

Synergistic Effect of Calcium Chloride and Chitosan Treatment on Physicochemical Characteristics of Pineapple (*Ananas Comosus*) Fruit During Cool Storage

Minh Phuoc Nguyen*

*Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.

Abstract: Pineapple (*Ananascomosus*) is one of the most popular agricultural products in the world. It is well-known for its excellent flavour and taste, diversified valuable nutritional components as well as phytochemical and antioxidant properties. However it is quite perishable at ambient condition due to its high respiration rate. It is essential to find an appropriate strategy to extend its stability during storage. This study concentrates on the effectiveness of calcium chloride and chitosan treatments on the post-harvest physicochemical quality of pineapple during storage at 12°C and 80±5% relative humidity. The fruit was treated with different concentrations of CaCl_2 (0.5%, 1.0%, 1.5%, 2.0%, 2.5%) via dipping for 4 min and chitosan (0.5%, 1.0%, 1.5%, 2.0%, 2.5% w/v) via coating. Different physicochemical parameters such as weight loss (%), firmness (N), decay percentage (%), total soluble solid (°Brix), ascorbic acid (mg/100g) were thoroughly examined, Our results showed that a combination of 2.0% CaCl_2 with 1.5% chitosan created a synergistic effect on physicochemical characteristics of pineapple fruit during 14 days of cool storage. These results implied that calcium chloride combined with chitosan as edible coatings have potential to maintain fruit quality in respect of weight loss, firmness, total soluble solid, ascorbic acid while reducing post harvest spoilage (decay) in pineapple fruit.

Keywords: Pineapple, CaCl_2 , chitosan, coating, synergistic, physicochemical

*Corresponding Author

Minh Phuoc Nguyen , Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.

Received On 10 February 2020

Revised On 26 March 2020

Accepted On 22 April 2020

Published On 02 July 2020

Funding This work is supported by Ho Chi Minh City Open University, Vietnam.

Citation Minh Phuoc Nguyen , Synergistic Effect of Calcium Chloride and Chitosan Treatment on Physicochemical Characteristics of Pineapple (*Ananas comosus*) Fruit during Cool Storage.(2020).Int. J. Life Sci. Pharma Res.10(3), L24-28
<http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.3.L24-28>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)
Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Pineapple (*Ananascomosus*) is the third most important tropical fruit in the world. It is known as the queen of fruits due to its excellent flavor and taste. It is a rich source of carbohydrate, vitamins, minerals and organic acids. Bromelain inside pineapple is good for the digestive system and helps in maintaining ideal weight and balanced nutrition¹. It is also useful as an anti-inflammatory agent as well as reduces swelling in inflammatory conditions such as acute sinusitis, sore throat, arthritis, gout². Pineapple pulp is a clear yellow, very sweet, compact, fibrous and has a high ascorbic acid content but low total acidity³. Calcium chloride provides an important mechanism in the reinforcement of membranes and cell walls⁴. It retards the ripening process specially the softening and therefore, improve the stability of fruit via modifying intercellular and extracellular reactions⁵. Chitosan has biodegradable, biocompatible, non toxic, antioxidant, antimicrobial activities with great potential in film coating as an excellent semi-permeable barrier against gas and vapor exchange, controlling respiration rate, retarding dehydration and shrinkage, limiting ripening and senescence of the fruit⁶⁻¹⁰. Chitosan has been also implemented as a potential alternative to synthetic fungicides¹¹. Combination of calcium chloride and chitosan during preservation of various fruits such as guava, peach, papaya, strawberry have been demonstrated¹²⁻¹⁷. Pineapple fruit is perishable during post harvest. With the purpose of extending the commercial value of this valuable fruit during distribution, our study focused on the way to extend whole fruit shelf-life by verifying the synergistic effect of CaCl_2 and chitosan coating in respect of various physicochemical variables such as weight loss (%), firmness (N), decay percentage (%), total soluble solid ($^{\circ}\text{Brix}$), ascorbic acid (mg/100g).

2. MATERIAL AND METHOD

2.1 Material

Pineapple (*Ananascomosus*) fruits were obtained from orchards in KienGiang province, Vietnam. After collection, they must be conveyed to laboratory for experiments. Chemical substances such as calcium chloride, chitosan, acetic acid and other reagents were all analytical grade supplied from Rainbow Trading Co. Ltd, Vietnam

2.2 Researching procedure

Chitosan powder was dissolved in acetic acid 1.0%. Pineapple fruits were dipped in CaCl_2 solution (0.5%, 1.0%, 1.5%, 2.0%, 2.5%) then coated in chitosan (0.5%, 1.0%, 1.5%, 2.0%, 2.5%). All treated samples were then stored at 12°C and 80±5% RH for 14 days before evaluating weight loss (%), firmness (N), decay percentage (%), total soluble solid ($^{\circ}\text{Brix}$), ascorbic acid (mg/100g)¹⁸.

2.3 Physico-chemical measurement

Weight loss (%) was calculated by comparing the initial and

final weight of a fruit. Texture firmness (N) was measured by penetrometer model H-1200. Decay percentage (%) was examined by visual appearance. Fruits showing surface mycelial development were considered decayed. Total soluble solid ($^{\circ}\text{Brix}$) was analyzed by refractometer. Ascorbic acid (mg/100g) was determined by iodometric titration¹⁸.

3. STATISTICAL ANALYSIS

The experiments were run in triplicate with three different lots of samples. Statistical analysis was performed by the Statgraphics Centurion version XVI. The data were presented as mean ± standard deviation. Probability value of less than 0.05 was considered statistically significant.

4. RESULT & DISCUSSION

4.1 Effect of CaCl_2 concentration in preservation of pineapple fruit

The highest significant weight loss percentage was noticed at untreated fruits (control), while treatments with CaCl_2 showed the lowest significant weight loss. The lowest fruit weight loss (%) was obtained in fruits treated with 2.0% CaCl_2 after 14 days of storage (Table 1). Weight loss of fresh fruits is primarily owing to water loss as a result of evaporation and transpiration. The low weight loss in CaCl_2 treated fruits could be explained by the improvement of fruit texture and tissue rigidity via lowering the enzyme reaction responsible for decomposition of cellular structure, which slow down gas exchange¹². Fruit firmness is one of the most important variables in evaluating the post-harvest quality and physiology of fruits¹⁹. It should be noticed that all the treatments had an effect in preserving fruit firmness. Fruit softening is caused either by breakdown of insoluble pectins into soluble pectin or by hydrolysis of starch, or by increased membrane permeability caused by cellular disintegration¹². Effect of calcium in maintaining fruit firmness may be owing to the calcium binding to free carboxyl groups of polygalacturonate polymer, stabilizing and strengthening the cell wall. The lowest significant decay percentage was recorded at samples treated by CaCl_2 2.0%. Calcium ions play a key role in hindering fruit softening by strengthening the cell walls, as well as covering cuticle and lenticels. Their high antifungal activity reduces respiration, physiological disorders, ripening processes; increases their resistance to infection during storage. Untreated fruits recorded the lowest soluble solid while the highest was obtained with the treatment of CaCl_2 2.0%. Soluble solid loss is caused by respiration during storage²⁰. The highest ascorbic acid contents were obtained with samples treated by CaCl_2 2.0%. It could be due to the reduction in metabolic changes of ascorbic acid into carbon dioxide and water during respiration. In one report, CaCl_2 was capable of maintaining shelf-life of fresh-cut fruits for 15 days²¹.

Table 1. Effect of CaCl_2 concentration to physicochemical variables of pineapple fruit after 14 days of preservation

S Parameter	CaCl_2					
	Control	0.5	1.0	1.5	2.0	2.5
Weight loss (%)	9.35±0.03 ^a	4.79±0.01 ^b	4.02±0.00 ^{ab}	3.57±0.03 ^b	3.12±0.00 ^{bc}	3.01±0.00 ^c
Firmness (N)	4.17±0.01 ^d	5.34±0.02 ^c	5.83±0.03 ^{bc}	6.36±0.01 ^b	6.79±0.01 ^{ab}	6.95±0.01 ^a

Decay percentage (%)	37.42±0.02 ^a	14.25±0.00 ^b	11.34±0.01 ^c	8.73±0.00 ^d	6.17±0.02 ^e	4.71±0.02 ^f
Total soluble solid (°Brix)	9.29±0.02 ^d	15.63±0.03 ^c	15.94±0.02 ^{bc}	16.05±0.00 ^b	18.48±0.03 ^a	18.54±0.01 ^a
Ascorbic acid (mg/100g)	9.38±0.00 ^d	15.31±0.02 ^c	17.83±0.02 ^{bc}	19.55±0.01 ^b	22.07±0.01 ^a	22.16±0.00 ^a

Note: the values were expressed as the mean of three repetitions; the different superscripts (a, b, c, d as denoted above) indicate the significant difference ($\alpha = 5\%$).

4.2 Synergistic effect of CaCl_2 combined with chitosan in preservation of pineapple fruit

Chitosan coatings create barriers to limit moisture transfer, prevent fruit skin from mechanical damages, heal small injuries and thus decrease dehydration²². Chitosan could inhibit fungal proliferation, limit fungal decay, induce host resistance to pathogens and self-polymerisation, prolonging the stability of fruits²³⁻²⁶. In our research, the lowest significant weight loss (%), decay percentage (%) while highest firmness (N), total soluble solid (°Brix) and ascorbic acid content (mg/100g) were noted at samples treated by CaCl_2 2.0% and chitosan 1.5% (table 2). Our findings were similar to other reports. 2%

CaCl_2 and 1% chitosan was most effective in minimizing weight loss and rotten, preserving maximum texture firmness and prolonging stability of peach fruit¹². A combination of CaCl_2 1.5% and chitosan 1.5% was the most appropriate treatment in modulating physicochemical changes and improving stability of guava during preservation¹³. The best formula for extending shelf-life of papaya fruit proved to be 2.5% chitosan coating¹⁴. Combination of calcium with 1% chitosan s improved the firmness of strawberry fruit¹⁶. The combination of 2.5% calcium with chitosan 0.75% completely inhibited spore germinations and significantly prevented mycelia proliferation on papaya fruit¹⁵.

Table 2. Synergistic effect of CaCl_2 2.0% combined with chitosan in different concentration in physicochemical of pineapple fruit after 14 days of preservation

Parameter	CaCl_2 2.0%					
	Control CaCl_2 2.0%	0.5% chitosan	1.0% chitosan	1.5% chitosan	2.0% chitosan	2.5% chitosan
Weight loss (%)	9.35±0.03 ^a	4.79±0.01 ^b	4.02±0.00 ^{ab}	3.57±0.03 ^b	3.12±0.00 ^{bc}	3.01±0.00 ^c
Firmness (N)	6.79±0.01 ^c	8.21±0.00 ^b	8.79±0.02 ^{ab}	9.12±0.00 ^a	9.15±0.00 ^a	9.16±0.02 ^a
Decay percentage (%)	6.17±0.02 ^a	4.53±0.01 ^b	4.11±0.00 ^{bc}	3.63±0.02 ^c	3.57±0.00 ^c	3.55±0.00 ^c
Total soluble solid (°Brix)	18.48±0.03 ^c	20.71±0.02 ^b	20.97±0.01 ^{ab}	21.24±0.01 ^a	21.30±0.01 ^a	21.34±0.02 ^a
Ascorbic acid (mg/100g)	22.07±0.01 ^c	23.64±0.01 ^b	23.88±0.03 ^{ab}	24.01±0.02 ^a	24.06±0.03 ^a	24.09±0.01 ^a

Note: the values were expressed as the mean of three repetitions; Note: the values were expressed as the mean of three repetitions; the different superscripts (a, b, c as denoted above) indicate the significant difference ($\alpha = 5\%$).

Chitosan was reported to be effective in minimizing weight loss by using alone on longan fruit, or in combination with calcium chloride on peach²⁷⁻²⁸. Chitosan film created a barrier to limiting moisture removal and protecting fruit peel from physical damage, trapping small injuries and thus delaying dehydration²⁹. The antimicrobial property of chitosan depended on several factors such as the kind of chitosan, storage temperature, and food components³⁰. Chitosan played as an inhibitor to various enzymes to delay fruit senescence. Chitosan coating could create a protective barrier on the surface of fresh fruit to slow down microbial proliferation causing fruit decay³¹⁻³². Interaction of calcium with pectic acid in cell walls to form calcium pectate, a compound helpful for maintaining structure of the fruit³³. Calcium utilization was demonstrated to be effective in membrane functionality and integrity maintenance in facilitating the postharvest life of various fruits³⁴. Pineapple (*Ananascomosus*) is one of the most important commercial fruit crops with several health benefits. There is a great demand of pineapple consumption worldwide. Pineapple fruit has a relatively short postharvest stability by physiological, pathological and biochemical changes causing economic losses. Improving its shelf-life is very urgent. We have

investigated the feasibility of CaCl_2 dipping together with chitosan coating on the physicochemical properties of pineapple fruits on cool storage.

5. CONCLUSION

Our results concluded that 2.0% calcium chloride combined 1.5% chitosan could extend stability of pineapple fruits by maintaining fruit quality (weight loss, firmness, total soluble solid, ascorbic acid) while slowing down fruit quality decomposition (decay) in 14 days at 12°C and 80±5% relative humidity. The synergistic effect was clearly noted in double coating compared to single calcium chloride treatment.

6. FUNDING ACKNOWLEDGEMENT

We acknowledge the resources and financial support for the study was provided by Ho Chi Minh City Open University, Vietnam.

7. CONFLICT OF INTEREST

Conflict of interest declared none.

8. REFERENCES

- Vipul C, Vivak K, Sunil, Vaishali, Kavindra S, Ratnesh Kand Vikrant K. Pineapple (*Ananascomosus*) product

processing: A review. *Journal of Pharmacognosy and Phytochemistry* 2019; 8: 4642-4652. Available from:

http://www.phytojournal.com/archives/2019/vol8issue3/PartBQ/8-3-523-131.pdf

2. Tanmay S, Pritha N, Runu C. Pineapple [Ananascomosus (L.)] product processing techniques and packaging: A review. *IIOAB* 2018; 9: 6-12. Available from: https://www.iiob.org/IIOAB_9.4_6-12.pdf
3. Nguyen PM, Tran TYN, Danh DNH, Vo MC. Quality and shelf life of processed pineapple by different edible coatings. *Journal of Pharmaceutical Sciences and Research* 2019; 11: 1441-1446. Available from: <https://www.jpsr.pharmainfo.in/Documents/Volumes/vol1Issue04/jpsr11041950.pdf>
4. Oms OG, Aguiló AI, Martín BO, Solvia FR. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (*Agaricusbisporus*). *Postharvest Biology and Technology* 2010; 56: 216-222. DOI: 10.1016/j.postharvbio.2009.12.011
5. Shehata SA, Hashem MY, Emam MS, Rageh MA. Effect of hot water and calcium chloride treatments on fresh cut sweet pepper during cold storage. *Annals of Agricultural Science Moshtohor Journal* 2009; 47: 445-455. Available from: <https://scholar.cu.edu.eg/?q=saidshehata/publications/effect-hot-water-and-calcium-chloride-treatments-fresh-cut-sweet-pepper-dur>
6. Velickova E, Winkelhausen E, Kuzmanova S, Alves VD, Moldão-Martins M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (*Fragariaananassa* cv *Camarosa*) under commercial storage conditions. *LWT- Food Science and Technology* 2013; 52: 80-92. Available from: https://www.researchgate.net/publication/259849486_Impact_of_chitosan-beeswax_edible_coatings_on_the_quality_of_fresh_strawberries_Fragaria_ananassa_cv_Camarosa_under_commercial_storage_conditions
7. Elsabee MZ, Abdou ES. Chitosan based edible films and coatings: a review. *Materials Science and Engineering* 2013; 33: 1819-1841. Available from: <https://www.sciencedirect.com/science/article/abs/pii/S0928493113000234>
8. Zhelyazkov S, Zsivanovits G, Brashlyanova B, Marudova-Zsivanovits M. Shelf-life extension of fresh-cut apple cubes with chitosan coating. *Bulgarian Journal of Agricultural Science* 2014; 20: 536-540. Available from: https://www.researchgate.net/publication/289336412_Shelf-life_extension_of_fresh-cut_apple_cubes_with_chitosan_coating
9. Petriccione M, Mastrobuoni F, Pasquariello MS, Zampella L, Nobis E, Caprioli G. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. *Foods* 2015; 4: 501-523. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/28231220>
10. Hussein NM, AbdAllah MMF, Abou EYA, Ibrahim RE. Sweet pepper quality maintenance: impact of hot water and chitosan. *Egyptian Journal of Horticulture* 2015; 42: 471-491. Available from: http://www.ejoh.journals.ekb.eg/article_1311.html
11. El GA. Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases. *Journal of Industrial Microbiology and Biotechnology* 1997; 19: 160-162. Available from: https://link.springer.com/chapter/10.1007/1-4020-2607-2_14
12. Ahmed ANAG, Samar AMAS, Mohamed AE, Nabil RME. Pre-harvest application of calcium chloride and chitosan on fruit quality and storability of 'Early Swelling' peach during cold storage. *Ciência e Agrotecnologia* 2017; 41: 220-231. Available from: http://www.scielo.br/scielo.php?pid=S1413-70542017000200220&script=sci_abstract
13. Shilpa C, Reena D and Veena J. Changes in physicochemical characteristics of guava fruits due to chitosan and calcium chloride treatments during storage. *Journal of Pharmacognosy and Phytochemistry* 2018; 7: 1035-1044. Available from: <https://www.phytojournal.com/archives/2018/vol7issue3/PartO/7-2-616-265.pdf>
14. Chutichudet B, Prasit C. Effects of chitosan or calcium chloride on external postharvest qualities and shelf-life of 'Holland' papaya fruit. *Journal of Agricultural Science* 2014; 6: 160-177. DOI: 10.5539/jas.v6n1p160
15. AlEryani RA, Mahmud TMM, Syed OSR, Mohamed ZAR and Al EAR. Effects of calcium and chitosan treatments on controlling anthracnose and postharvest quality of papaya (*Carica papaya* L.). *International Journal of Agricultural Research* 2009; 4: 53-68. Available from: https://www.researchgate.net/publication/250302941_Effects_of_Calcium_and_Chitosan_Treatments_on_Controling_Anthracnose_and_Postharvest_Quality_of_Papaya_Carica_papaya_L
16. Pilar HM, Eva A, Valeria DV, Dinoraz V, Rafael G. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (*Fragariaananassa*) quality during refrigerated storage. *Food Chemistry* 2008; 110: 428-435. Available from: <https://www.sciencedirect.com/science/article/pii/S0308814608002069>
17. Basir AR, Shankarappa TH, Krishna HC, Mushrif SK, Vasudeva KR, Sadananda GK and Abdullah M. Chitosan and CaCl_2 coatings on physicochemical and shelf life of strawberry fruits (*Fragaria x ananassa* Duch.). *International Journal of Current Microbiology and Applied Sciences* 2018; 7: 3293-3300. Available from: https://www.researchgate.net/publication/326681790_Chitosan_and_CaCl2_Coatings_on_Physicochemical_and_Shelf_Life_of_Strawberry_Fruits_Fragaria_x_ananassa_Duch
18. Muhammad I, Sajjad A, Manzoor H. Quantitative determination of ascorbic acid in commercial fruit juices by redox titration. *International Journal of Pharmaceutical Quality Assurance* 2014; 5: 22-25. Available from: <https://ijpqa.com/index.php/IJPQA/article/view/330>
19. Kirmani S N. Effect of preharvest application of calcium chloride (CaCl_2), gibberlic acid (GA3) and napthelenic acetic acid (NAA) on storage of plum (*Prunussalicina* L.), cv. Santa Rosa, under ambient storage conditions. *African Journal of Agricultural Research* 2013; 8: 812-818. Available from: https://www.researchgate.net/publication/276919341_Effect_of_preharvest_application_of_calcium_chloride_CaCl2_Gibberlic_acid_GA3_and_Napthelenic_acetic_acid_NAA_on_storage_of_Plum_Prunus_salicina_L_cv_Santa_Rosa_under_ambient_storage_conditions

20. Abbasi NK. Postharvest quality of mango (*Mangifera indica* L.) fruit as affected by chitosan coating. *Pakistan Journal of Botany* 2009; 41: 343-357. Available from: https://www.researchgate.net/publication/279567418_Postharvest_quality_of_mango_mangifera_indica_l_fruit_as_affected_by_chitosan_coating

21. Rohit JT, Hamad S, Yogesh G, Roji BW. Effect of calcium chloride extracted from eggshell in maintaining quality of selected freshcut fruits. *International Journal of Recycling of Organic Waste in Agriculture* 2019; 4: 1-10. Available from: http://ijrowa.khuisf.ac.ir/article_670846.html

22. Ribeiro C. Optimization of edible coating composition to retard strawberry fruit senescence. *Postharvest Biology and Technology* 2007; 44: 63-70. Available from: <https://www.sciencedirect.com/science/article/abs/pii/S092552140600322X>

23. Han C. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (*Fragaria ananassa*) and raspberries (*Rubus idaeus*). *Postharvest Biology and Technology*. 2004; 33: 67-78. Available from: https://www.researchgate.net/publication/257355729_Edible_coatings_to_improve_storability_and_enhance_nutritional_value_of_fresh_and_frozen_strawberries_FragariaXananassa_and_raspberries_Rubus_idaeus

24. Bautista BS. Chitosan as a potential natural compound to control pre- and postharvest diseases of horticultural commodities. *Crop Protection* 2006; 25:108-118. Available from: https://www.researchgate.net/publication/222534333_Chitosan_as_a_potential_natural_compound_to_control_pre_and_postharvest_diseases_of_horticultural_commodities

25. Trotel AP. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of *Botrytis cinerea*. *European Journal of Plant Pathology* 2006; 114: 405-413. DOI: 10.1007/s10658-006-0005-5

26. Gonzalez AGA. Effect of chitosan coating in preventing deterioration and preserving the quality of fresh-cut papaya. *Journal of the Science of Food and Agriculture* 2009; 89: 15-23. Available from: https://www.researchgate.net/publication/229591963_Effect_of_chitosan_coating_in_preventing_deterioration_and_preserving_the_quality_of_fresh-cut_papaya_%27Maradol%27

27. Jiang Y, Li Y. Effects of chitosan coating on postharvest life and quality of longan fruit. *Food Chemistry* 2001; 73:139-143. DOI: 10.1016/S0308-8146(00)00246-6

28. El-Badawy HEM. Effect of chitosan and calcium chloride spraying on fruits quality of Florida Prince peach under cold storage. *Research Journal of Agriculture and Biological Sciences* 2012; 8: 272-281. Available from: <http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2012/272-281.pdf>

29. Lester GE, Grusak MA. Postharvest application of calcium and magnesium to honeydew and netted muskmelons: Effects on tissue ion concentrations, quality, and senescence. *Journal American Society for Horticultural Science* 1999; 124: 545-552. Available from: <http://journal.ashpublications.org/content/124/5/545>

30. Devlieghere F, Vermeulen A, Debevere J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. *Food Microbiology* 2004; 21: 703-714. DOI: 10.1016/j.fm.2004.02.008

31. Qiuping Z, Wenshui X. Effect of 1-methylcyclopropene and/or chitosan coating treatments on storage life and quality maintenance of Indian jujube fruit. *LWT - Food Science and Technology* 2007; 40: 404-411. DOI: 10.1016/j.lwt.2006.01.003

32. Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. *Food Chemistry* 2009; 114: 1173-1182. DOI: 10.1016/j.foodchem.2008.11.047

33. Hussain A, Abbasi NA, Hafiz IA, Zia UL, Hasan S. A comparison among five loquat genotypes cultivated at Hasan Abdal and Wah. *Pakistan Journal of Agricultural Sciences* 2011; 48: 103-107. Available from: https://www.researchgate.net/publication/290265237_A_comparison_among_five_loquat_genotypes_cultivated_at_hasan_abdal_and_wah

34. Ribeiro C. Optimization of edible coating composition to retard strawberry fruit senescence. *Postharvest Biology and Technology* 2007; 44: 63-70. Available from: <https://www.sciencedirect.com/science/article/abs/pii/S092552140600322X>