.0 ml of 0.05 M phosphate buffer (pH 7) containing Whatman no.1 filter paper strip—1.0 \times 6.0 cm (50 mg) at 50°C for 1 hour. Similarly, the glucose standards(0.2-2 mg of glucose per ml) and controls were prepared. The reaction was terminated after incubation by adding 3 mL of 3, 5-dinitrosalicylic acid (DNS) reagent to 1 ml of reaction mixture. All the tubes were boiled in water bath for 10 min. After cooling, the reducing sugar present in the samples were estimated spectrophotometrically at 540 nm (Shimadzu, UV-1800). Cellulase production was estimated by using glucose calibration curve. The enzymatic activity of total FPCase and CMCase (Endoglucanase) were defined in international units. One unit of enzymatic activity is defined as the amount of enzyme that releases 1 μmol reducing sugar (glucose) per ml per minute.

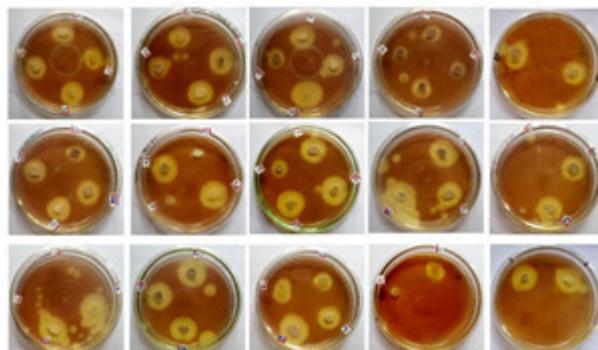
materials is a complex process and requires participation of microbial cellulolytic enzymes. Habitats in which these substrates are present are the best sources for isolation of cellulolytic microorganisms¹⁶. As the bioreserves are the source of efficient cellulolytic bacteria which can produce significant quantities of free enzyme capable of completely hydrolyzing crystalline cellulose, the present study was undertaken to isolate, identify and characterize the cellulase producing bacteria.

4.1 Isolation of cellulose degrading bacteria

In the present study, sixty three bacterial isolates were isolated from two soil samples and cow dung by serial dilution plating method. Depending on the morphological characteristics, the mixed isolates were identified and streaked on sterile cellulose Agar medium to get pure cultures. From these, twelve isolates were not considered due to colonial and morphological similarities. Fifty one strains were used for further analysis. Out of fifty one strains,

twenty three isolates were from Kambalakonda Wildlife Sanctuary, Seventeen isolates from RCD Biodiversity Park

and eleven isolates from cow dung was isolated and the results were tabulated in Table I.


Table 1. Details of the bacterial strains isolated from different samples

S.No	Source of sample	Bacterial strains
1.	Soil sample from Kambalakonda Wildlife Sanctuary	1a, 1c, 2a, 2b, 3b, 3c, 3d, 4b, 5a, 5b, 5d, 6a, 7a, 8b, 8c, 9b, 9c, 10a, 11a, 11b, 12a, 13a, 13c
2.	Soil sample from RCD Biodiversity Park	14a, 14b, 15a, 15b, 15c, 15d, 16a, 16b, 16c, 17a, 17b, 18b, 18a, 19a, 19b, 20a, 20b
3.	Cow dung sample	3, 4, 5, 8, 10, 11, 12, 13, 14, 20, 23

4.4 Screening of cellulose degrading bacteria

The 51 bacterial isolates were primarily screened for cellulase production on cellulose agar media. After incubation, the plates were stained with Gram's iodine solution. All the fifty one strains showed cellulose hydrolysis but they varied in their activity. The twenty plates showing Grams iodine staining with zone of clearance are shown in Figure 1. The cellulase producing bacterial strains was identified by the zone of clearance or hydrolysis. All the fifty one strains were graded based on their hydrolysis and the results were tabulated in Table 2. Four strains showed very negligible activity and seven strains showed maximum clear zone around the colony with diameter greater than 4.0 cm.

nineteen strains showed average clear zone around the colony with diameter between 3.0 and 3.9 cm and twenty one strains showed minimum clear zone around the colony with diameter between 1.5 and 2.9 cm. The isolate which showed maximum zone of hydrolysis was 13 C and it was designated as KKVI and it was further analysed for identification. The zone of hydrolysis values obtained were similar to the range reported by Pratima et al. and Hatami et al.^{16,17} who found the hydrolytic value between 28 to 50mm and 4.3 to 9.0 cm for the isolates obtained from macerated gut of termites, book worm, snail, and Caterpillar and lesser hydrolytic value between 1.38 to 2.33 and 0.15 to 13.7 cm of cellulolytic aerobic bacterial isolates from farming and forest soil respectively.

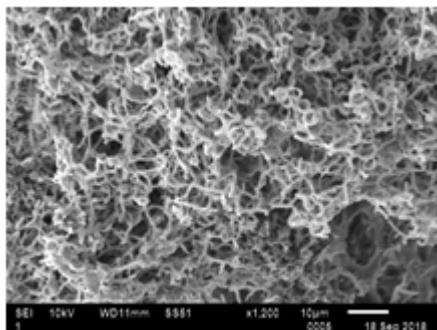
Fig 1. Zone of cellulose utilization indicated by the hydrolysis of cellulose in cellulose agar medium after staining with Gram's iodine.

Table 2. Comparison of zone of hydrolysis of different bacterial isolates on cellulose agar medium after staining with Gram's iodine.

S.No	Bacterial strain	Clear zone diameter (cm)	colony diameter (cm)	Hydrolytic value (cm)
1	1a	2.3	0.9	2.6
2	1c	0.1	0.2	0.5
3	2a	2.4	0.9	2.7
4	2b	2.5	0.6	4.2
5	3b	2.6	0.8	3.3
6	3c	1.9	0.6	3.2
7	3d	2.2	0.8	2.8
8	4b	2.6	0.7	3.7
9	5a	2.1	0.7	3.0
10	5b	1.7	0.6	2.8
11	5d	2.8	0.6	4.7
12	6a	3.1	0.8	3.9
13	7a	1	0.6	1.7
14	8b	2.8	0.7	4.0
15	8c	1.2	0.7	1.7
16	9b	1.8	0.6	3.0
17	9c	1.2	0.6	2.0
18	10a	2.4	0.9	2.7

19	11a	2.3	0.9	2.6
20	11b	2.1	1	2.1
21	12a	2.6	0.8	3.3
22	13a	2	0.8	2.5
23	13c(KKVI)	2.8	0.5	5.6
24	14a	2.4	0.5	4.8
25	14b	2.2	0.5	4.4
26	15a	2.1	0.7	3.0
27	15b	1.8	0.7	2.6
28	15c	2.6	0.9	2.9
29	15d	1.8	0.7	2.6
30	16a	2.9	0.6	4.8
31	16b	1.8	0.7	2.6
32	16c	2.3	0.7	3.3
33	17a	2.1	0.7	3.0
34	17b	2.4	1	2.4
35	18a	2.3	0.8	2.9
36	18b	2.5	0.9	2.8
37	19a	2.1	1.1	1.9
38	19b	2.1	0.6	3.5
39	20a	2.8	0.8	3.5
40	20b	3	1	3.0
41	3	2.7	0.7	3.9
42	4	2.6	0.5	5.2
43	5	-	-	No Zone
44	8	2.4	0.6	4.0
45	10	2.4	0.7	3.4
46	11	-	-	No Zone
47	12	0.2	0.3	0.7
48	13	1.7	0.7	2.4
49	14	2.4	0.7	3.4
50	20	2.6	0.8	3.3
51	23	1.7	0.8	2.1

Hydrolytic Value= Clear zone diameter/Colony diameter


4.3 Identification of cellulose degrading bacteria

4.3.1 Morphological, Cultural and Biochemical Identification

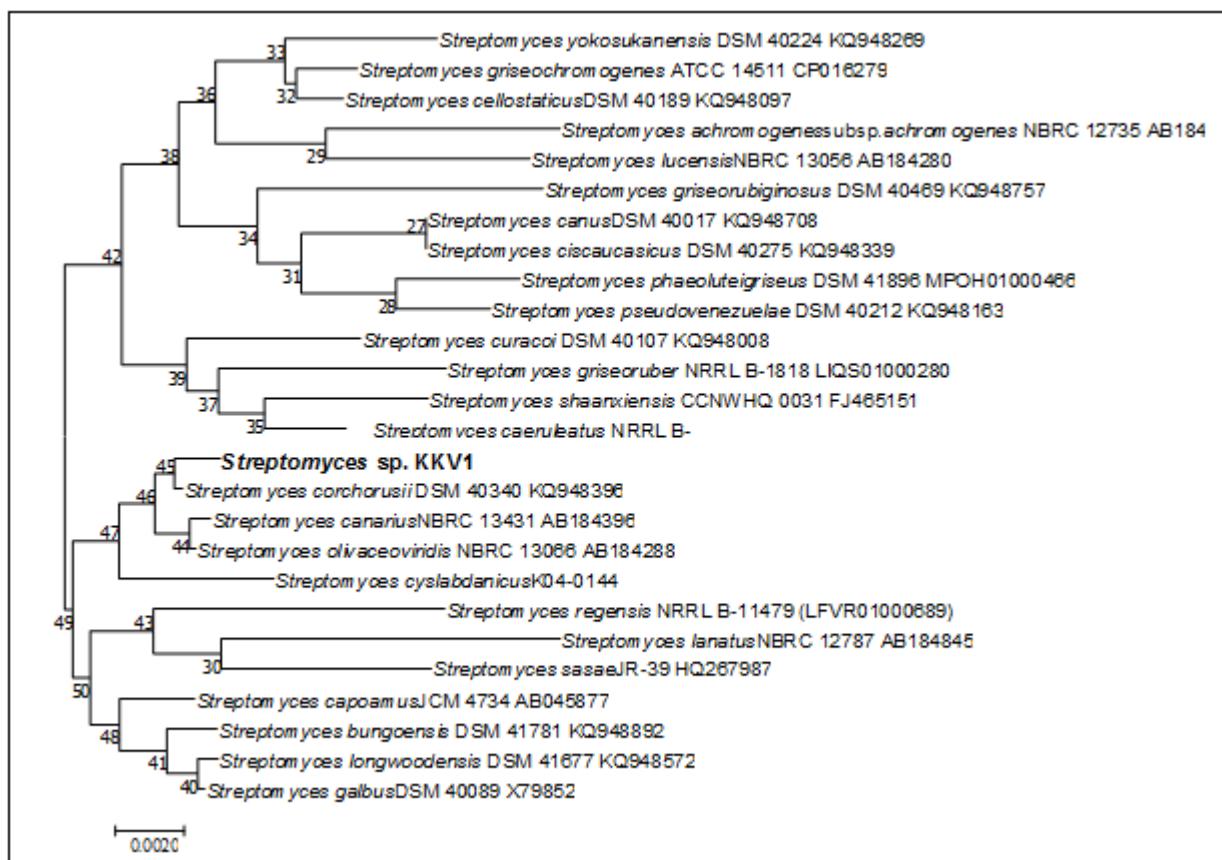
The morphological and cultural characteristics were studied by growing the potential bacterial strain (KKVI) on cellulose agar medium. The colony morphology of the 13 C strain was shown in Figure 2 and SEM analysis was given in Figure 3.

Fig 2. Colony morphology of Pure culture of 13C strain grown on cellulose Agar medium

Fig 3. SEM image of 13C strain

The biochemical characterization for KKVI strain was done and the results were analysed. The colony of KKVI on cellulose agar medium was observed in green at the centre with white margin in color, surface was powdery, margin was entire, flat and round with opaque density at 37°C and no growth was observed on MacConkey agar medium. Microscopic examination of this isolate revealed that it was gram positive, non motile with highly branched chains of hyphae. It showed negative results for indole production, methyl red test, VogesProskauer test, starch hydrolysis, gelatin hydrolysis, oxidase test, H₂S gas production, urease test and positive for citrate test, catalase, casein test, nitrate reduction and esculine hydrolysis. It could ferment glucose, fructose, salicin, mannitol, raffinose, sucrose, maltose and arabinose.

4.3.2 Molecular characterization


Based on the 16s rRNA gene sequencing (Figure-4) and Phylogenetic tree analysis (Figure -5) authenticated by IMTECH, Chandigarh, India, the strain KKVI showed highest homology (99.85 %) with *Streptomyces corchorusii*. The 16S rRNA sequence was submitted to NCBI Genbank with Accession Number - MN244066. The evolutionary history was inferred using the Neighbor-Joining method¹⁸. The analysis involved 26 nucleotide sequences. The evolutionary distances were computed using the Maximum Composite Likelihood method¹⁹ and are in the units of the number of base substitutions per site. The strain KKVI was in the same cluster of phylogenetic tree with different strains of *Streptomyces corchorusii*.

```

ACTTCGGTGGGGATTAGTGGCGAACGGGTGAGTAACACGTGGCAATCTGCCCTCACTCTGGG
ACAAGCCCTGGAAACGGGGTCTAATACCGGATACCACTCTCGCAGGCATCTGTGAGGGTTGAAA
GCTCCGGCGGTGAAGGATGAGCCCGCGGCCTATCAGCTTGTGGTGAGGTAATGGCTACCAAG
GCGACGACGGGTAGCCGGCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAAG
CTCCTACGGGAGGCAGCAGTGGGAATATTGCACAATGGCGCAAGCCTGATGCAGCGACGCC
GCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTCAGCAGGAAGAACGAAAGTGACG
GTACCTGCAGAAGAACGCCCCGCTAAACTACGTGCCAGCAGCCGGTAATACGTAGGGCGCAA
GCGTTGTCCCGAATTATTGGCGTAAAGAGCTGTAGGCCGGCTGTACCGTCGGGTGTGAAAGC
CCGGGGCTTAACCCGGGCTGCATTGATACGGCTAGCTAGAGTGTGGTAGGGGAGATCGGA
ATTCCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCT
CTGGGCCATTACTGACGCTGAGGAGCGAAAGCGTGGGAGCGAACAGGATTAGATACCCCTGGT
AGTCCACGCCGTAAACGGTGGGAACTAGGTGTTGGCGACATTCCACGTCGTCGGTCCCGCAGCT
AACGCATTAAGTCCCCGCTGGGAGTACGGCCGCAAGGCTAAACTCAAAGGAATTGACGG
GGGCCCGCACAAGCAGCGGAGCATGTGGCTTAATCGACGCAACCGAAGAACCTTACCAAGG
CTTGACATACACCGAAAACCCCTGGAGACAGGGTCCCCCTGTGGTCGGTGTACAGGTGGTGCA
TGGCTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTGTCC
TGTGTTGCCAGCATGCCCTTCGGGTATGGGACTCACAGGAGACCGCCGGGTCAACTCGGA
GGAAGGTGGGAGCGACGTCAAGTCATCATGCCCTTATGTCTTGGCTGCACACGTGCTACAAT
GGCCGGTACAAAGAGCTGCGATACCGTGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCAGTTC
GGATTGGGGTCTGCAACTCGACCCCCTGAAGTCGGAGTTGCTAGTAATCGCAGATCAGCATTG
TGCGGTGAATACGTTCCCAGGCTTGTACACACCGCCGTCACGTCACGAAAGTTGGTAACAC
CCGAAGCCGGTGGC

```

Fig 4 .16S rRNA gene sequence of strain KKVI

Fig 5. Phylogenetic tree showing evolutionary relationships with nearest *Streptomyces* species.

The genus *Streptomyces* is known for its novel bioactive compounds and has been also previously explored to detect cellulases (endoglucanases, exoglucanases, cellobiases)²⁰⁻²², although in the majority of the studies *Streptomyces* have been investigated for its well-known hemicellulase production ability²³⁻²⁵. Recently, one gene from *Streptomyces coelicolor* A3(2), recombinantly expressed in *Streptomyces lividans* TK24, was discovered to encode a protein with strong hydrolyzing activity toward Avicel and filter paper, yielding cellobiose as the final product and moderate activity toward CMC (~0.4 U mL⁻¹)²⁶. Noura El-Ahmady El-Naggaret al., (2014)²⁷ tested the culture supernatant from submerged fermentation of *Streptomyces albogriseolus* subsp. *cellulolyticus* under optimized conditions for the production of endoglucanase that release reducing sugars from agro-industrial residues as substrates.

4.3.3 Enzyme activity assay

The cellulase was produced by submerged fermentation in Basal salt medium containing 0.2% cellulose (pH 7.2) at 37°C at 150 rpm in a shaker incubator for 48 hrs. The filtrate was centrifuged at 10000 rpm for 10 min at 4°C and the supernatant was used as crude enzyme. The crude enzyme was utilised to determine the CMCase and FPase activities by DNS method with glucose as standard. The CMCase and FPase activities of the crude sample were found to be 0.21 U/ml and 0.041 U/ml respectively. The specific activities of CMCase and FPase of the crude enzyme were 4.38 U/mg protein and 0.86 U/mg protein respectively. Previous workers reported that when CMC was used as the substrate for enzyme activity, the activity was highest. It is assumed that this is due to the less complexity when compared to other cellulosic substrates⁷. The CMCase

activity and FPase activity are in agreement with previous studies, who reported that CMCase activity is greater than FPase activity^{6,28,29} and the activity reported in this study is higher than that exhibited by some isolates^{6,16,22}.

4.3.4 Protein determination

Protein concentration of crude enzyme sample was determined by the Lowry method (1951) with bovine serum albumin (BSA) as a standard and it was found to be 0.048 mg/ml.

5. CONCLUSION

In the present study the potential strain was isolated from Kambalakonda Wildlife Sanctuary, Visakhapatnam by enrichment technique in basal medium with cellulose. The strain is characterized by morphological, cultural, biochemical and molecular analysis. The 16s rRNA sequence showed 99.85% similarity with *Streptomyces corchorusii*. The cellulase was produced by submerged fermentation and filtered to get the filtrate which was used as crude sample for assaying enzyme activity. The enzyme activity for CMCase and FPase activities were assayed by DNS method. The CMCase and FPase activities of the crude sample obtained after fermentation were found to be 0.21 U/ml and 0.041 U/ml and the specific activities were 4.38 U/mg protein and 0.86 U/mg protein respectively. The protein concentration of the crude enzyme sample was found to be 0.048 mg/ml. To our knowledge, this is the first report on functional cellulase enzyme obtained from *Streptomyces corchorusii* and also from Visakhapatnam by using crystalline cellulose as substrate for fermentation. Further this strain has to be optimized for the production of cellulase in large scale by fermentation

technology and purification strategies has to be carried out to obtain the enzyme so that it can be efficiently used for research and industrial purposes.

6. ACKNOWLEDGEMENT

The authors are grateful to the Principal, the Director and the Management of Gayatri Vidya Parishad College for Degree and P.G Courses (A), Visakhapatnam for permitting and providing facilities to carry out the research work.

9. REFERENCES

- Saha S, Roy RN, Sen SK, Ray AK. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, *Oreochromismossambica* (Peters) and grass carp, *Ctenopharyngodonidella* (Valenciennes). *Aquaculture Research*. 2006 Mar;37(4):380-8. DOI: 10.1111/i.1365-2109.2006.01442.x
- Lee SM, Koo YM. Pilot-scale production of cellulase using *TrichodermaReesei* rut C-30 fed-batch mode. *Journal of Microbiology and Biotechnology*. 2001;11(2):229-33. Available from: <http://www.koreascience.or.kr/article/JAKO200111920817053.page>
- Miyamoto K, editor. Renewable biological systems for alternative sustainable energy production. Food & Agriculture Org.; 1997. Available from: <http://agris.fao.org/agris-search/search.do?recordID=XF1998080893>
- Spano L, Allen A, Tassinaris T, Mandels M, Ryu DD. Reassessment of economic of cellulose process technology for production of ethanol from cellulose. In Proc. Second Fuels from Biomass Symp. 1978 Jun 20 (pp. 671-684).
- Nishida Y, Suzuki KI, Kumagai Y, Tanaka H, Inoue A, Ojima T. Isolation and primary structure of a cellulase from the Japanese sea urchin *Strongylocentrotusnudus*. *Biochimie*. 2007 Aug 1;89(8):1002-11. DOI: 10.1016/j.biochi.2007.03.015
- Gupta P, Samant K, Sahu A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. *International journal of microbiology*. 2012 Jan 18;2012. DOI: 10.1155/2012/578925
- Wood TM, Bhat KM. Methods for measuring cellulase activities. In *Methods in enzymology* 1988 Jan 1 (Vol. 160, pp. 87-112). Academic Press. DOI: 10.1016/0076-6879(88)60109-1
- Camassola M, Dillon AJ. Production of cellulases and hemicellulases by *Penicilliumechinulatum* grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. *Journal of Applied Microbiology*. 2007 Dec;103(6):2196-204. DOI: 10.1111/i.1365-2672.2007.03458.x
- Koomnok C. Selection of cellulase producing thermophilic fungi. In *Proceedings of the 31st Congress on Science and Technology of Thailand of Technology* 2005 Oct. Suranaree University. Available from: <http://www.oalib.com/references/14456754>
- Gohel HR, Contractor CN, Ghosh SK, Braganza VJ. A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxy Methyl Cellulose (CMC) agar plates. *Int J Curr Microbiol App Sci*. 2014;3:261-6. Available from: <https://www.ijcmas.com/vol-3-5/Hardik%20R.%20Gohel,%20et%20al.pdf>
- Creig RN, Holt GL. *Bergey's Manual of Systematic Bacteriology*. 1984. Williams and Wilkins, London. Available from: <https://www.worldcat.org/title/bergeys-manual-of-systematic-bacteriology/oclc/9042846>
- Buchanan RE, Buchanan RE, Gibbons NE. *Bergey's Manual of Determinative Bacteriology*. William's and Wilkins Company; 1970. DOI: 10.2307/1218353
- Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular biology and evolution*. 2016 Mar 22;33(7):1870-4. DOI: 10.1093/molbev/msw054
- Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. *Analytical chemistry*. 1959 Mar 1;31(3):426-8. DOI: 10.1021/ac60147a030
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. *Journal of biological chemistry*. 1951;193:265-75. Available from: <http://www.jbc.org/content/193/1/265.full.pdf>
- Das A, Bhattacharya S, Murali L. Production of cellulase from a thermophilic *Bacillus* sp. isolated from cow dung. *AM Eurasian J Agric Environ Sci*. 2010;8:685-91.
- Hatami S, Alikhani HA, Besharati H, Salehrastin N, Afrousheh M, Yazdani ZJ, Jahromi Z. Investigation on aerobic cellulolytic bacteria in some of north forest and farming soils. *American-Eurasian J Agric& Environ Sci*. 2008;3(5):713-6.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular biology and evolution*. 1987 Jul 1;4(4):406-25. DOI: 10.1093/oxfordjournals.molbev.a040454.
- Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proceedings of the National Academy of Sciences*. 2004 Jul 27;101(30):11030-5. DOI: 10.1073/pnas.0404206101
- Alani F, Anderson WA, Moo-Young M. New isolate of *Streptomyces* sp. with novel thermoalkalotolerant cellulases. *Biotechnology Letters*. 2008 Jan 1;30(1):123-6. DOI: 10.1007/s10529-007-9500-9
- Hsu CL, Chang KS, Lai MZ, Chang TC, Chang YH, Jang HD. Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing *Streptomyces* for bioethanol production. *Biomass and bioenergy*. 2011 May 1;35(5):1878-84. DOI: 10.1016/j.biombioe.2011.01.031

7. AUTHORS CONTRIBUTION STATEMENT

Mrs Sujatha L performed the experiments, conceptualized, gathered and analyzed the data. Prof. K.P.J. Hemalatha has given necessary inputs in designing the manuscript. Both the authors discussed the methodology and results and contributed to the final manuscript.

8. CONFLICT OF INTEREST

Conflicts of interest declared none.

22. Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V. Cloning and recombinant expression of a cellulase from the cellulolytic strain *Streptomyces* sp. G12 isolated from compost. *Microbial cell factories*. 2012 Dec;11(1):164. DOI: 10.1186/1475-2859-11-164

23. Beg QK, Bhushan B, Kapoor M, Hoondal GS. Production and characterization of thermostable xylanase and pectinase from *Streptomyces* sp. QG-11-3. *Journal of Industrial Microbiology and Biotechnology*. 2000 Jun 1;24(6):396-402. DOI: 10.1038/sj.jim.7000010

24. Techapun C, Poosaran N, Watanabe M, Sasaki K. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. *Process Biochemistry*. 2003 Apr 30;38(9):1327-40. DOI: 10.1016/s0032-9592(02)00331-x

25. Raweesri P, Riangrungrojana P, Pinphanichakarn P. α -L-arabinofuranosidase from *Streptomyces* sp. PC22: Purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. *Bioresource Technology*. 2008 Dec 1;99(18):8981-6.

26. DOI: 10.1016/i.biortech.2008.05.016

26. Lim IH, Lee CR, Dhakshnamoorthy V, Park IS, Hong SK. Molecular characterization of *Streptomyces coelicolor* A (3) SCO6548 as a cellulose 1, 4- β -cellobiosidase. *FEMS microbiology letters*. 2016 Feb 1;363(3). DOI:10.1093/femsle/fnv245

27. El-Naggar NE, Abdelwahed NA, Saber WI, Mohamed AA. Bioprocessing of some agro-industrial residues for endoglucanase production by the new subsp.: *Streptomyces albogriseolus* subsp. *cellulolyticus* strain NEAE-1. *Brazilian Journal of Microbiology*. 2014 Jun;45(2):743-51. DOI: 10.1590/s1517-83822014005000049

28. Touijer H, Benchemsi N, Ettayebi M, Janatildrissi A, Chaouni B, Bekkari H. Thermostable Cellulases from the Yeast *Trichosporon* sp. *Enzyme research*. 2019;2019. DOI: 10.1155/2019/2790414

29. Boonmee A. Screening of rice straw degrading microorganisms and their cellulase activities. *KKU Sci J*. 2009;37:83-8. Available from: <https://pdfs.semanticscholar.org/11e6/6ffd0387d7bed2d1c9524468b5e87c5cd398.pdf>