

In Silico Approaches to Study the Anti Cancer Potential of Bioactive Compounds of *Apium leptophyllum Pers* by Molecular Docking

M.Siva Ganesh¹* and Dr. J.Radhika²

¹*Research Scholar, Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) Affiliated to Bharathidasan University, Trichy – 620005, Tamil Nadu, India.

Associate Professor, Department of Biochemistry, Rathnavel Subramaniam College of Arts and Science, (Autonomous) Affiliated to Bharathiar University, Coimbatore - 641402, Tamil Nadu, India.

²Research Supervisor, Associate Professor and Principal, Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) Affiliated to Bharathidasan University, Trichy - 620005, Tamil Nadu, India.

Abstract: The Indian traditional health care system has suggested the presence of bioactive compounds in herbs used for the treatment of cancer. Natural medicinal plants have been used as therapeutics since the Vedic era. In-Silico studies have demonstrated to be an important tool that facilitates the use of the structural diversity of the natural products and designing new drugs for various diseases. Isolation studies by GC-MS analysis revealed that the ethanolic seed extract of *Apium leptophyllum Pers* contain natural bioactive compounds such as Thymol, Alpha -Terpineol and 9,12- Octadecadienoyl chloride(Z-Z-). These three active compounds are found in higher concentration in the ethanolic extract of *Apium leptophyllum Pers* seeds. The isolated active compounds were subjected to docking studies using Glide module (Schrodinger). Research was performed to find out the potential molecular targets for these selected compounds. The effectiveness of In-silico approach was carried out by performing docking of known specific phenolic mono terpenoids such as Thymol inhibitors against their respective selected macromolecules of cancer cell receptor. The present study was carried out to identify potential inhibitors for Bruton's tyrosine kinase and checkpoint kinase 2. The docking studies revealed that the some essential active compounds such as Thymol, Alpha -Terpineol, and 9, 12- Octadecadienoyl chloride(Z-Z-) isolated by GC-MS analysis have potent anticancer activity against cancer cell. The study will further pave the way in designing other potent drugs and drug analogs. The novel molecular entities have the potential as leads which certainly aid in designing anti-cancer molecules in short span of time.

Keywords: *Apium leptophyllum Pers*, Bio active compounds, Molecular Docking, Bruton's tyrosine kinase, Checkpoint kinase 2, Anti-cancer.

***Corresponding Author**

M. Siva Ganesh , Research Scholar, Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) Affiliated to Bharathidasan University, Trichy – 620005, Tamilnadu, India.

Received On 28 April 2020

Revised On 28 May 2020

Accepted On 30 June 2020

Published On 06 October 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation M. Siva Ganesh, Dr. J.Radhika , In Silico Approaches to Study the Anti Cancer Potential of Bioactive Compounds of *Apium leptophyllum Pers* by Molecular Docking.(2020).Int. J. Life Sci. Pharma Res.10(4), L90-98
<http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.4.L90-98>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Cancer is the most deadly disease that causes the serious health issues, mortalities, morbidities and physical disabilities around the world. It is characterized by uncontrolled cell proliferation with the potential to invade or other parts of the body. Natural medicinal plant extracts and active compounds derived from plants have played a crucial role in the development of novel anticancer drugs. Recent treatment is basically directed on tumor by chemotherapeutic agent that can effectively remove the tumor but cause a lot of side effects. Therefore to find out the effective bioactive compounds from herbal plants with the target on genes arresting cancer cell division with less side effects is very much essential. Recent days the advancement in research and isolation of bioactive compounds from natural herbal plants by GC-MS analysis technique has helped in identifying novel drugs with anticancer activity. Different methods applied for the treatment of tumor includes radiation therapy, chemotherapy and surgery, used either alone or in combination¹. These type of treatments are mainly followed for cancer therapy based on the severity of tumor. It has good effect for cancer cell but it leads to lot of side effects in our body. Vincristine and Vinblastine from *Catharanthus roseus*, Paclitaxel from *Taxus brevifolia*, and Topotecan and Irinotecan from *Camptotheca acuminata* are the best example of naturally derived anticancer compounds.^{2,3} Typical chemotherapy treatment destroys platelets and WBC along with tumor cells by damaging their immune system. It was also proved that the cancer patients taking natural medicines during radiation and chemotherapy revealed lesser side effects. In recent days the utilization of traditional medicines is gradually increased in health care system, due to fewer side effects. Natural herbal medicine has more potent anticancer activity for the treatment of several types of cancer. Natural bioactive compounds have been isolated and purified by various techniques for significant anticancer activity against target cancer cell. The target of the tumor was observed and was made to interact with bioactive compounds from medicinal plant by using in-silico approaches. *Apium leptophyllum* (Pers.) F. Muell, ex Benth belongs to the family Apiaceae (Umbelliferae). It is a green, branching herb with tap root arrangements⁴. Seed extract of *Apium leptophyllum* Pers has anti-inflammatory, antiseptic, antispasmodic, analgesic and diuretic properties⁵. The seed extract of *Apium leptophyllum* oil revealed potent antifungal activity against *Candida albicans*. The essential oil consists of thymoquinol, carvacrol and methyl esters of thymol, used as carminative.⁶ In-Vitro computational methods were committed to evaluate the anticancer activity of herbal drugs. These methods have been used for drug designing aspects for various types of cancer^{7,8}. Bruton's tyrosine kinase is an intracellular non receptor kinase that belongs to the TEC-family tyrosine kinases jointly with bone marrow-expressed kinase (BMX), redundant-resting lymphocyte kinase (RLK), and IL-2 inducible T-Cell kinase (ITK). All these proteins play a vital role in the intracellular signaling of both B and T lymphocytes. Currently a clinical research report have shown that BTK is found in certain cancer subtypes and in other relevant cells that are granting to the cancer microenvironment such as macrophages, dendritic cells,

endothelial cells and myeloid derived suppressor cells⁹. Checkpoint kinase 2 is a serine/threonine kinase that engaged in a series of signaling networks important for protecting genomic integrity and reacting to DNA damage. Checkpoint kinase 2 inhibitors have currently interacted with sensitizing cancer cells to new DNA-damaging agents used in the treatment of tumor. Selective Checkpoint kinase 2 inhibitors may reduce p53-mediated apoptosis in normal tissues, thereby helping to reduce adverse effects from radiation and chemotherapy. Thus relatively few selective inhibitors of Chk2 have been demonstrated and none have yet progressed into clinical trials. So these two drug target proteins for the treatment of tumor.¹⁰ The aim of the present study is to evaluate anti proliferative and cytotoxic effects of bioactive compounds of selected medicinal plant *Apium leptophyllum* Pers through molecular docking method by using target molecule such as Check point kinase -2 and Bruton's tyrosine kinase.

2. MATERIALS AND METHODS

2.1 Protein Preparation

Energy minimization of the resulting protein was accomplished by using Maestro 9.0.111 protein preparation wizard¹¹. The energy minimization was performed at the default cut off RMSD value of 0.30 Å using OPLS 2001 force field¹². The possible conformation of the refined protein was obtained using procheck analysis visualized with the aid of Ramachandran plot by checking the dihedral Phi and Psi angles of amino acid residues.

2.2 Active Site

Identification and characterization of binding site is the key step in structure based drug design¹³. The active site region of the protein is identified by Castp¹⁴. This server analytically furnishes the area and the volume at the probable active site of each pocket to envisage the binding site.

2.3 Receptor Grid Generation

The scoring grid was generated using a box size of 30 °A × 30 °A × 30 °A and centered on the centroid within a box of dimension 27 °A × 16 °A × 46 °A that encloses the entire groove near the active site to fit the ligands¹⁵.

2.4 Docking

Docking studies a promising tool for identifying active lead compounds which has created a pipeline of drug discovery in most pharmaceutical companies¹⁶. Glide module has been used for all the docking protocol¹⁷. The ligands were processed with the Lig Prep program to assign the suitable protonation states at physiological pH= 7.2±0.2. Conformer formation was performed with the ConfGen torsional sampling and Ligand docking used OPLS_2005 force field. The van der Wals radii were scaled using a default scaling factor of 0.80 and default partial cutoff charge of 0.15 to decrease the penalties. There are three modes to screen the compound such as by HTVS, SP and XP in Glide modeule.¹⁸.

3 RESULTS

Table 1. Binding interactions between Check point kinase-2 with hits compounds_9,12-Octadecadienoyl chloride(Z-Z)

Compounds name	Glide score (kcal/mol)	Glide energy (kcal/mol)	Binding residues	H-bond distances
9,12- Octadecadienoyl chloride(Z-Z)	-4.2	-25.56	ASP 368 N-H..OO	2.56

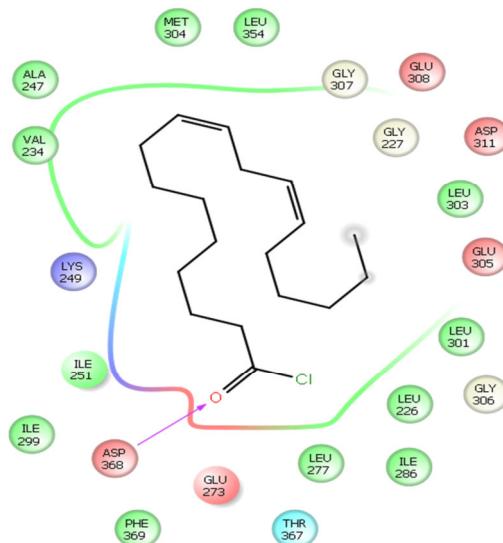

Fig 1. Ligand compound 9,12- Octadecadienoyl chloride(Z-Z) interact with Check point kinase 2

Figure –1 shows the interaction between the ligand and the protein and the bonds, bonds distance involved between them. The compound 9,12- Octadecadienoyl chloride(Z-Z) binding with active site residues of ASP 368 amino acid of target Check point kinase -2. It has possessed Glide score – 4.2 and Glide energy –25.56 based on the interaction between ligand and target molecule

Table 2: .Binding interactions between target -Check point kinase-2 with hits compounds_Thymol

Compounds name	Glide score (kcal/mol)	Glide energy (kcal/mol)	Binding residues	H-bond distances
Thymol	-5.8	-50.21	MET 304 N-H...O	2.72

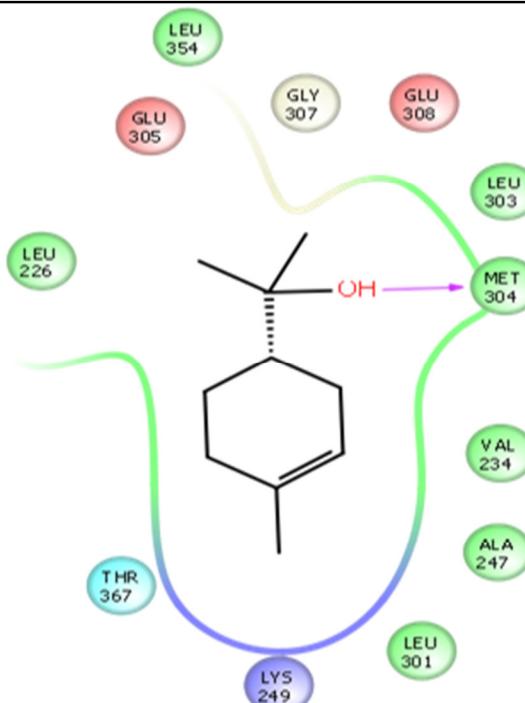
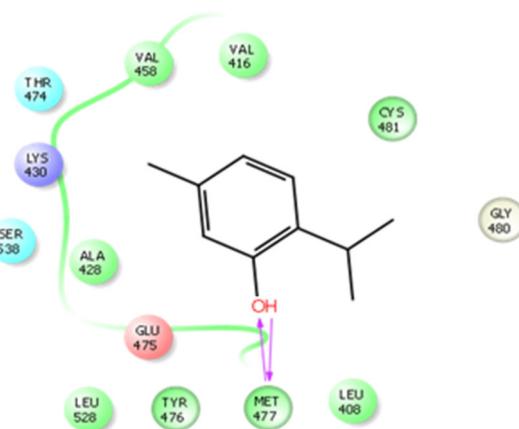


Fig 2: Ligand compound Thymol with Checkpoint kinase 2

Figure –2 shows the interaction between the ligand and the protein and the bonds, bonds distance involved between them. The compound Thymol binding with active site residues of MET 304 amino acid of target Check point kinase 2. It has possessed Glide score – 5.8 and Glide energy – 50.21 based on the interaction between ligand and target molecule.

Table 3. Binding interactions between target - Bruton's tyrosine kinase with hits compounds - Alpha -Terpineol

Compounds name	Glide score (kcal/mol)	Glide energy (kcal/mol)	Binding residues	H-bond distances
Alpha -Terpineol	-6.3	-22.21	MET 477 N-H...O	2.34

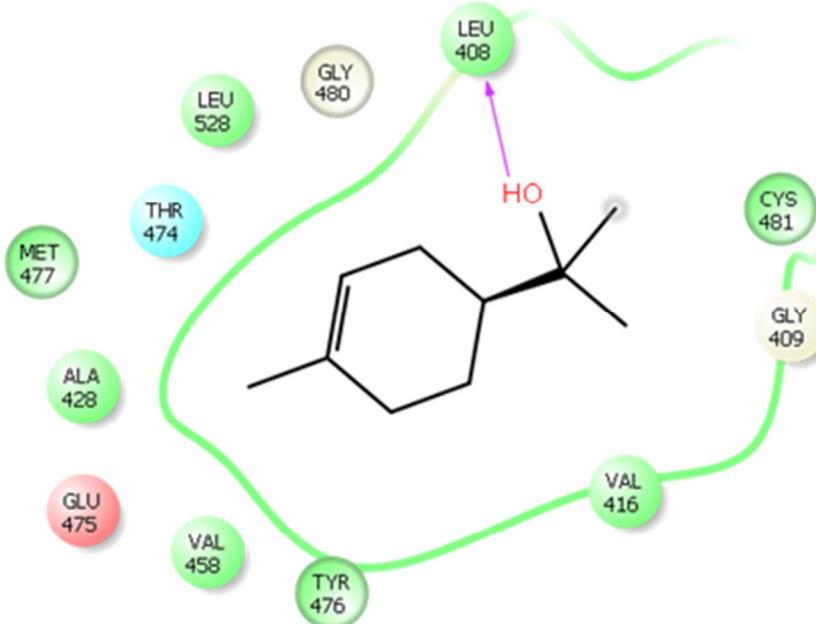


Fig 3. Ligand compound Alpha -Terpineol with Bruton's tyrosine kinase

Figure –3 shows the interaction between the ligand and the protein and the bonds, bonds distance involved between them. The compound Alpha-Terpineol binding with active site residues of MET 477 amino acid of target Bruton's tyrosine kinase. It has possessed Glide score – 6.3 and Glide energy – 22.21 based on the interaction between ligand and target molecule.

Table 4: Binding interactions between target - Bruton's tyrosine kinase with hits compounds - Thymol

Compounds name	Glide score (kcal/mol)	Glide energy (kcal/mol)	Binding residues	H-bond distances
Thymol	-4.1	-20.56	LEU 408 N-H...O	2.70

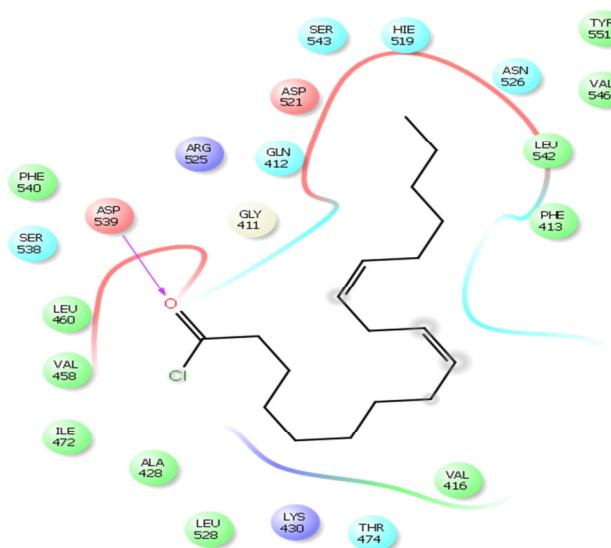


Fig 4. Ligand compound Thymol with Bruton's tyrosine kinase

Figure –4 shows the interaction between the ligand and the protein and the bonds, bonds distance involved between them. The compound Thymol binding with active site residues of LEU 408 amino acid of target Bruton's tyrosine kinase. It has possessed Glide score - 4.1 and Glide energy -20.56 based on the interaction between ligand and target molecule.

Table 5: Binding interactions between target - Bruton's tyrosine kinase with hits compounds - 9,12-Octadecadienoyl chloride(Z-Z-)

Compounds name	Glide score (kcal/mol)	Glide energy (kcal/mol)	Binding residues	H-bond distances
9,12- Octadecadienoyl chloride(Z-Z-)	-3.4	-20.34	ASP 539 N-H...O	2.62

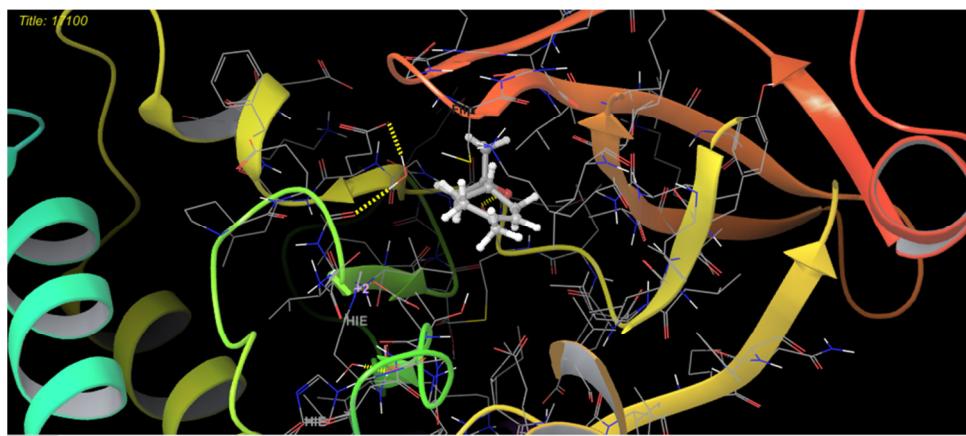
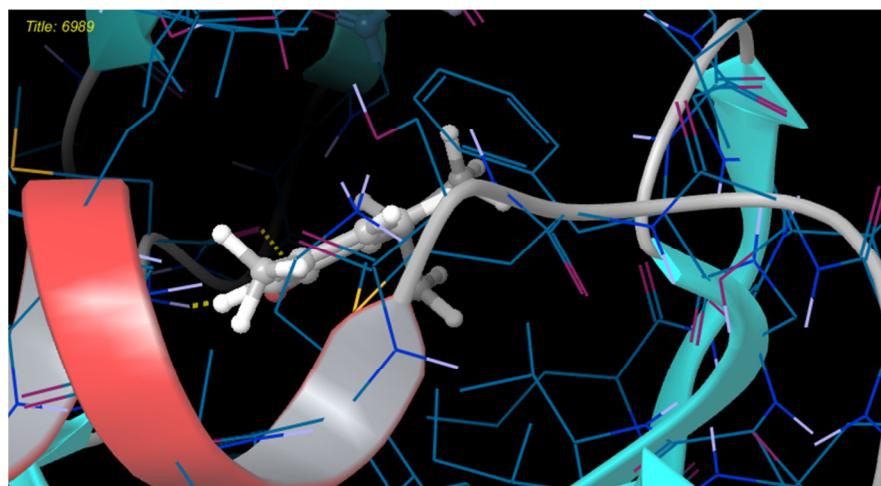
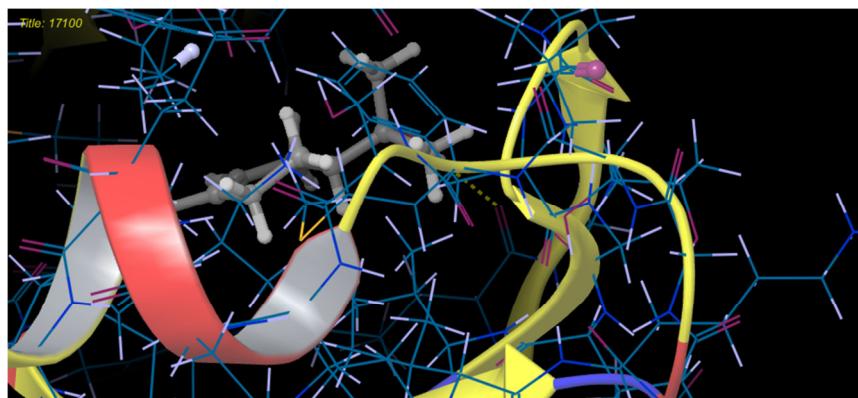

Fig 5. Ligand compound 9,12- Octadecadienoyl chloride(Z-Z-) with Bruton's tyrosine kinase

Figure –5 shows the interaction between the ligand and the protein and the bonds, bonds distance involved between them. The compound 9,12- Octadecadienoyl chloride(Z-Z -) binding with active site residues of amino acid ASP 539 of target Bruton's tyrosine kinase. It has possessed Glide score – 3.4 and Glide energy -20.34 based on the interaction between ligand and target molecule.


3-D Conformation of Molecular Docking of Active Compounds of *Apium leptophyllum* Pers


Fig 6. Ligand compound 9,12- Octadecadienoyl chloride(Z-Z-) interact with checkpoint kinase 2

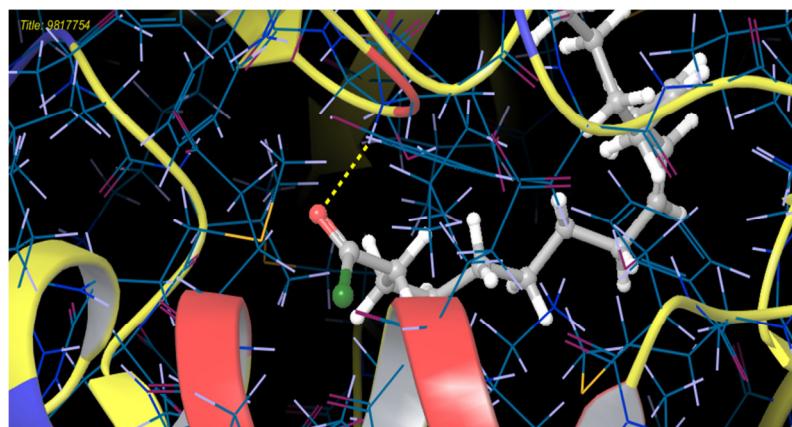

Fig 7. Ligand compound Thymol with checkpoint kinase 2

Fig 8. Ligand compound Alpha -Terpineol with Bruton's tyrosine kinase

Fig 9. Ligand compound Thymol with Bruton's tyrosine kinase

Fig 10. Ligand compound 9,12- Octadecadienoyl chloride(Z-Z-) with Bruton's tyrosine kinase

4 DISCUSSION

Most of the medicinal plants were used in various traditional medicines for different ages. Although the essential ethnobotanical directed drug discovery efforts have been challenged due to their limited impact in the last two decades and unsatisfactory performance when compared to random screening approach, such approaches still play a vital role in drug discovery programs¹⁹. According to analysis on traditional medicine database, CDRUG was able to identify 5278 compound out of which 75% were similar to approved anticancer drugs (Tanimoto coefficient ≥ 0.70 , MACCS fingerprint), and the top 346 compounds it identified were identical to compounds with proven anticancer potential on 60 cell lines²⁰. Structural features are essential criteria in the assessment of drug-likeness. The combined presence of certain structures like heterocyclic rings (both aliphatic and aromatic), benzene ring, keto, alcohol, aliphatic amine, carboxyester groups and carboxamide may signal antineoplastic and other drug likenesses²¹. The Lipinski's rule of five is utilized to appraise the drug-likeness of a compound to satisfy this rule in order to be administered orally. The Lipinski's rule of five is also used to assess the durability of a drug molecule²². Hence, this rule is essential for bioactive compounds to be considered as oral drug²³. Molecular docking is an essential in silico technique, which predicts the mode of interaction between a small ligand and target protein molecule for an established binding site.²⁴ Binding energy informs us on the strength and how much affinity a compound binds to the pocket of a target protein. A compound with a lower binding energy is preferred as a possible drug candidate and vice versa^{25,26}. Molecular docking is considered as a highly efficient method for the identification of potential target, screening a potent drug and designing a novel drug by lead optimization.²⁷ The molecular docking technique to find potent small molecules against protein targets of Bruton's tyrosine kinase and checkpoint kinase 2. Various parameters such as Glide score, Glide energy and hydrogen bond interactions are used to assess the best conformation or binding site orientation to inactivate the target protein. Two main aspects were taken into account to assess the quality of docking methods: (i) Docking accuracy, which identifies the true binding mode of the ligand to the target protein, and (ii) Screening enrichment, which is a measurement of correlation between docking method and true binding ligands rather than random compound selection. Glide score denotes the binding interaction is an empirical scoring function that

considers the energy contribution, the effects of the hydrophobicity as well as the hydrogen bonding and penalizes the steric clashes. The ligands Thymol, Alpha -Terpineol and 9,12- Octadecadienoyl chloride(Z-Z-) were specifically binding with the active site region of target proteins. The compound 9,12- Octadecadienoyl chloride(Z-Z-) binding with active site residues of ASP 368 amino acid and the compound Thymol binding with active site residues of MET 304 amino acid in Check point kinase 2. The compound Alpha -Terpineol binding with active site residues of MET 477 amino acid, the compound Thymol binding with active site residues of LEU 408 amino acid and the compound 9,12- Octadecadienoyl chloride(Z-Z-) binding with active site residues of ASP 539 amino acid in Bruton's tyrosine kinase. Three compounds such as Octadecadienoyl chloride(Z-Z-), Thymol and Alpha -Terpineol identified in ethanolic extract of tested drugs were subjected to docking studies. Check point kinase -2 and Bruton's tyrosine kinase are selected for the present study and docking analysis were carried out with the selected ligands found in Ethanolic extract of Apium leptophyllum Pers (EEAL), which was found to be highly effective against EAC cells. The isolated compounds Octadecadienoyl chloride(Z-Z-), Thymol and Alpha -Terpineol have been subjected to molecular docking process with target Check point kinase-2 and Bruton's tyrosine kinase to understand the anti-cancer activity of EAC cell. The Glide energy value of Thymol compound has better interaction of target Check point kinase -2 when compared to Octadecadienoyl chloride(Z-Z-). It has possessed high level of Glide energy -50.21 and Glide score -5.8 when compared to Octadecadienoyl chloride(Z-Z-). Alpha -Terpineol compound has significant interaction of target Bruton's tyrosine kinase when compared to Thymol and Octadecadienoyl chloride(Z-Z-). It has high Glide energy and Glide score such as -22.21 and -6.3 when compared to other two ligand active compounds. Thymol compound has good interaction of Bruton's tyrosine kinase target molecule followed by Octadecadienoyl chloride (Z-Z-).

5 CONCLUSION

The present study was carried out to identify potential inhibitors for Bruton's tyrosine kinase and checkpoint kinase 2. The docking studies was performed, which identified Thymol, Alpha -Terpineol, 9,12- Octadecadienoyl chloride(Z-Z-) compounds proven to result in improved inhibition of cancer and active amino acid residues, which will be useful in designing other potent drugs and drug analogs. This study provides new insights into the identification of drugs in the in

vitro laboratory. The novel molecular entities have the potential as leads which certainly aid in designing anti-cancer molecules in short span of time. As whole results throw light for future development of more potent and drug like inhibitors for Bruton's tyrosine kinase and checkpoint kinase 2.

6 ACKNOWLEDGEMENT

The author wish to gratitude toward management of Srimad Andavan Arts and Science College (Autonomous) Affiliated to Bharathidasan University, Trichy – 620005, Tamilnadu, India.

9. REFERENCES

- Kumar B, Singh S, Skvortsova I, Kumar V. Promising targets in anti-cancer drug development: recent updates. *Curr Med Chem.* 2017;24(42):4729-52. doi: 10.2174/092986732466170331123648, PMID 28393696.
- Carini JP, Klamt F, Bassani VL. Flavonoids from Achyrocline satureoides: promising biomolecules for anticancer therapy. *RSC Adv.* 2014;4(7):3131-44. doi: 10.1039/C3RA43627F.
- Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. *J Ethnopharmacol.* 2005;100(1-2):72-9. doi: 10.1016/j.jep.2005.05.011, PMID 16009521.
- Bucar A, F. A study on the composition, antimicrobial and Antioxidant activities of the leaf essential oil of Apium leptophyllum (Pers.) Benth.. Growing in Ethiopia. *Ethiop Pharm J.* 2008;26:95-102.
- Sharma PC, Yelne MB, Dennis TJ. Database on medicinal plants used in Ayurveda. New Delhi: Central Council for Research in Ayurveda and Siddha. 2001;3:475.
- Khare CP. Encyclopedia of India Medicinal Plants, Rational Western Therapy, Ayurvedic and other traditional Usage. Botany: Springer-Verlag Berlin Heidelberg, New York; 2007. p. 267-68.
- Tabassum S, Zaki M, Afzal M, Arjmand F. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Ia: in vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. *Eur J Med Chem.* 2014;74:509-23. doi: 10.1016/j.ejmch.2013.12.046, PMID 24508781.
- Naqsh e Zahra SN, Khattak NA, Mir A. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of Rb1 and its functional partner E2F1. *Theor Biol Med Model.* 2013;10:1. doi: 10.1186/1742-4682-10-1, PMID 23276293.
- Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, Grande E. Bruton's tyrosine kinase (BTK) as a promising target in solid tumors. *Cancer Treat Rev.* 2017;58:41-50. doi: 10.1016/j.ctrv.2017.06.001, PMID 28641100.
- Lountos GT, Tropea JE, Zhang D, Jobson AG, Pommier Y, Shoemaker RH, Waugh DS. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor. *Protein Sci.* 2009;18(1):92-100.
- doi: 10.1002/pro.16, PMID 19177354.
- Soumendranath Bhakat and Bhavaniprasad Vipperla analysis of the binding interactions using QSAR, molecular docking and molecular dynamics simulation study. *Int J Pharm Pharm Sci.* 2013;5(1):367-73.
- Laskowski RA, Rullmann JA, MacArthur MW, Kaptein R, Thornton JM. Aqua and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. *J Biomol NMR.* 1996;8(4):477-86. doi: 10.1007/BF00228148, PMID 9008363.
- Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. *J Appl Crystallogr.* 1993;26(2):283-91. doi: 10.1107/S0021889892009944.
- Brindha V, Saravanan A, Manimekalai R. Drug designing for ring finger protein 110 involved in adenocarcinoma (human breast cancer) using casuarinin extracted from Terminalia Arjuna. *Ind J Sci Technol.* 2009;2:22-6.
- Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. *Nucleic Acids Res.* 2006;34(Web Server issue)(suppl_2):W116-8. doi: 10.1093/nar/gkl282, PMID 16844972.
- Kawatkar S, Wang H, Czerminski R, Joseph-McCarthy D. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. *J Comput Aided Mol Des.* 2009;23(8):527-39. doi: 10.1007/s10822-009-9281-4. PMID 19495993.
- Louise-May S, Yang W, Nie X, Liu D, Deshpande MS, Phadke AS, Huang M, Agarwal A. Discovery of novel dialkyl substituted thiophene inhibitors of HCV by in silico screening of the NS5B RdRp. *Bioorganic & Medicinal Chemistry Letters.* 2007;17(14):3905-9. doi: 10.1016/j.bmcl.2007.04.103.
- Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. I. Method and assessment of docking accuracy. *J Med Chem.* 2004;47(7):1739-49. doi: 10.1021/jm0306430. PMID 15027865.

7 AUTHOR CONTRIBUTION STATEMENT

Dr. J.Radhika conceived the presented idea motivating to investigate the research work and supervised the finding of this work. Both authors discussed the results and contributed to the final manuscript.

8 CONFLICT OF INTEREST

Conflict of interest declared none.

19. Albuquerque UP, Medeiros PMd, Ramos MA, Júnior WSF, Nascimento ALB, Avilez WMT, Melo JGd. Are ethnopharmacological surveys useful for the discovery and development of drugs from medicinal plants?. *Revista Brasileira de Farmacognosia*. 2014;24(2):110-5. doi: 10.1016/j.bjpr.2014.04.003, Google Scholar.

20. Dai SX, Li WX, Han FF, Guo YC, Zheng JJ, Liu JQ, Wang Q, Gao YD, Li GH, Huang JF. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. *Sci Rep*. 2016;6:25462. doi: 10.1038/srep25462. PMID 27145869.

21. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. I. A qualitative and quantitative characterization of known drug databases. *J Comb Chem*. 1999;1(1):55-68. doi: 10.1021/cc9800071, PMID 10746014, Google Scholar.

22. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. *Adv Drug Deliv Rev*. 2016;101:89-98. doi: 10.1016/j.addr.2016.05.007, PMID 27182629.

23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev*. 2001;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0. PMID 11259830.

24. Ripphausen P, Stumpfe D, Bajorath J. Analysis of structure-based virtual screening studies and characterization of identified active compounds. *Future Med Chem*. 2012;4(5):603-13. doi: 10.4155/fmc.12.18, PMID 22458680.

25. Mirza MU, Ghori NU, Ikram N, Adil AR, Manzoor S-Huda Ghori NI. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors. *Drug Des Dev Ther*. 2015;9:1825-41. doi: 10.2147/DDDT.S75886, PMID 25848219.

26. Nisha CM, Kumar A, Nair P, Gupta N, Silakari C, Tripathi T, Kumar A. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β -secretase. *Adv Bioinformatics*. 2016;2016:9258578. doi: 10.1155/2016/9258578.

27. Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. *Front Pharmacol*;8. doi: 10.3389/fphar.2017.00380.