

Method Development for the Simultaneous Estimation of Etamsylate and Tranexamic Acid by UPLC/Pda in Bulk and Formulation.

Mohanrao Tammi setty^{1*}, Balasekhara Reddy Challa² And Srinivasa Babu Puttagunta³

¹Jawaharlal Nehru Technological University, Kakinada-533003, Andhra Pradesh, India.

²Vagdevi college of Pharmacy, Gurajala-526415, Guntur (Dt.), Andhra Pradesh, India.

³Vignan Pharmacy college, Vadlamudi, Guntur (Dt.), Andhra Pradesh, India.

Abstract: Selective and novel method has been optimized for evaluation of Ethamsylate and Tranexamic acid in bulk, formulation and equipment cleaning samples by UPLC-PDA. The method was developed with the Buffer (pH: 7.0): Acetonitrile, (75:25%, v/v) using the Acquity BEH C₁₈, 1.7 μm, 2.1 mm × 50 mm analytical column with analysis time of five minutes. The flow of mobile phase through column was 0.8 ml/min. The sample volume was 5 μL. The detection was carried at 260 nm in a photodiode array detector. The retention times of Ethamsylate and Tranexamic acid were 1.121 min and 2.122 min respectively. The correlation coefficient (r^2) was 0.9997 with linear range of 2.5-30.0 μg/ml for EtamsylateFor Tranexamic acid 5 μg/ml-60.0 μg/ml .The correlation coefficient (r^2) for Tranexamic acid was found to be 1.000. The LOQ for the Ethamsylate and Tranexamic acid was 25 ng/ml and 50 ng/ml respectively. The developed method was applied for the bulk, formulation and equipment cleaning samples. The results were found satisfactory. Hence the developed method was proved more accurate and sensitive. It can be used at all the stages in pharmaceutical manufacturing and quality control for evaluating of Ethamsylate and Tranexamic acid.

Keywords: Selective, accurate, linear method, Ethamsylate, Tranexamic acid, Bulk drug, Formulation, equipment Cleaning sample, UPLC, PDA.

***Corresponding Author**

Mohanrao Tammi setty , Jawaharlal Nehru Technological University, Kakinada-533003, Andhra Pradesh, India.

Received On 22 January 2020

Revised On 14 February 2020

Accepted On 26 May 2020

Published On 02 October 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Mohanrao Tammi setty, Balasekhara Reddy Challa and Srinivasa Babu Puttagunta , Method Development for the Simultaneous Estimation of Etamsylate and Tranexamic Acid by UPLC/Pda in Bulk and Formulation..(2020).Int. J. Life Sci. Pharma Res.10(4), P44-59 <http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.4.P44-59>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Based on the literature survey for this particular combination, there were no methods with good resolution and sensitivity to identify and to quantify Ethamsylate, Tranexamic acidin formulation, bulk and in equipment cleaning samples. Our developed method can quantify those drugs within a short period of time with good accuracy without any interferences at the lower concentration and with less sample. Etamsylate (Figure-1and 2) is (2, 5-dihydroxybenzenesulfonic acid; N-ethylethanamine) belongs to Anti haemorrhagic category. Basically, it is a haemostatic agent and act by stimulating the thromboplastin formation and decreasing the prostacyclin I2. It is used for the capillary haemorrhage and haemostasis, haematuria, epistaxis, menorrhagia and postpartum hemorrhagic conditions¹⁻². Tranexamic acid is (Trans-4-(amino methyl) cyclohexane carboxylic acidbelonging to the class anti fibrinolytic category. It restricts the conversion of plasminogen to plasmin controls the blood loss during haemophilia, orthopaedic surgery's, dental extraction procedures and menstrual blood loss.¹⁻³ A through literature survey revealed that various analytical and few bioanalytical methods were published to describe the quantification of Ethamsylate and Tranexamic acid in active pharmaceutical ingredient and pharmaceutical dosage forms to study the purity, degradation products by UV-Spectrophotometric method⁵⁻⁸ and RP-HPLC⁹⁻¹⁵. Our literature survey also revealed that there was no method till date reported using UPLC at nanogram level of lower quantification and identification concentration for these principle components within the short period of time with the good resolution and peak shape. We attempted to develop a method with all those prerequisites and validated our method .The developed method succeeded in the quantification and identification in ng/ml range of concentration.

2. MATERIALS AND METHODS

Etamsylate, Tranexamic acid with high purity(provided by the Yountus Life sciences), Acetonitrile(J.T.Baker, Phillipsburg, NJ, USA), Water(Milli - Q system, Millipore, Bedford, MA, USA),Tetrabutylammonium hydrogen sulphate (Sigma Aldrich), Sodium dihydrogen phosphate (Merck Pvt. Ltd, Worli, Mumbai) ,Triethylamine (Merck Pvt. Ltd, Worli, Mumbai)were obtained and of analytical grade.

2.3 Preparation of standard solution

Ethamsylate and Tranexamic acid prepared at a concentration of 0.025mg/ml and 0.05 mg/ml respectively by taking 25.05 mg of Etamsylate standard having the assay value of 99.9% in 100ml volumetric flask and dissolved in diluent having water: acetonitrile 50:50ratio. From the stock 100ml taken 1ml to 10 volumetric flask and make up with the diluent to get final concentration of 0.025mg/ml of Etamsylate. For the tranexamic acid taken 50.21 mg having the potency 99.6 % in 1000 ml volumetric flask and dissolved in the diluent and makeup to 100ml. From the stock 100 ml taken 1ml and to 10ml volumetric flask and make up with diluent to get 0.05mg/ml of tranexamic acid.

2.2 Preparation of mobile-phase⁸

Mobile phase is prepared by mixing 750 ml Buffer: Acetonitrile 250 ml for 1000 ml mobile phase.

2.3 Calibration curve standards

From the stock solutions of Etamsylate (0.025mg/ml) prepared, 2.5µg/ml, 5µg/ml, 20 µg/ml, 25µg/ml, 30µg/ml dilutions were prepared by taking 2.5mg, 5mg, 20mg, 25 mg, 30 mg respectively in 100 ml volumetric flask and diluted with the diluent. From the stock solution, 1ml is diluted to 10ml with the diluent. Similarly, from the stock solutions of Tranexamic Acid (0.05mg/ml) 5 µg/ml, 25 µg/ml, 40 µg/ml, 50 µg/ml, 60 µg/ml by taking 5.21mg, 25.10mg, 40.18 mg, 50.21 mg, 60.25 mg in 100 ml volumetric flask and make up to the mark with the diluent. From the stock taken 1ml and transferred to 10 ml volumetric flask and make up to the mark with the diluent.

2.4 Method optimization Consideration

For the optimization of instrument method, different buffer compositions with the solvent variations, column compartment temperatures, sample temperature, Wavelength extraction in mosaic form of detector were tried and verified by experimental design with the standard preparations in preliminary stage for identification. Optimization of the instrument method was done for the good elution for the separation in combinational formulation and also in bulk and equipment cleaning samples.

2.5 Optimization of Chromatographic conditions

After series of trials, the chromatographic conditions was accomplished with the buffer having the pH of 7.0. and Acetonitrile (75:25% v/v) by using the stationary phase Acuity BEH C₁₈, 1.7 µm, 2.1 mm X 50 mm which gave the best peak shape. The Ethamsylate and Tranexamic acid separation was good at 265nm at the column temperature 25°C and sample compartment temperature 10° C with the flow 0.8 ml/min.

2.6 Assay Sample Preparation

About 10 tablets of the brand Sylate : 500 mg were taken and powdered in mortar with the help of pestle. 750 mg of the sample was transferred in a 1000 ml volumetric flask and dissolved in the diluent and made up to the mark. From the stock, 1 ml is diluted to 10ml with diluent to get the final and desired concentration.

2.7 Method Validation

The method showed linear and good accuracy in the concentration range of 2.5 µg/ml to 30 µg/ml of Etamsylate and 5 µg/ml to 60 µg/ml of Tranexamic Acid,

2.8 Selectivity and Specificity

To demonstrate the developed method for its specific and selective response, the diluent is injected as blank, the standard solution is prepared as per the section 3.1 prepared individually and injected individually in the volume of 5µL in triplicate.

2.9 System suitability

For the verification of instrument suitability, sample identification and quantification, the standard preparation is injected six times at the concentration of 0.025mg/ml and 0.05mg/ml combination as per the section 3.1 prepared and

injected with the aim of %RSD of area NMT (not more than) 2.0% and theoretical plates NLT(Not Less Than)2000 plates and the tailing factor NMT 1.5 and resolution NLT 4.

2.10 Precision

After method optimization the method was subjected for the method precision to prove the closeness between the series of measurements from the homogeneous sample as per the section 3.1 prepared and injected with the limit of % RSD for the area NMT 2%.The intermediate precision was verified on the next day with the same limit as % RSD for the area NMT 2%.

2.11 Accuracy and Recovery

Quality control standards were prepared in the four levels as 80%, 100% and 120% in the combined standard solution as per the section 3.1 prepared and injected with the limit of % Recovery of NLT98% to prove the good accuracy.

2.12 Linearity

The optimized method was calibrated with standards of 2.5 $\mu\text{g}/\text{ml}$, 5 $\mu\text{g}/\text{ml}$, 20 $\mu\text{g}/\text{ml}$, 25 $\mu\text{g}/\text{ml}$, 30 $\mu\text{g}/\text{ml}$ for Etamsylate and 5 $\mu\text{g}/\text{ml}$, 25 $\mu\text{g}/\text{ml}$, 40 $\mu\text{g}/\text{ml}$, 50 $\mu\text{g}/\text{ml}$, 60 $\mu\text{g}/\text{ml}$ for the tranexamic acid with the limit of regression coefficient(R^2)NLT 0.99 (Figure: 10 and 11).

2.13 Robustness

The developed method was evaluated for its robustness using small changes in the mobile phase composition , column temperature, flow and buffer pH .The sample was prepared as per the section 3.1 prepared and injected into the system.

2.14 Limit of Quantification

Six Lower level of quantification standards were prepared to quantify the components with the criteria S/N ratio NLT10 for the LOQ and S/N ratio 3:1 for the LOD.

2.15 Assessment of stability of standard and Mobile phase

The prepared standards having the concentration(25 $\mu\text{g}/\text{ml}$ of Etamsylate and 50 $\mu\text{g}/\text{ml}$ of Tranexamic acid) were prepared from the preparations as per the section 3.1 prepared and injected up to 72 hours to access the stability of the standard and mobile phase with the same limit i.e% RSD for the area NMT 2%.

4. RESULTS AND DISCUSSION

Table 1: SpecificityData							
S.NO	Injection	Etamsylate	RT	AREA	Tranexamic Acid	RT	AREA
01	Blank	Not Detected	NA	NA	Not Detected	NA	NA
02	01	Detected	1.121	425698	Detected	2.122	7578653
03	02	Detected	1.120	425816	Detected	2.121	7578862
04	03	Detected	1.122	425821	Detected	2.122	7579581

In the specificity study,there was no interference observed. The analytes were detected with good response. There was no carryover problem with this method.Because after

2.16 Degradation Behavior

Inorder to prove that the method was stable, this method was used to analyze the drug samples after chemical,thermal,photo and peroxide stress conditions and then calculated for its assay content. In chemical method,acid degradation was performed using 0.1N HCl by taking one tablet powder in 1000 ml volumetric flask and 2 ml of 0.1N HCl acid was added and from 1000 ml solution taken 1 ml into 10 ml volumetric flask and make up was done with the diluent then injected into the system. Base degradation was carried by treating with 2 ml IN NaOH and prepared as per the procedure followed in the acid degradation then injected into the system. In thermal degradation the drug product powder was kept in oven for three hours at 105°C. Then prepared the sample as per the procedure followed earlier and injected into the system. In peroxide degradation added H_2O_2 2 ml to the tablet powder and prepared the final sample.

2.17 Filter Compatibility

To verify the filter compatibility, the assay was calculated for the samples prepared as per the section 3.6 and undergone through the PVDF and Nylon filters.

2.18 Recovery of the swabs from the SS and Glass and Epoxy plate

Taken 25.05 mg of etamsylate and 50.22 mg of tranexamic acid in 100 volumetric flask .After dissolving the components in the diluent taken 1 ml to 10 ml further 1 ml to 100 ml dilution was performed .From this taken 01 ml through the micro pipette. And kept drop wise in 10x10 plates individually and kept for air dry. After drying the plate, taken one sterile swab and wetted with the diluent and swabbed from the left side corner to the right side corner. Then the swab dipped into the tube having the 10 ml of diluent. Then the solution passed through 0.22 μ PVDF filter and collected the sample into the vial. Then evaluated the results with the limit not less than 95% of recovery.

3. STATISTICAL ANALYSIS

The data was processed through the Q Sight software and the results were calculated as mean and \pm SD for the accuracy and relative standard deviation was calculated for the precision.The coefficient of regression also calculated in the linearity parameter.

analytes injection blank injection was injected.Post blank analytes were not detected (Table: 1 and Figure: 3 to 5).

Table 2: System Suitability Data

Parameter	Etamsylate	Tranexamic Acid
Peak Shape	Good	Good
Retention Time	1.121	2.122
Area	425958	75769583
Asymmetry	1.01	1.10
Theoretical Plates	4500	6500
Resolution	4.5	
%RSD of Six Injections	0.14	0.06

The system suitability parameters results were showing that the method was acceptable to validate and it can be used for the regular analysis (Table: 2).

Table 3: System Precision Data

Drug Name	Etamsylate		Tranexamic Acid	
Injection	RT	Area	RT	Area
01	1.121	425482	2.124	7585421
02	1.121	424380	2.122	7586732
03	1.122	426481	2.123	7576471
04	1.121	425687	2.124	7586454
05	1.122	425982	2.123	7589465
06	1.122	424781	2.123	7589678
Average	1.122	425465.5	2.123	7585703.5
SD	0.00055	773.8472	0.000752773	4834.986194
%RSD	0.05	0.18	0.04	0.06

Table 4: Method Precision Data

Drug Name	Etamsylate		Tranexamic Acid	
Injection	RT	Area	RT	Area
01	1.121	424427	2.124	757691
02	1.121	426277	2.122	756575
03	1.122	425321	2.123	758214
04	1.121	423485	2.124	757785
05	1.122	424722	2.123	759258
06	1.122	423658	2.123	758524
Average	1.122	424648.3	2.123	758007.8
SD	0.00055	1048.194	0.000753	902.7623
%RSD	0.05	0.25	0.04	0.12

The system precision and method precision results were found satisfactory as per the predefined limit(%RSD for RT and Ares NMT 2.0%) (Table: 3 and 4).

Table 5: Accuracy and Recovery Data

S.NO	Drug Name	% level spiking	Spiked amount(ng)	area	Recovered amount(ng)	%Recovery	%CV	
1	Etamsylate	80	20.02	339941	20.00	99.9		
			20.03	340052	20.00	99.9	0.11	
			20.03	340612	20.03	100.0		
2		100	25.03	424984	25.00	99.9		
			25.02	424998	25.00	99.9	0.15	
			25.03	425285	25.02	99.9		
3		120	30.032	511020	30.003	99.9		
			30.022	512685	30.013	100.0	0.02	
			30.002	511625	30.015	100.0		
1	Tranexamic Acid	80	40.00	6068617	40.00	100.0		
			40.00	6067514	40.00	100.0	0.01	
			40.00	6068524	40.00	100.0		
2		100	50.00	7576584	49.95	99.9		
			50.01	7586524	50.01	100.0	0.09	
			50.01	7589658	50.03	100.0		
3		120	60.01	9101925	60.00	100		

60.02	9102065	60.01	100	0.02
60.03	9104652	60.02	100	

The percentage recovery of the analytes in this method achieved more than 99% at all three levels. Hence this method was found to be more accurate (Table: 5 and Figure: 7 to 9).

Table 6: Robustness Data

Condition	Value	Etamsylate				Tranexamic Acid		
		RT	AREA	Asymmetry	Resolution	RT	AREA	Asymmetry
Flow	0.7 ml/min	1.212	412658	1.051	4.1	2.233	7495621	1.123
	0.8 ml/min	1.121	425465	1.012	4.2	2.122	7585612	1.102
	0.9 ml/min	1.112	418542	1.011	4.0	2.012	7695425	1.101
Mobile Phase Composition (Buffer: Acetonitrile)	80/20v/v	1.251	421365	1.048	4.1	2.312	7536254	1.131
	75/25 v/v	1.121	425632	1.012	4.2	2.121	7586321	1.101
	70/30v/v	1.101	413521	1.001	4.0	2.101	7423542	1.100
pH	6.8	1.212	418958	1.21	4.1	2.210	746258	1.121
	7.0	1.121	425325	1.01	4.2	2.121	7586311	1.101
	7.2	1.212	412359	1.05	4.1	2.231	7469521	1.102
Column Temperature	23	1.119	421575	1.031	4.1	2.118	7498521	1.130
	25	1.122	425625	1.012	4.2	2.122	7581351	1.010
	27	1.118	421325	1.001	4.0	2.012	7513528	1.110

The method was more capable with the minor alterations of instrument parameters. Based on the data of Table No:6 it was evident that when mobile phase composition, pH and column temperature changes about 10% there

was no system suitability and there was no abnormality in pattern of the elution and its capability of repeatability (Table: 6).

Table 7: Filter Compatibility

Drug Name	0.2µm PVDF Filter Assay	0.2µm Nylon Filter Assay
Etamsylate	100.0	99.3
Tranexamic Acid	99.8	99.0
Difference	0.7% For Etamsylate 0.8% For Tranexamic Acid	
Suitability	PVDF 0.2µM Filter	

Based on the filter compatibility results, the PVDF filter was more efficient for the analysis because there was no decrease

of drug when subjected to the filtration through the PVDF filter (Table: 7).

Table 8: Limit of Quantitation

Drug Name	Area	LOQ	S/N ratio
Etamsylate	4261	25ng/ml	11.5
Tranexamic Acid	75681	50ng/ml	12.1

The LOQ for the Etamsylate found to be 25ng/ml and for the tranexamic acid was 50ng/ml. The obtained results showed that this method was more sensitive (Table: 8, Figure: 17).

Table 9: LOQ Precision

Drug Name	Etamsylate		Tranexamic Acid		
	Injection	RT	Area	RT	Area
01	1.122	4215	2.123	75685	
02	1.121	4265	2.121	75982	
03	1.123	4263	2.122	75432	
04	1.121	4215	2.121	76813	
05	1.122	4269	2.122	76923	
06	1.122	4312	2.123	75695	
Average	1.122	4256.5	2.122	76088.33	
SD	0.00075	36.86597	0.000894	629.4886	
%RSD	0.07	0.87	0.04	0.83	

The LOQ precision results proved that at this stage, the method was more consistent. Because at lower level quantification the %RSD was 0.87% for Etamsylate and 0.83%

for Tranexamic acid. The obtained %RSD was very less as the developed method was more sensitive (Table: 9).

Table 10: Limit of Detection

Drug Name	Area	LOD	S/N ratio
Etamsylate	865	2.5ng/ml	3.4
Tranexamic Acid	7200	5.0ng/ml	3.1

The LOD for the Etamsylate found 2.5ng/ml and for the tranexamic acid was found 5.0ng/ml. The obtained results

were proving that this method was more sensitive in detection (Table: 10 and Figure: 18).

Table 11: Ruggedness Data

Drug Name	Injection	Day-1	Day-2	Drug Name	Day-1	Day-2
Etamsylate	01	424865	424568	Tranexamic Acid	7596911	7582354
	02	425985	424981		7556754	7556685
	03	424368	426525		7558143	7557652
	04	425856	426827		7576858	7574651
	05	426399	425985		7592588	7559858
	06	424589	425234		7585242	7556981
Average		425344	425687	7577749		7564697
Standard Deviation		841.2005	899.6058	17143.53		11023.87
%RSD		0.20	0.21	0.23		0.15

Based on the results shown in the table, the method was more rugged. Because when the samples analysed on the next day also there was no deviation from the first day result as per the predefined limit(%RSD) for the Area

NMT2.0%). There was no change of retention time of main actives. Hence the method can be considered as rugged (Table: 11).

Table 12: Standard and Mobile Phase Stability

Drug Name	Etamsylate		Tranexamic Acid	
Injection	RT	Area	RT	Area
Initial	1.122	425482	2.122	7585421
12	1.122	424185	2.123	7583685
24	1.122	426265	2.123	7579585
36	1.122	425361	2.124	7576385
48	1.121	425965	2.122	7585391
72	1.122	424637	2.122	7576594
Average	1.122	425315.8	2.123	7581177
SD	0.00041	786.3313	0.000816	4208.587
%RSD	0.04	0.18	0.04	0.06

The solution and mobile phase was stable up to 72 hours. The %RSD for the area and retention time below 0.2%. The result showed that the method was developed with good

stability. Hence the prepared samples can be analyzed with this method upto 72 hours. This method was helpful at the time of out of specification investigation also (Table: 12).

Table 13: Degradation Study on drug productData

Drug name	Condition	Peak area	%Recovery	%Degradation	Purity Angle	PurityThreshold
Etamsylate	Un Degraded	424912	100	-	-	-
	Acid	414912	97.6	2.4	0.521	1.621
	Base	411912	96.9	3.1	0.621	1.852
	Thermal	409912	97.2	2.8	0.725	2.132
	Photo	412912	96.5	3.5	0.685	1.921
	Peroxide	410712	96.6	3.4	0.656	1.911
Tranexamic Acid	Un Degraded	7599958	99.8	-	-	-
	Acid	7566958	99.4	0.4	0.212	0.951
	Base	7331958	97.5	1.9	0.421	1.251
	Thermal	7416958	97.4	2.0	0.435	1.285
	Photo	7331958	96.3	3.5	0.465	1.454
	Peroxide	7326958	96.7	3.1	0.510	1.621

The method was stable indicating because the degradants also detected with this method. The method was capable in detecting the degradants when the sample subjected to different stress conditions like chemical and thermal

degradations. As the method having the degradant detection capability, the method can be useful in out of trend results in shelf life study of the product. Table 14: Recovery on SS Plate of 100% spiking (Table: 13, Figure: 12-16)

Table 14. Recovery on SS Plate of 100% spiking

Drug Name	Amount spiked(ng/ml)	Recovery (ng/ml)	%Recovery
Etamsylate	25	24	96.3
Tranexamic Acid	50	49	97.5

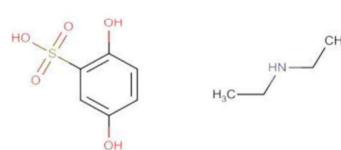
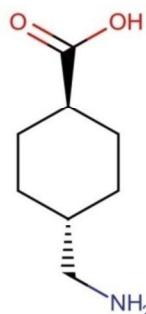
The recovery found good on SS plate. The percentage recovery was more than 95 %.Hence the method can be used to quantify the cleaning samples of manufacturing. Because most of the equipment used in manufacturing will be having SS as a material of construction. When the product change

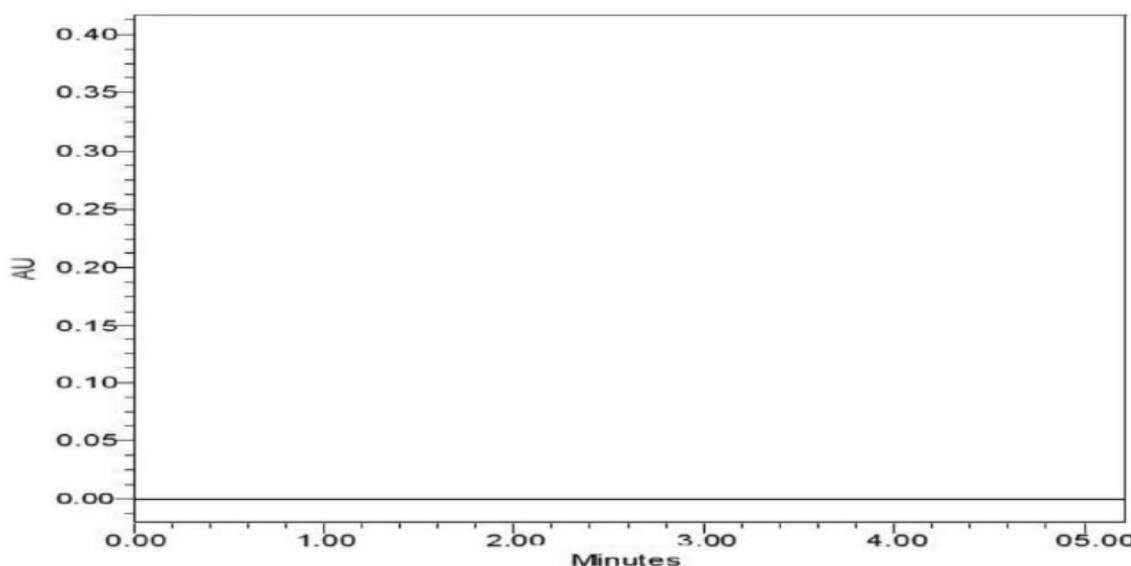
over condition, the cleaning sample will be submitted to quality control to know the percentage of product traces were present in final rinse of the equipment. After confirming there were no previous product traces only the next product manufacturing will be start (Table: 14).

Table 15: Recovery on Glass Plate of 100% spiking

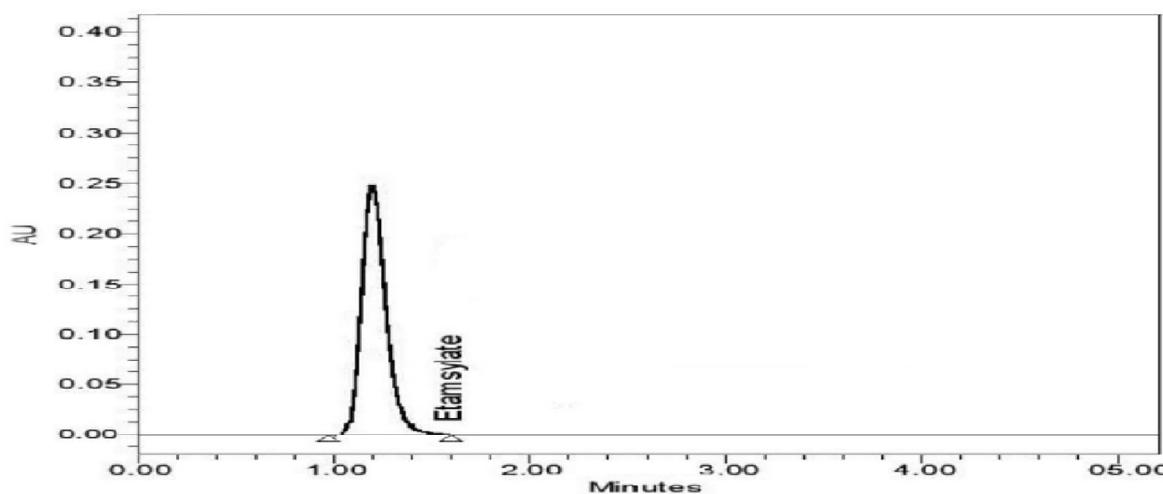
Drug Name	Amount spiked(ng/ml)	Recovery (ng/ml)	%Recovery
Etamsylate	25	24	96.9
Tranexamic Acid	50	48	96.3

The recovery found good on Glass plate,For glass plate the percentage recovery was more than 95 %.Hence the method can be used to quantify the cleaning samples of manufacturing. Because in the manufacturing area, active components traces will stick to the glass panels used in the manufacturing area.The production chemist will take the



swab from the glass panel and submit to the quality control to identify the traces. After confirming there was no product traces the clearance will be given for the next product manufacturing (Table: 15).


Table 16: Recovery on Epoxy Plate of 100% spiking

Drug Name	Amount spiked(ng/ml)	Recovery (ng/ml)	%Recovery
Etamsylate	25	24	95.3
Tranexamic Acid	50	48	96.2

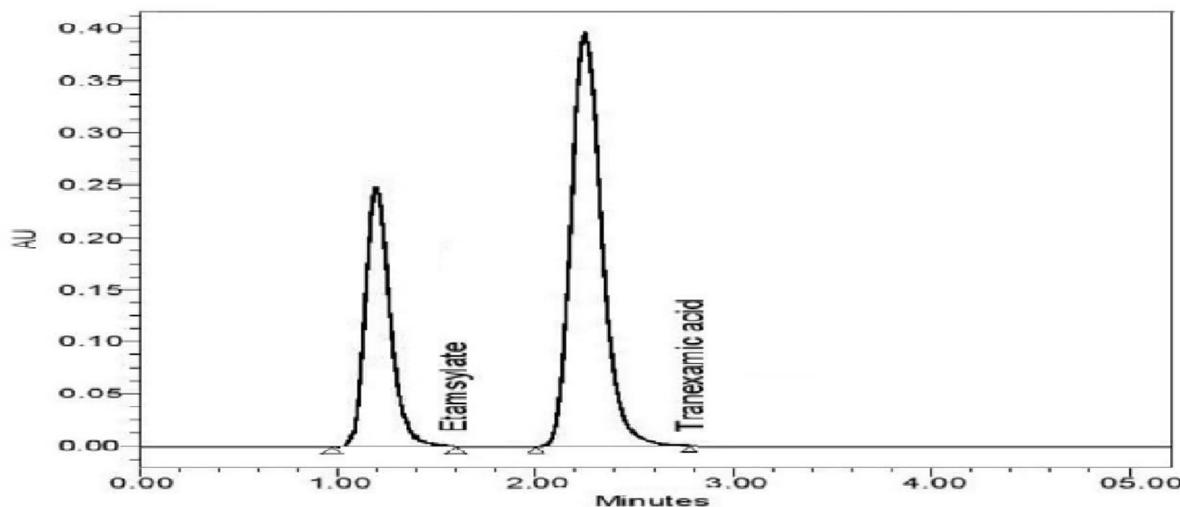

The recovery found good on Epoxy plate. For Epoxy plate the percentage recovery was more than 95 %.Hence the method can be used to quantify the cleaning samples of manufacturing.During the manufacturing the spills will happened. Most of the floors will be designed with the epoxy

materials. Before manufacturing the next products the manufacturing chemist will take the swabs from the epoxy floor and will submitted to the quality control.After confirming the cleanliness only the product manufacturing clearance will be given (Table: 16, Figure: 7 to 9).

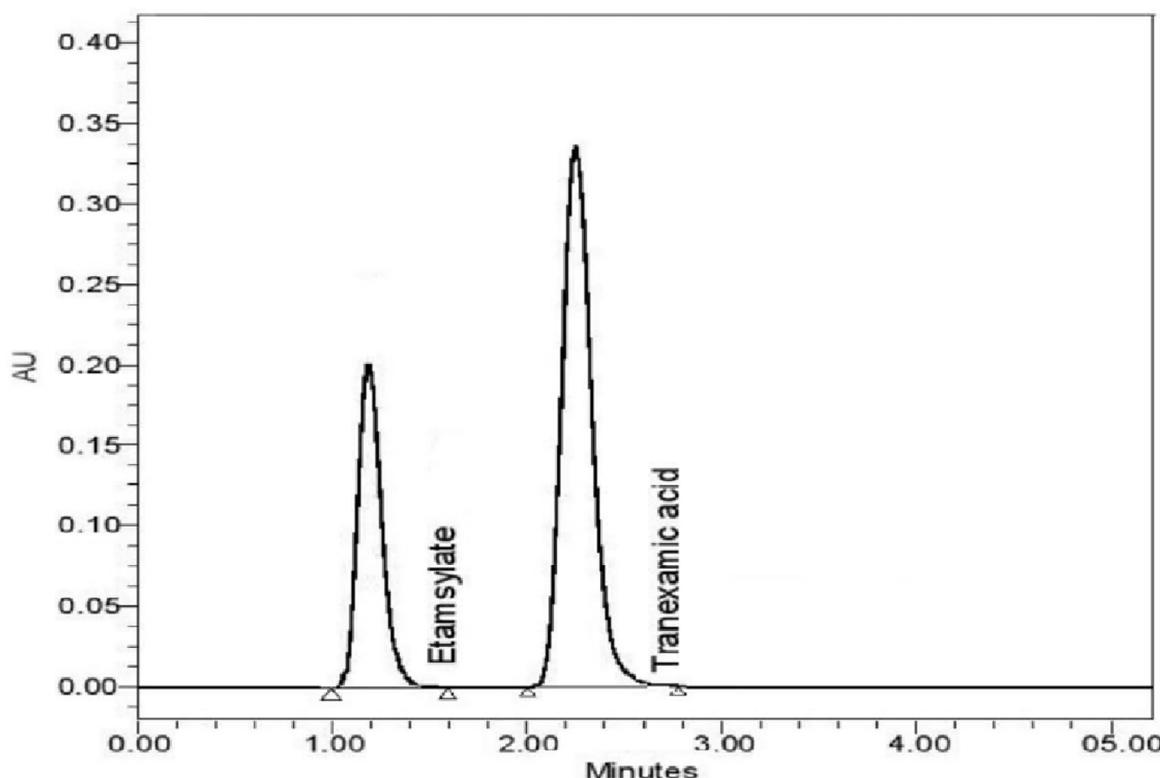
Fig 1. Chemical Structure Etamsylate**Fig 2. Chemical Structure Tranexamic acid**



Fig 3. Blank Chromatogram


Fig 4. Specificity Chromatogram of Etamsylate

The Etamsylate eluted with good response and peak shape at RT 1.121.


Fig 5. Specificity Chromatogram of Tranexamic Acid

The Tranexamic Acid eluted with good response and peak shape at RT 2.122.

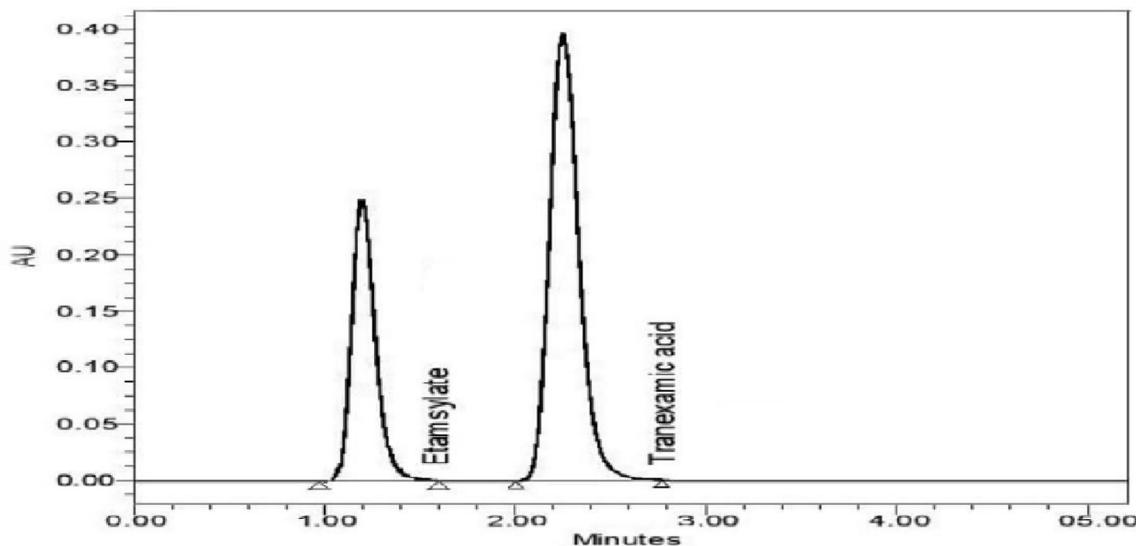
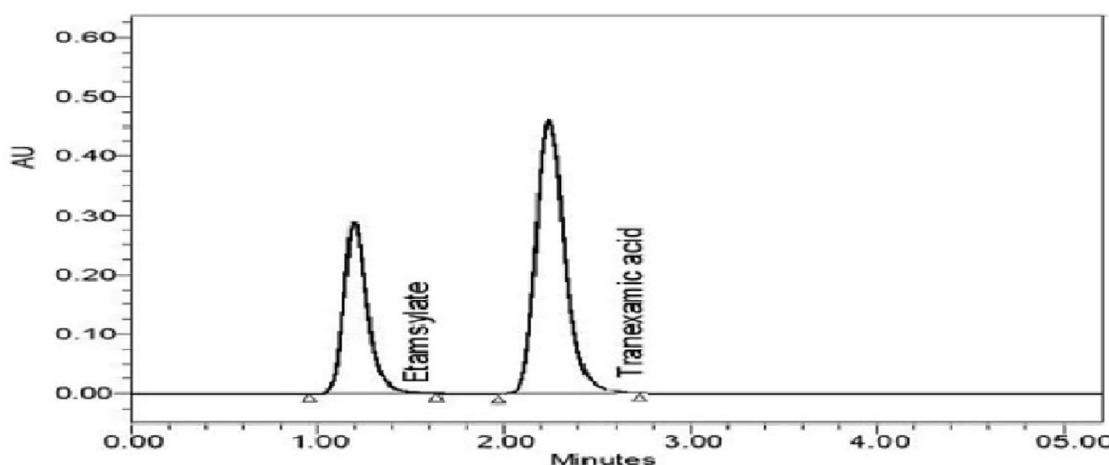


Fig 6. System Suitability Chromatogram of Ethamsylate and Tranexamic Acid.


The two analytes eluted with good resolution and symmetry. There was no tailing and other peaks interference at the main analytes elution.

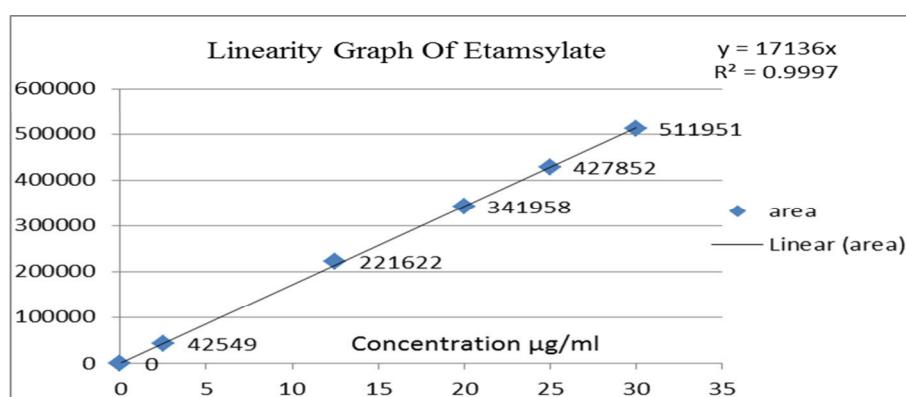

Fig 7. 80% Accuracy Level Chromatogram of Ethamsylate and Tranexamic Acid.

Fig 8.100% Accuracy Level Chromatogram of Ethamsylate and Tranexamic Acid.

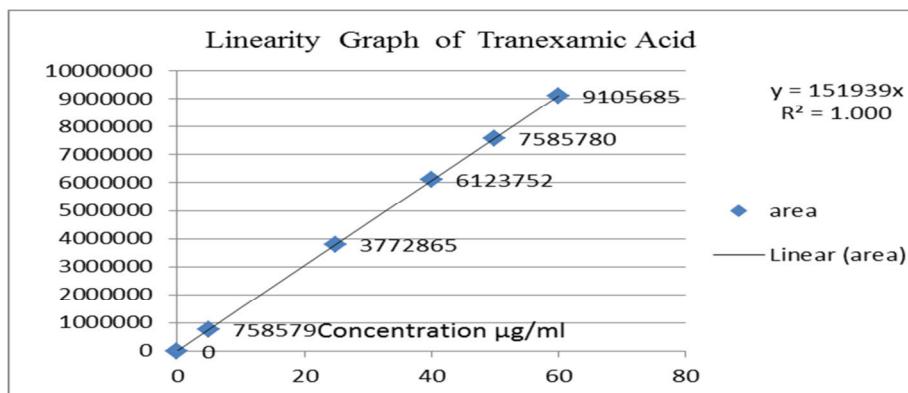
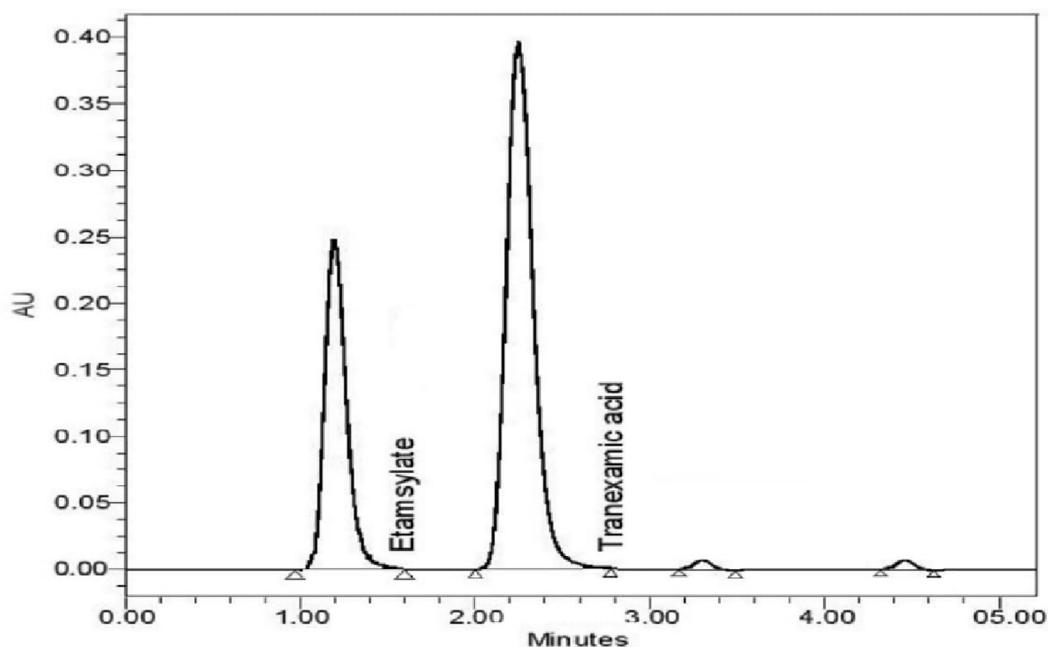
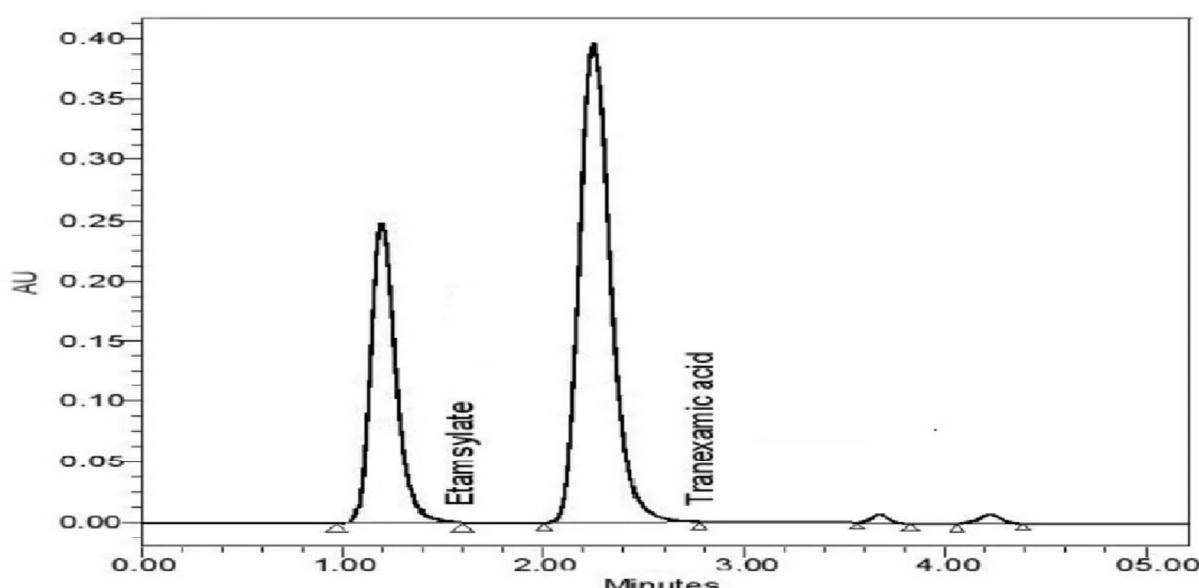


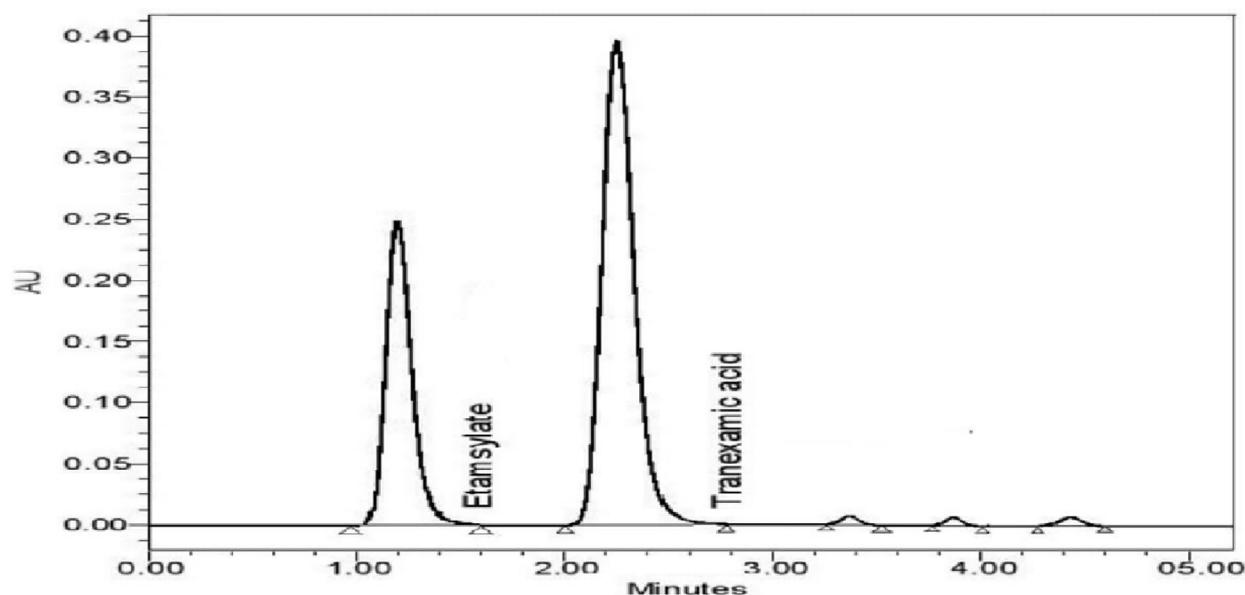
Fig 9.120% Accuracy Level Chromatogram of Ethamsylate and Tranexamic Acid.


Fig10. Linearity Graph of Etamsylate

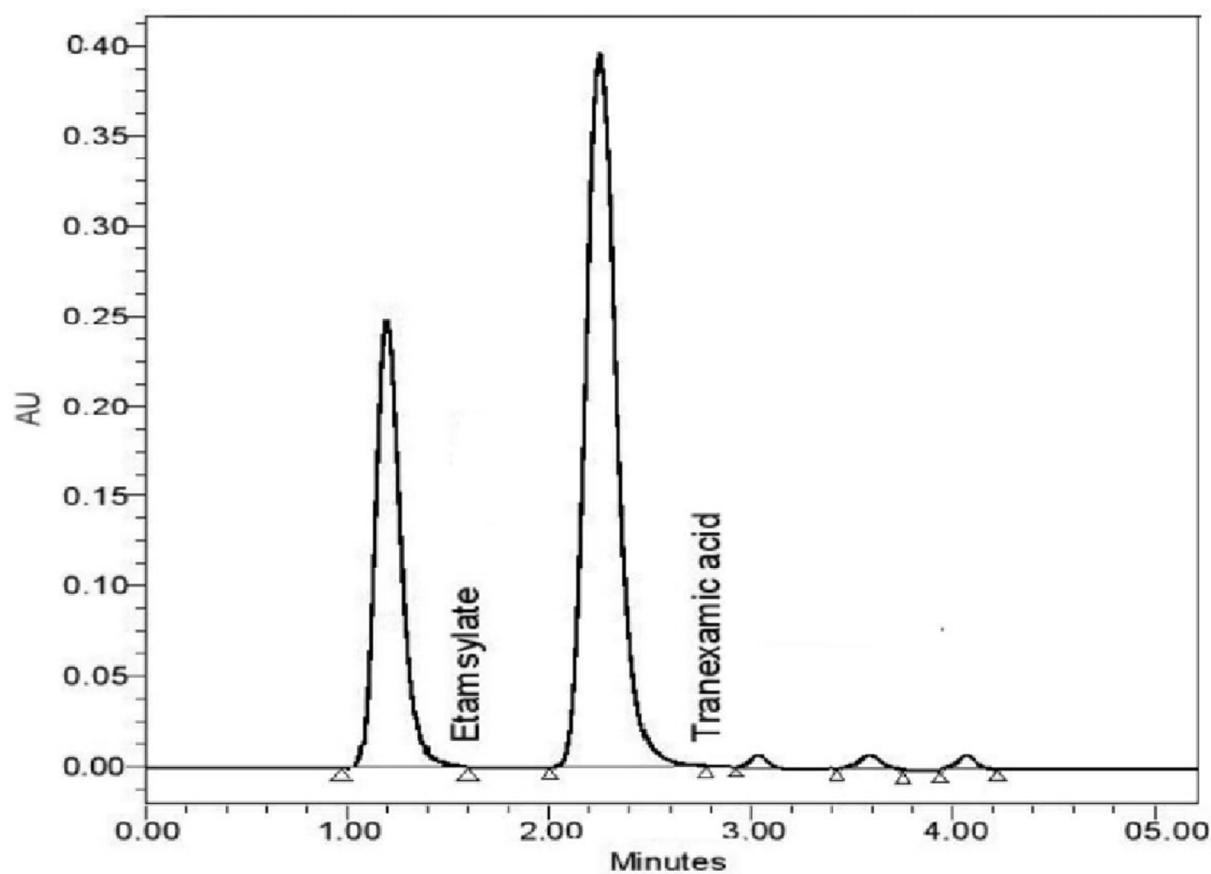
The correlation co efficient obtained for the Etamsylate is 0.9997 against the predefined limit NLT 0.99.


Fig 11. Linearity Graph of Tranexamic Acid

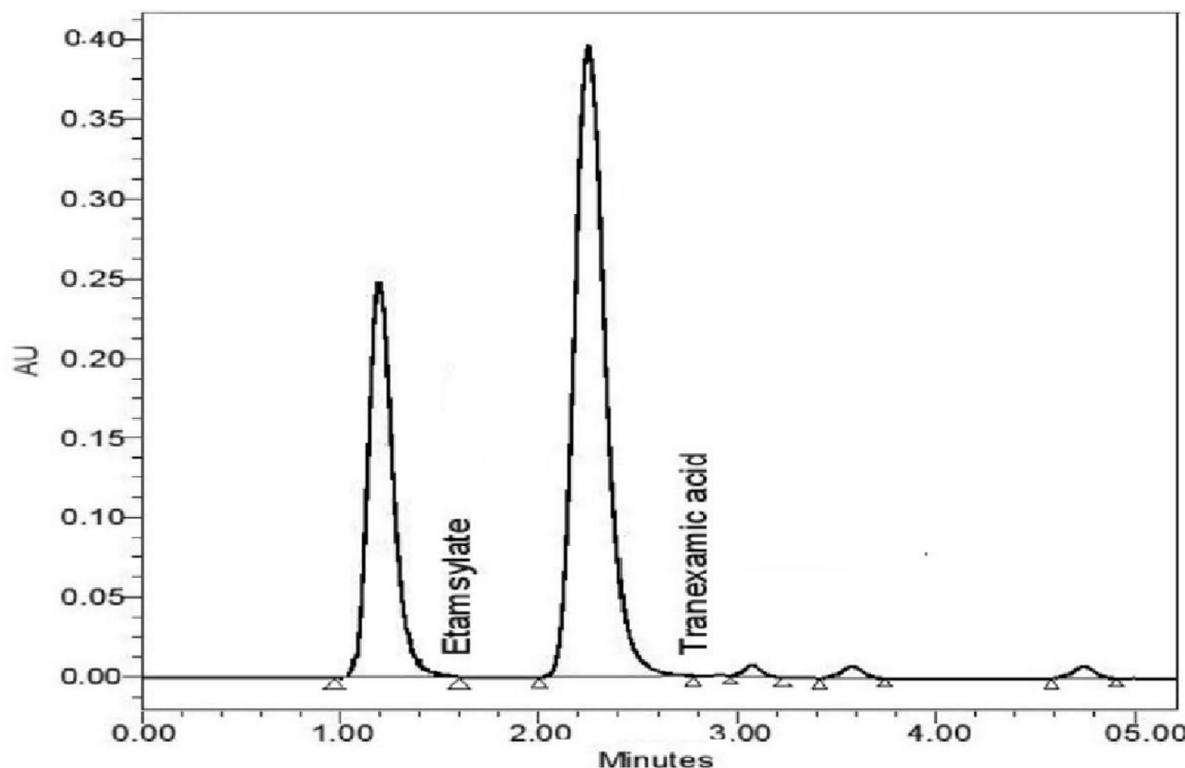
The correlation coefficient obtained for the Tranexamic Acid is 1.000 against the predefined limit NLT 0.99


Fig 12. Acid degradation chromatogram

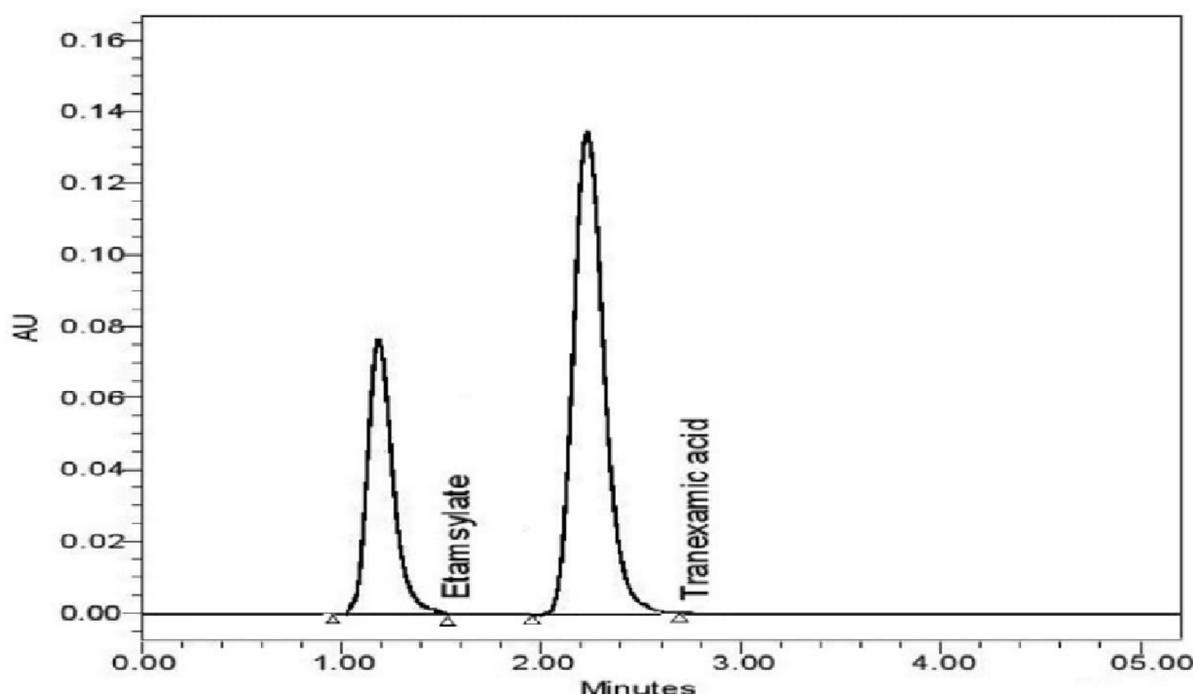
The method was indicating the stability and capable in identification of degradants when subjected to acid degradation. The degradants were detected at RT 3.211 and 4.341 min.


Fig 13. Base degradation chromatogram

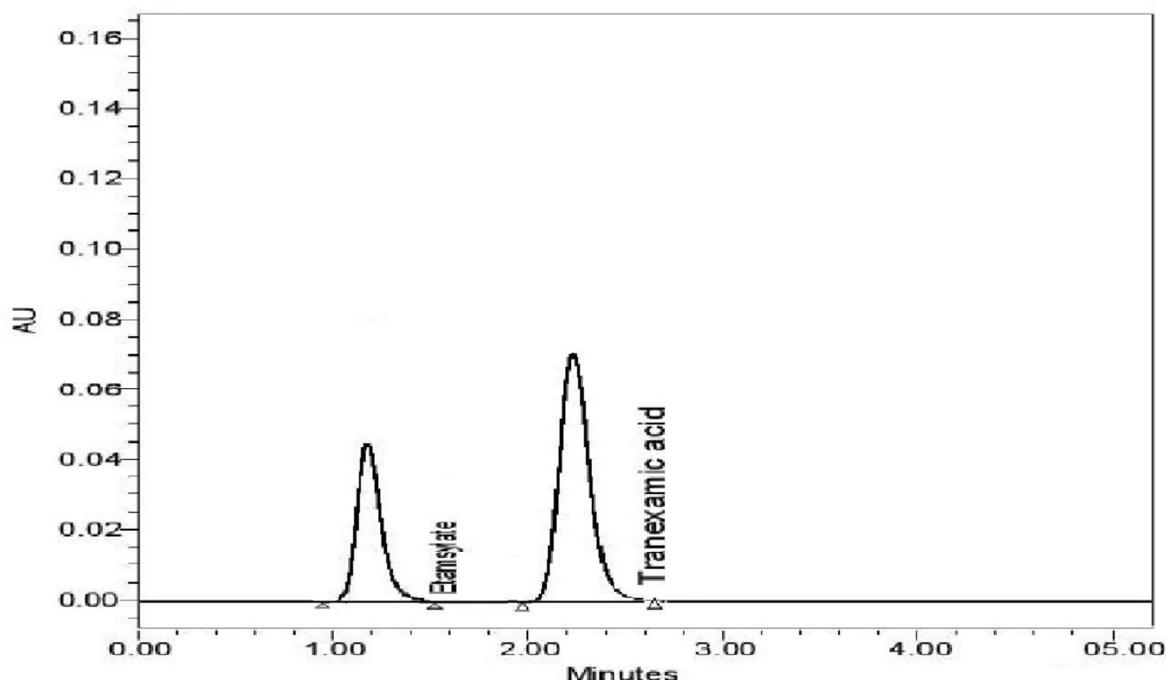
The method was capable in identification of degradants when subjected to base degradation as shown in the figure. The degradants were detected at RT3.521 and 4.122min.


Fig 14. Thermal degradation chromatogram

The method was capable in identification of degradants when subjected to thermal degradation. The degradants were detected at RT3.312 min and 3.812 min,4.381 min.


Fig15. Photo degradation chromatogram

The method was capable in identification of degradants when subjected to photo degradation. The degradants were detected at RT 2.821 min and 3.451 min,3.921 min.


Fig16. Peroxide degradation chromatogram

The method was capable in identification of degradants when subjected to peroxide degradation. The degradants were detected at RT 2.912 min and 3.412 min, 4.521 min.

Fig17. LOQ chromatogram

The figure showing that at the lower concentration also the analytes eluted with good shape and resolution. This was proving that at lower level also the method will give good results.

Fig18. LOD chromatogram

The figure showing the limit of detection which is having lowest concentration which can be detected with this method. This was evident that method was more sensitive.

4.1 Method development and optimization

In order to develop a good method for the qualitative and quantitative analysis, different trials were performed and observed some peak disturbances and retention time with different buffers like ammonium acetate and methanol. But finally the method was developed and optimized with the following conditions. The optimized method was mobile phase having the buffer pH of 7.0 and Acetonitrile (75:25 v/v) by utilizing the stationary phase Acquity BEH C₁₈, 1.7 μ m, 2.1 mm X 50 mm gave the best peak shape and resolution. The Etamsylate and Tranexamic acid separation was good at 265nm with the column temperature 25°C and sample compartment temperature 10°C with the flow 0.8 ml. Then the Etamsylate peak was observed at 1.122 min and tranexamic acid at 2.122 min of total run time 5min.

4.2 Method validation

No interference was observed at the time of main component elution times of Etamsylate and Tranexamic acid. The detectable level concentration was found to be 2.5 ng/ml for Etamsylate and 5.0 ng/ml as shown in the. The developed method repeatability was verified as system and method precision. The obtained % RSD of area and retention time for the system precision of Etamsylate was 0.18% and 0.05%. The obtained % RSD of area and retention time for the system precision of tranexamic acid was 0.06% and 0.04. The obtained % RSD of area and retention time for the method precision of Etamsylate was 0.25% and 0.05%. The obtained % RSD of area and retention time for the method precision of tranexamic acid was 0.12% and 0.04 as shown in the. The Linearity parameter was quantified by peak area vs concentration methodology. Different concentrations from 2.5 μ g/ml to 30 μ g/ml standard solutions for Etamsylate and 5 μ g/ml to 60 μ g/ml were prepared and injected into the system. Then we calculated the regression coefficient. The

obtained regression coefficient for Etamsylate is 0.9997 and for the tranexamic acid it was 1.000 as shown in the. The %CV was lower than 5% and mean % recovery varied from 98 – 102% as shown in the To prove the method stability, the method was verified with the minor variations of flow, mobile phase composition, P^H, Column temperature variations for the robustness. The results shown in the proved that the method was able to produce accurate and consistent results with the minor variation of the method parameters. To show the method was stable, the method was applied to the formulation subjected to acid degradation as shown in) were two degradants peaks were detected at 3.21 min and 4.341 min, degradation behavior with base was shown in the chromatogram two degradants were detected at 3.521 min and 4.122 min and the degradation behavior of drug products if exposed to heat at 105°C showz in the) three degradants were detected at 3.312 min and 3.812 and 4.381 min, The drug behavior when exposed to the light for 6 hours under the luminous light having lux more than 2500 the degradants were detected at 2.821 and 3.451 min and 3.921 min as shown in) and three degradants were detected at 2.912 min and 3.412 min and 4.521 min with the peroxide degradation effect as shown in . The obtained chromatograms showed that the method was successful in identifying the degradants and same was reflected in the quantification of the assay as shown in the. The method was verified for the ruggedness as interday and intraday precision. The obtained results were % RSD of area for the day-1 and day-2 as 0.20 and 0.21 observed for the Etamsylate. The obtained results were % RSD of area for the day-1 and day-2 as 0.23 and 0.15 for the tranexamic acid as shown in the. The LOQ and LOD were identified by injecting the lower concentrations with the S/N ratio criteria. The LOQ for the Etamsylate was 25 ng/ml and 50 ng/ml with the S/N ratio 11.5 and 12.1 as shown in the. The LOD for the Etamsylate was 2.5 ng/ml and 5.0 ng/ml with the S/N ratio 2.8 and 3.2 as shown in the (Table :10). The LOQ precision also performed to evaluate the repeatability at the lower quantification range. The obtained % RSD of the area for the Etamsylate and tranexamic acid was 0.87 and 0.83% as shown in the. The obtained % RSD showed the developed method was more selective, sensitive and accurate for the

quantification of the components. The ability of the method to the cleaning samples was verified by considering the recovery from the stainless steel plate,glass plate,epoxy plate with the aim of recovery NLT90%.The obtained recovery was more than 95% as shown in the . The methodology was utilized for the quantification of ethamsylate and tranexamic acid in the commercially available brand (Sylate-500mg). The obtained assay was 100% for the Etamsylate and 99.8% for the tranexamic acid. And the method was already proved in quantification of bulk in the above mention parameters as the accuracy and linearity. The same method was applied to the cleaning samples to identify the product traces in the lower quantification concentration range. The obtained results were proved that the method was good for quantification of the product traces in cleaning samples.The proposed method showed good performance in terms of linearity, accuracy, precision, recovery, robustness and stability forEtamsylate and Tranexamic acid in bulk, unit dose and equipment surface cleaning samples. It also showed appreciable resolution in separation and shape of the peak.After minor alteration of method parameters,we found good separation of the components without area abnormalities.

4.3 Abbreviations

ET: Etamsylate, TA: Tranexamic acid, mg: Milligram, μ g: Microgram, h: Hours, min: Minutes, mM: Milli molar, ml: Milliliter, C_{18} : Octadecylsilane, mm: Millimeter,g: Grams, μ m: Micro meter,L.O.Q: Lower limit of quantification,UPLC: Ultra Performance Liquid chromatography, AU: Atomic mass

9. REFERENCES

- 1) Validation of analytical procedures: Text and Methodology. In ICH Harmonized Tripartite Guidelines (2005) Q2 (R1). https://database.ich.org/sites/default/files/Q2_R1_Guideline.pdf.
- 2) Snyder, L.R., Kirkland, J.J. and Glajch, J.L. Practical HPLC Method Development. 1997, 2nd Edition, John Wiley and Sons, Inc., Hoboken.
- 3) Validation of analytical procedures: Text and Methodology. In ICH Harmonized Tripartite Guidelines (2005) Q2 (R1). https://database.ich.org/sites/default/files/Q2_R1_Guideline.pdf
- 4) Roshan Issarani, Kaushik Kumar Vankar, Diptish Kumar Nayak.Spectrophotometric Methods for Simultaneous Estimation of Etamsylate and Tranexamic Acidfrom Combined Tablet Dosage Form.Int.J. ChemTech Res.2010,2(1).
- 5) Naik RY, Dedania Z. Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Etamsylate and Tranexamic Acid in Tablet Dosage Form. IJPR.2015(149-156). [http://sphinxsai.com/sphinxsaiVol_2No.1/ChemTech_Vol_2No.1/ChemTech_Vol_2No.1PDF/CT=14%20\(74-78\).pdf](http://sphinxsai.com/sphinxsaiVol_2No.1/ChemTech_Vol_2No.1/ChemTech_Vol_2No.1PDF/CT=14%20(74-78).pdf).
- 6) Gehad G. Mohamed, Eman Y.Z. Frag and Abeer A. Sedeek.Spectrophotometric Methods for Determination of Tranexamic Acid and Ethamsylate in Pure Form and Pharmaceutical Formulation.Insight Pharmaceutical Sciences 5 (1): 1-7, 2015. <https://insightknowledge.org/fulltext/?doi=IPHARMA-IK.2015.1.7>.
- 7) Arshad, M.D, Karadi,A.B Darak ,V.R., Raju, S.A.; Development and validation of visible spectrophotometric methods for the estimation of ethamsylate in pharmaceutical dosage forms.Journal of Chromatographic Science, 2017, Vol. 55, No. 1, 23–29. <https://www.semanticscholar.org/paper/Development-and-Validation-of-Visible-Methods-for-Karadi-Raju/46a9d992f0d0ce2da626377d17963f75a9468125>.
- 8) Rajani Kaibada and Mukthi nuthalapati Mathrusri Annapurna.Analytical Methods for the Determination of Thrombolytics.Acta Scientific Pharmaceutical Sciences 3.4 (2019): 14-18. <https://www.actascientific.com/ASPS/pdf/ASPS-03-0227.pdf>,
- 9) Dr. G. Pratap Kumar, D. Manjeera and T. Murali Krishna.Hplc method development and validation for simultaneous estimation of tranexamic acid and ethamsylate pharmaceutical dosage forms.wjpls, 2017, Vol. 3, Issue 6, 268-273. <https://www.wjpls.org/download/article/17072017/1502882772.pdf>.
- 10) Swati sahani, Vandana Jain .A Novel reversed-phase high-performance liquid chromatography method for simultaneous estimation of drotaverine hydrochloride, Etamsylate, and tranexamic acid in tablet dosage form.Asian J Pharm Clin Res. Vol 11, Issue 6, 2018, 121-125. DOI:10.22159/ajpcr.2018.v11i6.24777
- 11) Yogini Jaiswal, Gokul Talale, sanjay surana.Determination of Etamsylate and Mefenamic Acid in Bulk Drugs and Tablets.Journal of planar chromatography V18(106),2005. DOI: 10.1556/JPC.18.2005.6.11
- 12) Fawzia Ibrahim, Mohie K. Sharaf El-Din, Asmaa Kamal El-Deen and Kuniyoshi Shimizu.Micellar HPLC Method

units, LOQ: Limit of Quantification, LOD: Limit of detection, NLT :Not less than, NMT :Not more than,

5. CONCLUSION

This technique contains a short run timeof analysis to get rapid results in critical situations.. The proposedmethod development for the simultaneous estimation of etamsylate and tranexamic acid by UPLC/ PDA would be much usefulfor routine analysis of bulk samples and finished dosage forms and for process equipment cleaning samples.

6. ACKNOWLEDGEMENTS

The authors are grateful to Yontus Life Sciences Pvt. Ltd, Guntur, India for providing support to carry out analysis work

7. AUTHORS CONTRIBUTION STATEMENT

T.MohanRao gathered the data related to this work,Dr.CH.Balasekhara Reddy and Dr.P.Srinivasababu guided ininterpretation of the results and completionof the work. All authors contributed equally to the manuscript completion.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

for Simultaneous Determination of Ethamsylate and Mefenamic Acid in Presence of Their Main Impurities and Degradation Products. *J Chromatogr Sci.* 2017 Jan;55(1):23-29. Epub 2016 Sep 27. doi: 10.1093/chromsci/bmw143.

13) Chandrasekhara S, Good anavar. A New Stability-Indicating RP-HPLC Method to Determine Etamsylate in Injection Formulation. *International Journal of Pharmaceutical and Biological Archives. IJPBA*, June – July, 2010, Vol. I, Issue, 2.

14) Nageswara Rao R., Nagaraju P, Reddy V. S., Krishnamurthy P. R., Bhaskar S. U., Gopal P. Determination of Etamsylate in pharmaceutical preparations. *Asian J. Chem.* / 2006 / 18(2) / pp 783-787. http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=18_2_3. <https://www.ijpba.info/ijpba/index.php/ijpba/article/view/46/26>