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Abstract: Pharmaceutical residues, which are considered as emerging contaminants, have been frequently detected in various 
water including treated water, surface water, and underground water. Furthermore, it may pose a serious risk to the living 
organisms by enhancing bacterial drug resistance. However, the removal of CIP from aqueous solution is difficult by present 
water treatment methods. The previous study indicated that the removal of CIP by conventional wastewater treatment 
technologies is generally incomplete. The aim of this study was to evaluate the efficiency of surfactant (cetyltri-methyl-
ammonium bromide)-modified Sepiolite (SMS) for Ciprofloxacin antibiotics (CIP) adsorption in a batch mode technique. The 
effects of different system variables, adsorbent dosage, initial CIP concentration, temperature contact time were investigated and 
optimal experimental conditions were ascertained.  The results showed that as the amount of the adsorbent is increased, the 

percentage of CIP removal increase accordingly. Optimum temperature value for CIP adsorption was 50 . Maximum CIP was 

sequestered within 60 min from the start of every experiment. The results also showed that the best test conditions were 
obtained at i) initial concentration of  CIP 10 mg/L and adsorbent dosage 2 g/L as working solution have been selected as the
optimum conditions by the batch process; ii) the removal percentage and the maximum adsorption capacity were found to be 
99.1% and 63.84 mg/g iii) Four well-known kinetic models, the pseudo-first- and pseudo-second-order, Elovich and Intra-particle 
diffusion were used to correlate the adsorption kinetic data, with the pseudo-second-order model giving better results; iv) 
Negative value of ∆Go and positive value of ∆Hº indicates the feasibility of the process and indicates the spontaneous and 
endothermic nature of the adsorption; v) SMS adsorbent can be an attractive option for CIP antibiotic removal from diluted 
industrial effluents since test reaction made on simulated antibiotic wastewater showed better removal percentage of CIP.  
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1. INTRODUCTION 
 
Pharmaceuticals are an example for the variety of man-made 
trace pollutants that are introduced in surface or subsurface 
water bodies 1, 2. Pharmaceuticals have been identified in the 
environment, including antibiotics, analgesics, psychiatric 
drugs, and natural and synthetic hormones 3. Unused human 
pharmaceuticals may also enter the environment through 
landfill leachate 4. The fluoroquinolone antibiotic is one of the 
pervasive pharmaceutical groups, which cannot be 
biodegraded at low and notable concentrations 5, 6. As one 
species of fluoroquinolone, ciprofloxacin (CIP) is frequently 
used and detected in the environment due to its broad-
spectrum antibacterial property and high mobility 7. 
Furthermore, it may pose a serious risk to the living 
organisms by enhancing bacterial drug resistance 8. Due to 
the chemical structure of antibiotics, they act as resistant to 
many chemicals oxidizing agents and heat and are biologically 
non-degradable 9, 10. So it is difficult to decolorize the 
effluents, once released into the aquatic environment 11, 12. 
Many of the methods are available for the removable 
pollutants from water, the most important of which are 
reverse osmosis, ion exchange, precipitation and adsorption 
13. Adsorption process has been found to be superior 
technique for treating antibiotics effluents due to simplicity 
and insensitivity to toxic substance 14, 15. Although the 
activated carbon is most effective for absorption of 
antibiotics, it has some disadvantages such as (i) high 
adsorbent cost, (ii) problems of regeneration and difficulties 
of separation of powdered activated carbon from waste 
water for regeneration. These are expensive and hence there 
is an increasing need for equally effective but commercially 
low cost sorbents 16, 17. Therefore, researchers are 
continually in   search for cheaper, easily obtainable materials 
for the adsorption of antibiotics 18, 19. Natural clays for 
antibiotics removal from wastewater such as zeolite, 
bentonite, kaolinite and sepiolite are investigated as low-cost 
and readily available adsorbents 20, 21. Sepiolite is a natural 
hydrated magnesium silicate with a wide range of industrial 
applications derived mainly from its adsorptive properties 22-

24. It has a fibrous structure formed by an alteration of blocks 
and channels that grow up in the fiber direction 25. Each block 

is constructed of two tetrahedral silica sheets enclosing a 
central magnesia sheet 26. The present article reports the 
feasibility of utilizing SMS as a low cost adsorbent material for 
the removal of CIP ions from wastewater. In the batch mode 
studies, the dynamic behaviour of the adsorption was 
investigated on the effect initial CIP concentration, 
temperature, SMS dosage and contact time. The 
thermodynamics and kinetics adsorption were also studied.  
 
2. MATERIALS AND METHODS 
 
2.1 Reagents and solutions 
 
All reagents used were of analytical grade chemicals and 
were obtained from Merck (Merck AG., Darmstadt, 
Germany). Ciprofloxacin (molecular weight 331.34 g/mol, 
CAS Number 85721-33-1 and Molecular Formula 
C17H18FN3O3) used as adsorbate, obtained from Sigma 
Aldrich Co, and shown in Fig 1. A stock solution of 1000 
mg/L was prepared by dissolving appropriate amount of CIP 
in1000 ml double distilled water in a volumetric flask, 
different concentrations were prepared by diluting the stock 
solution to the initial concentrations ranging from 10-100 
mg/L. 
 
2.2 Synthesis of Surfactant-Modified Sepiolite (SMS) 
 
The surfactant-modified sepiolite was synthesized by the 
following steps. For synthesis, 50 g sepiolite was put in 500 
mL of water containing 10 g of CTAB. The reaction 
components were stirred at 25 °C for 12 h. The product was 
filtered and washed repeatedly with distilled water 27. The 
surfactant-modified sepiolite was dried at 110 °C for 6 h and 
stored in a desiccator. 
 
2.3 Batch experiments 
 
In order to investigate the behavior of the SMS, adsorption 
experiments were carried out. The amount of adsorbed CIP 
per gram of SMS (mg/g) at time t (min) was calculated using 
the following equation 28: 

 
                                                             
 
 
Where qt (mg/g) is the amount of adsorbed CIP per gram of 
SMS at time t (min), C0 is the initial concentration of CIP 
solution (mg/L), Ct is the concentration of CIP solution 
(mg/L) at time t (min), V is the volume of the solution (L) and 
M is the mass of the adsorbent (g). The initial concentrations 
of CIP solutions were in the range of 10 to 50 mg/L and 
experiments were performed at 20 °C. The initial CIP 
concentration, contact time, SMS dose and temperature 
were selected as experimental parameters. The pH of the 
solution was adjusted with NaOH or HNO3 solution by using 

a pH-meter. After the adsorption equilibrium is reached, the 
suspensions were centrifuged at 3600 rpm and the 
concentration of CIP remaining in the supernatant 
determined using UV-vis spectrophotometer at λmax= 274 
nm. The uptake of CIP ions was calculated by the difference 
in their initial and final concentrations. All experiments were 
repeated at least twice. The adsorption capacity of CIP was 
calculated through the following equation 29: 

 
 
 

 
 
Where qe is the amount of adsorption CIP (mg/g) at 
equilibrium, C0 is the initial concentration of CIP in solution 
(mg/L), Ce is the equilibrium concentration of CIP in solution 

(mg/L), m is the mass of adsorbent used (g) and V is the 
volume of CIP solution (L). 

qt =  (C0−Ct) V/M 

qe = (C0−Ce)×V/M 
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Fig 1. Chemical structure of CIP 
 

3. RESULTS AND DISCUSSION 
 
3.1 Effect of contact time 
 
From Figs 2 and 3, it can be observed that the percent 
removal efficiency and adsorption capacity of CIP onto SMS 
increased with increase of contact time and reached 
equilibrium in 60 min. Increase in contact time after 60 min 
cannot enhance the adsorption of CIP onto SMS. In the 
beginning, the percent of CIP was rapidly increased with the 

increase of adsorption time at first 30 min. Due to the 
adsorption more molecules of CIP on the unsaturated 
surface area of SMS 30. The initial rate of adsorption capacity 
was rapid in the first stage due to the larger surface area and 
the availability of the binding active sites of the adsorbent at 
the first minutes and the driving force provided by the initial 
concentration at the first stage which overcomes all mass 
transfer resistance of CIP between the aqueous and solid 
phases 31, 32. 

 

 
 

Fig 2. Effect of contact time on the adsorption of CIP onto SMS  
                                        (adsorbent dose = 2 g/L, pH = 7, tem=20 ± 2 ∘C) 
 

 
                                            Fig 3. Effect of contact time on the adsorption capacity  
                                            (adsorbent dose = 2 g/L, pH = 7, tem=20 ± 2 ∘C) 
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3.2 Effect of adsorbent dosage 
 
The effect of SMS mass on the adsorption CIP is shown in Fig 
4. The trend revealed a progressive increase in the amount 
of CIP adsorbed as adsorbent dosage increased from 0.25 to 
2 g. The percentage of CIP removed increased from 31.92 to 
86.17%, and then the value of percentage removal were very 
close indicating that adsorption was almost finished with 2 g 
of the SMS and the equilibrium take place.  It is reasonable 
that increasing the adsorbent dose increased the surface 

area, thus providing an increase in the available active sites 
for the adsorption 33. Similar trend was also observed by 34, 35, 
while adsorption capacity decreased with increasing amount 
of SMS. For instance a decrease from 63.84 to 14.36 mg/g 
was recorded when the adsorbent mass increased from 0.25 
g to 3 g/L. This trend can be explained as a result of 
overlapping or aggregation of adsorption sites resulting in a 
decrease in the total adsorption surface area available to the 
CIP and an increase in the diffusion path length36, 37. 

 

 
 

  Fig 4. Effect of adsorbent dosage on efficiency of CIP adsorption 
 (C0: 50 mg/L, tem: 20 ± 2 ∘C, pH: 7, time: 60 min) 

 
3.3 Adsorption kinetics   
 
The study of adsorption kinetics describes the solute uptake 
rate and evidently this rate controls the residence time of 
adsorbate uptake at the solid – solution interface. The 
kinetics of CIP adsorption on the SMS was analyzed using 
Pseudo first order, Pseudo second order, and Elovich and 

Intra-particle diffusion kinetics models. The conformity 
between experimental data and the kinetics models was 
expressed by the correlation coefficients (R2) value, the R2 
values close or equal to 1. A relatively high R2 value indicates 
that the model successfully describes the kinetics of CIP 
adsorption. The first-order rate expression of Lagergren 
equation is given as 38, 39 

 

 
 
 
Where qe and qt are the amounts of CIP adsorbed on 
adsorbent at equilibrium and at time t, respectively (mg/g) 
and K1 is the rate constant of first order adsorption (1/min). 
The slope and intercept of plot of log (qe-qt) vs. t were used 
to determine K1 and qe. These values are given in Table 1. 

From the table the qe values calculated from the Pseudo first 
order model is less than that of the experimental value. It is 
does not fit for pseudo first order kinetics. The second-order 
kinetic rate equation is given as 40: 

 

 
 

 
 

Where K2 is the rate constant of Pseudo-second order 
adsorption (g/mg.min) and amounts of CIP adsorbed on 
adsorbent at equilibrium (mg/g). The plot of t/qt vs. t should 
give a linear relationship from which K2 and qe can be 
determined from the slope and intercept of the plot, 
respectively. The plot and parameter of Pseudo second order 
of CIP on SMS are presented in Fig. 5 and Table 1. From the 

table qe values calculated from the Pseudo second order 
model are nearly equal to the experimental value and 
correlation coefficient (R2) value are high compared with 
Pseudo first order model. So that the adsorption of CIP on 
SMS is to follow the Pseudo second order kinetic model. The 
Elovich kinetic rate equation is presented as follows41, 42: 

 

                                                             
 
 
Where α is the initial adsorption rate (mg/g.min), β is 
adsorption constant (g/mg) during any one experiment. The 
Elovich model parameters α, β and correlation coefficient R2 
are summarized in Table 1. The correlation coefficient (R2) is 

less than that of Pseudo second order model. The intra-
particle diffusion model is used here refers to the theory 
proposed by Weber and Morris based on the following 
equation for the rate constant 43 

Log (qe – qt) = log qe – t 

 

  =  +  

qt = 1/β Ln (αβ) + 1/β Ln (t)  
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Where Kd is the intra particle diffusion rate constant 
(mg/g.min-1/2) and C is constant. If that rate limiting step is 
intra particle diffusion, the graphical representation of 
adsorbed CIP qt versus t0.5 yield straight lines passing through 
the origin and the slope gives the intra particle diffusion rate 

constant Kd and correlation coefficient (R2) is indicated in Fig 
6. The intra-particle parameters Kd, C and R2 are summarized 
in Table 1. From these data inter set value indicate that the 
line are not passing through origin, therefore some other 
process that may affect the adsorption. 

 
 

Table 1: Results of kinetic studies related to the CIP adsorption onto SMS 

C0 (mg/L) qe  exp 

(mg/g) 
Intraparticle diffusion Pseudo-first order 
Kd C R2 qe  cal K1 R2 

10 4.951 0.285 2.167 0.661 2.192 0.076 0.841 
20 9.588 0.572 3.981 0.665 4.476 0.068 0.859 
30 13.90 0.871 5.392 0.666 7.259 0.033 0.827 
40 18.01 1.209 6.154 0.682 11.73 0.018 0.833 
50 21.72 1.588 6.372 0.701 14.95 0.011 0.846 

C0 (mg/L) qe  exp 

(mg/g) 
Pseudo-second order Elovich 

qe  cal K2 R2 α β R2 
10 4.951 4.721 0.0081 0.996 2.173 0.417 0.895 
20 9.588 9.247 0.0072 0.997 2.064 0.495 0.912 
30 13.90 14.08 0.0054 0.995 1.625 0.543 0.876 
40 18.01 17.84 0.0033 0.996 1.272 0.568 0.924 
50 21.72 20.96 0.0019 0.998 1.124 0.596 0.906 

 
Fig 5. Pseudo-second-order kinetic plot for the removal of CIP by SMS 

 
Fig 6. Intra particle diffusion kinetic plot for the removal of CIP by SMS 

 
 
 
 

qt = Kd t
0.5+ C 
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3.4 Effect of temperature 
 
The effect of temperature of adsorption of CIP is presented 
in Fig 7. For concentration 50 mg/L CIP was carried out at 
10, 20, 30, 40 and 50 ℃. The percent removal of CIP 
increased from 61.52 to 95.76. This indicates that increase in 

adsorption with increase in temperature may be due to 
increase in the mobility of the large CIP ions (43, 44). 
Moreover, increasing temperature may produce a swelling 
effect within the internal structure of the adsorbent, 
penetrating the large CIP molecule further 45. 

 
Fig 7: Effect of temperature on efficiency of CIP adsorption  

                                            (C0: 50 mg/L, dose: 2 g/L, pH: 7, time: 60 min) 
 

3.5 Thermodynamic parameter  
 
Thermodynamic parameters like ∆Hº and ∆Sº were evaluated using Van’t Hoff’s equation (46) 
 

 
 
Where Kd is the adsorption equilibrium constant, ∆Hº and 
∆Sº, are the standard enthalpy and entropy changes of 
adsorption respectively and their values are calculated from 
the slopes and intercepts respectively of the linear plot of Ln  

Kd vs. 1/T.  The   free   energy  change  for  the   adsorption 
process ∆Gº (kJ/mol) is derived in following equation47 The 
values of these parameters were calculated using the 
following equation and are shown in Table 2 

 

 
 
The adsorption data indicates that ∆Gº were negative at all 
temperatures. The negative ∆Gº confirms the spontaneous 
nature of adsorption of CIP with SMS. The magnitude of ∆Gº 
suggests that adsorption is physical adsorption process 39. 
The positive value of ∆Hº were further confirms the 
endothermic nature of adsorption process. The positive ∆Sº 
showed increased randomness at the solid-solution interface 
during the adsorption of CIP on SMS. This was also further 

supported by the positive values of ∆Sº, which suggest that 
the freedom of CIP is not too restricted in the adsorbent, 
confirming a physical adsorption. The ∆Gº value increases 
with increase in temperature is the increase in enhancement 
of the adsorption capacity of adsorbent may be due to 
increase or enlargement of pore size and/or activation of the 
adsorbent surface 41. 

 
Table 2: Values of thermodynamic parameters for the adsorption of CIP onto SMS 

Temperature (K) G0 (kJ/mol) H0 (kJ/mol) S0 (J/mol K) 

283  -4.514  
 

1.329 

 
 

17.38 
293 -6.172 
303 -7.451 
313 -9.736 
323 -10.895 

 
4. CONCLUSION 
 
This study shows that SMS can be used effectively for the 
removal of CIP antibiotics from aqueous solution. 2 g/L is the 
optimum dosage of SMS to adsorb CIP. The adsorption 
capacity of the CIP on SMS increased with the increasing of 
initial concentration of CIP. The equilibrium adsorption 
capacity increased with temperature. The optimum contact 

time and temperature were 60 min and 50  respectively. 
The adsorption kinetics was fitted by a pseudo-second order 
kinetic model. Adsorption of CIP was found to be 
spontaneous at temperatures under investigation. 
Thermodynamic parameters suggested that the adsorption of 
CIP ions on SMS adsorbent was feasible, spontaneous and 
endothermic in nature. These results show that SMS which 
have a very low economical value may be used effectively for 
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removal of CIP antibiotic from aqueous solution for 
environmental protection purpose. 
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