

Non-Pathogenic bacteria in Bioremediation of Cr (VI) for decontamination of ground water: An Extensive Review

^a*Subhadeep Ganguly and ^bSmaranika Pattnaik

^a*Department of Physiology, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata- 700006, West Bengal, India

^bDepartment of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla-768019, Odisha, India

Abstract: Cr(VI), one of the most common ground waters heavy metal contaminant due to its indiscriminate use in different industries has become a matter of major environmental concern. So, it is desirable that remediation methods should be such that brings its level within the permissible limits before effluents are discharged. The methods should be cheap as well as eco-friendly. Nowadays, several biological remediation strategies are used by applying microorganisms for its removal involving biosorption and biotransformation. Biosorption is dependent on surface nature of the biosorbents whereas biotransformations depend on the presence of reductants. The present review includes bioremediation strategies of Cr(VI) based on biosorption or biotransformation or both by non-pathogenic bacteria only.

Keywords: Cr(VI), Heavy metal, Biosorption, Biotransformation, Bioremediation.

***Corresponding Author**

Subhadeep Ganguly , Department of Physiology, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata- 700006, West Bengal, India

Received On 11 February 2020

Revised On 20 March 2020

Accepted On 25 April 2020

Published On 02 October 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Subhadeep Ganguly and Smaranika Pattnaik , Non-Pathogenic bacteria in Bioremediation of Cr (VI) for decontamination of ground water: An Extensive Review.(2020).Int. J. Life Sci. Pharma Res.10(4), L41-49 <http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.4.L41-49>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0>)

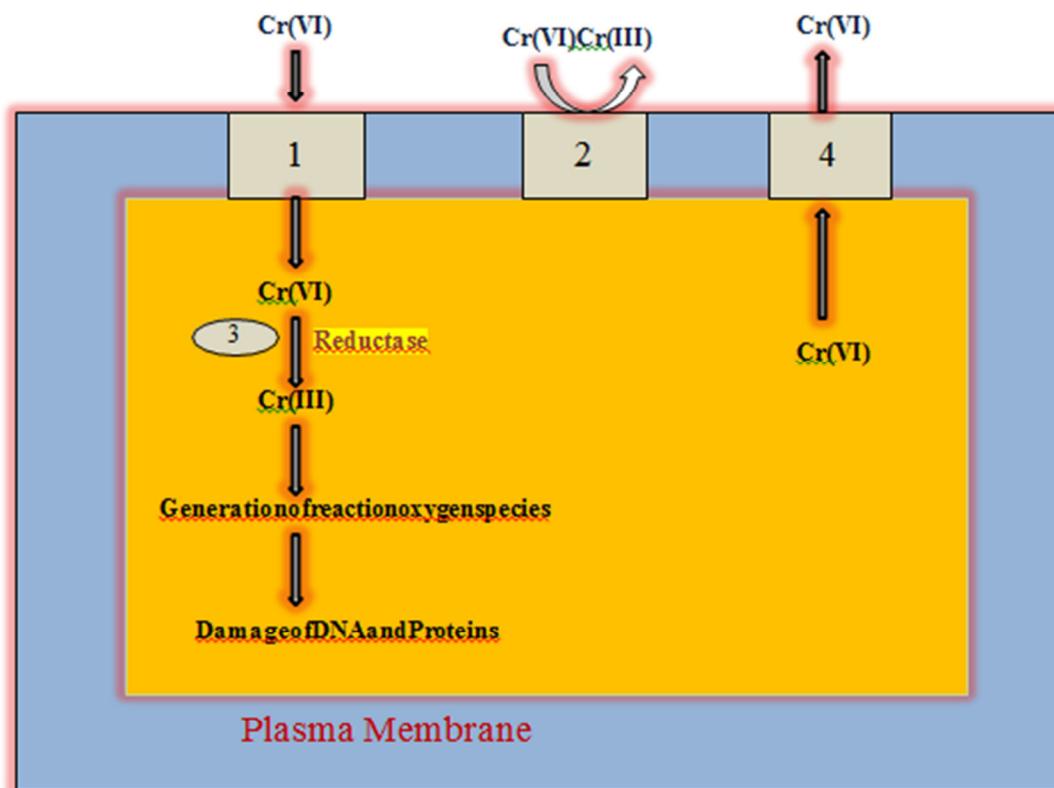
Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Chromium is a transition metal and the first member of group VIB in the periodic table with atomic number 24 and is the 21st most abundant element in the earth crust¹. The natural source of chromium in the environment includes volcanic eruptions, weathering, forest fire etc. Anthropogenic activities causes maximum deposition of Cr(VI) in the nature. Due to its hardness, high melting point, metallic lustre, odorless nature and anti-corrosiveness, it is largely used by various industries. Rapid industrialization has led to the disposal of various heavy metals into the environment². In today's industrially revolutionized world, contamination of ground water with hexavalent chromium has become a serious public health concern as industrial effluents containing Cr(VI) largely pollute rivers as well as the environment in close vicinity towards the residential areas³. Tanneries, electroplating and metal finishing industries, inorganic chemical plants, steel and iron industries, automobile industries, wood treatment industries, pigments used in dyes, paints and ink manufacture industries, plastic manufacturers, defense goods manufacture industries are the major sources of hexavalent chromium toxicants^{4,5,6,7}. For this reason, Cr(VI) contamination of groundwater has become a serious health issue related to environmental pollution for last few decades in many countries around the globe including India⁸. Chromium exists in nature with nine valence states ranging from -2 to +6, among which Cr(VI) and Cr(III) are the most abundant forms as these two oxidation states are the most stable². It is commonly present as either chromate (CrO_4^{2-}) or dichromate ($\text{Cr}_2\text{O}_7^{2-}$) ions^{1,9}. Several conventional strategies, such as filtration, precipitation, membrane separation, ion-exchange chromatography etc have been adopted extensively to remove Cr(VI) from industrial effluents. However, these techniques have appeared as either inefficient or expensive when heavy metals are present in the effluents in minute quantities¹⁰. They may also yield secondary wastes that are difficult to manage and invite a huge cost as well¹¹. Currently biological materials have attracted great attention in this regard as they are readily available, cheap as well as show excellent performance¹². In the present review the authors aim to focus on bioremediations of Cr(VI) including both biosorption and biotransformation by means of non-pathogenic bacteria only to make sure there could not be any further release of toxic substances during the course of its bioremediation by the biosorbents themselves which need further purification.

I.I CR(VI) TOXICITY IN HUMAN

As per Agency for Toxic Substances and Disease Registry (ATSDR) hexavalent chromium is recorded as one of the eighty top toxic metals in the world and World Health Organization (WHO) has declared clearly that it is a potent carcinogenic, genotoxic and mutagenic substance¹⁴⁻¹⁹. It is a potent irritant to skin. Chronic dermatitis, papules, swelling, erythema, small vesicles in the skin are also very common. Its mutagenic activities in both *in vivo* and *in vitro* rat models have already been reported. Among different chromate compounds studied so far, strontium chromate (SrCrO_4) appeared to be the most potent carcinogen.¹⁸⁻²⁰ Lung cancers among different industrial workers dealing with Cr(VI) are very common. Long term exposure may lead to chronic irritation in upper respiratory tract, pharyngitis, chronic rhinitis, and hyperemia, polyps in the upper respiratory tracts, asthma, bronchitis, congestion,


tracheobronchitis and ulceration of nasal mucosal membrane with perforation of the septum. Chronic occupational exposure to Cr(VI) causes DNA damage among electroplating workers.^{20,21} Mild exposure may also lead to dizziness, weakness, haematological disorders, eye irritations, growth problems, gastrointestinal malfunctions, renal disorders, teeth discoloration and erosion etc¹⁹.

I.2 MECHANISM OF BACTERIAL RESISTANCE TO CR(VI)

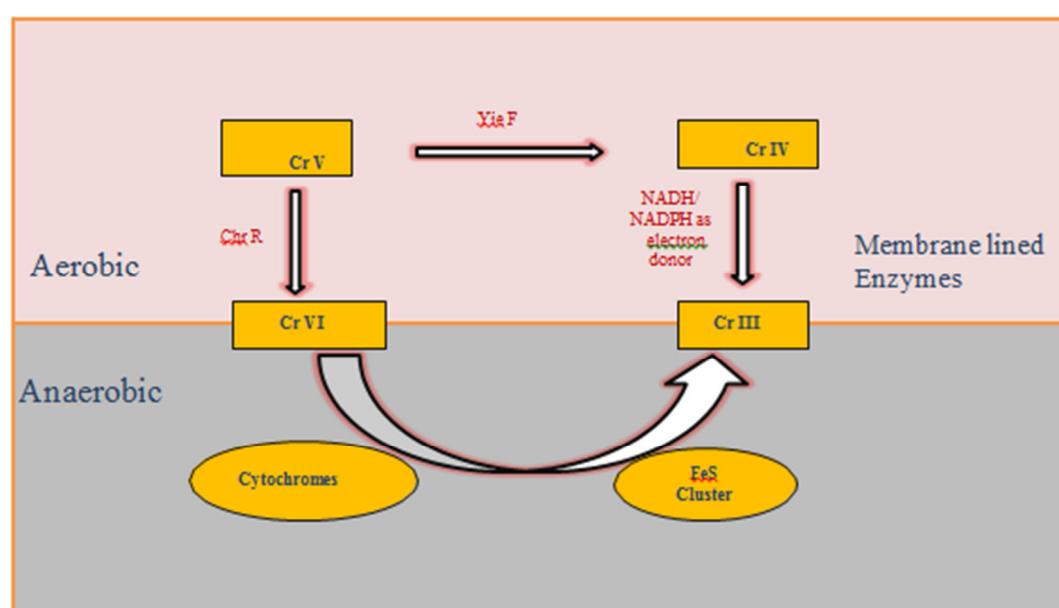
ChrA genes, which encode the ChrA proteins, responsible for putative chromate efflux and get controlled by membrane potential, have been well characterized in several bacterial species^{22,23,24,25}. Microorganisms bearing ChrA proteins show resistance to Cr(VI)²⁶. However, unlike other heavy metals, resistance to Cr(VI) gives only up to sub millimolar range as its efflux is associated with sulfate co-extrusion that may lead to inhibition of growth²⁷. ChrA genes may be located either in bacterial plasmid or in bacterial chromosome or in both and constitute operon with other Chr genes²⁸. Biosorption, bioaccumulation and biotransformation of Cr(VI) by different non-pathogenic bacteria. As chromate is chemically and structurally similar to sulfate, it can compete with the latter for cellular uptake and thus gets bioaccumulated via sulfate uptake pathway across the surface membranes²⁹. Inside the cell it undergoes chemical alterations via several enzymatic and non-enzymatic reactions and leads to accumulation of different chemical intermediates that can directly alter DNA structure and exert toxicity at the genomic level^{7,30,31}. Apart from biosorption, biotransformation of Cr(VI) to Cr(III) is regarded as another important phenomenon involved in bioremediation. A wide range of microorganisms including bacteria can reduce Cr(VI) to Cr(III) either anaerobically and/or aerobically³². Bacterial Cr(VI) aerobic reduction was first reported in *Pseudomonas dechromaticans* by Romanenko and KorenKov (1977)³³. Later on several facultative bacterial strains were studied including *Aerococcus*, *Micrococcus* and *Aeromonas*³⁴. Aerobic reduction of Cr (VI) by *Thermusscotocductus* as well as anaerobic reduction by *Achromobacter* sp. were also reported^{35,36}. Bacteria having the capacity to reduce Cr(VI) are called chromium-reducing bacteria (CRB), which are generally isolated from industrial effluents like tanneries, electroplating manufacturing, textile industries or contaminated soil^{37,38,39,40,41}. Since then monocultures of different bacterial strains have been examined for Cr(VI) bioremediation studies^{39,42,43}. But Sannasi et al (2006) reported that mixed bacterial culture was more stable in this context⁴⁴. Kader et al (2007) claimed that consortia of cultures were more effective in removal of chromium in the field of its application⁴⁵. Several other studies have supported the involvement of bacterial culture for both biosorption^{46, 47}. Chromate resistant *Pseudomonas fluorescens* LB300 was isolated from chromium contaminated river sediment. It appeared as a good reductant of Cr(VI) to Cr(III) during anaerobic growth on acetate, where chromate acted as the terminal electron acceptor⁴⁸. Srinath et al (2002) isolated chromate resistant Cr(VI) accumulating bacteria from treated tannery effluent⁴⁹. The effluent contained 0.96 mg/L chromium which was much higher than the statutory limit (0.1 mg/L) for discharge of industrial effluents into the surface water in India. Not only bioaccumulation but biosorption capabilities of both living and dead cells of these strains were also analyzed. It is evident that *Bacillus circulans* and *Bacillus megaterium* could be able to biosorb Cr(VI) up to 34.5 and 32.0 mg/g dry cell weight. Another absorbing species of *Bacillus* known as *Bacillus*

coagulans was able to biosorb 23.8 mg/g of Cr(VI) in viable state and 39.9 mg/g in dead state respectively. Five isolates of *Bacillus* spp., have been isolated from dichromate contaminated soil and have also been characterized by 16SrRNA gene sequencing and subsequently examined for biotransformation abilities of Cr(VI). Among five isolates examined, *Bacillus* sp. ES29 appeared to be the most suitable one which would be able to reduce 90% of Cr(VI) aerobically within six hours of incubation⁵⁰. *Bacillus coagulans*, isolated from tannery waste water, exhibited its Cr(VI) biosorption capacities in both free and immobilized states in different polymeric matrices such as agar, agarose, calcium alginate and polyacrylamide gel⁵¹. Ilhan et al (2004) isolated *Staphylococcus saprophyticus* from soil and subsequently subject edit for Cr(VI) biosorption by optimizing different culture conditions⁵². This organism appeared to be a good biosorbent for Cr(VI) from wastewater also. Reduction of Cr(VI) by intact cells and cell free extracts of *Actinomyces* and *Arthrobacter crystallopoetes* (strain ES32) isolated from dichromate contaminated soil was reported by Camargo et al (2004)⁵³. Both intact cells and cell free extracts exhibited satisfactory reduction above 90% of Cr(VI) within 12 hours of incubation and almost complete reduction was obtained after 24 hours. Faisal and Hasnain (2004) have isolated two Cr(VI) resistant bacterial strains CrT-1 and CrT-13 and identified them as *Ochrobactrum intermedium* and *Brevibacterium* sp. respectively by 16S rRNA gene sequencing. *Brevibacterium* sp. CrT-13 reduced Cr(VI) up to 62% after 96 hours of incubation using initial Cr(VI) concentration of 750 µg/ml.⁵⁴ Moreover, Cr(VI) resistant *Micrococcus* sp. was isolated from soil contaminated with effluent of electroplating industries waste water. Bioaccumulation of Cr(VI) by that strain was investigated. The results indicated that the bacterial strain could be an effective agent for removal of Cr(VI) from contaminated wastewater⁵⁵. Eleven novel chromium resistant strains had also been isolated (ten from genus *Streptomyces* and one from *Amycolatopsis*) by Poltietal (2007)⁵⁶. Three different bacterial species (*Streptococcus equisimilis* CECT926, *Bacillus coagulans* CECT12, and *Escherichia coli* CECT515) supported on granular activated carbon were tested for removing Cr (VI) using both batch and column studies. In that study, Gram positive bacteria (*B.coagulans* and *S. equisimilis*) exhibited best metal removal capacities⁵⁷. Srivastava et al (2008) isolated a *Pseudomonas* sp. from tannery effluent in Kanpur, Uttarpradesh, India, which exhibited enough potential to migrate through the contaminated environment on its surroundings and can effectively be applicable for biosorption of hexavalent chromium from aqueous solution⁵⁸. Aerobic reduction of Cr (VI) by *Thermus scotoductus* as well as anaerobic reduction by *Achromobacter* spp. were also reported to be evident^{35,36}. Dead *Bacillus subtilis* biomass was examined by Sivaprakash et al (2009) for Cr(VI) biosorption and its effective adsorption onto the surface of the biomass followed by desorption was conducted successfully⁵⁹. Elangovan and Chandraraj (2010) isolated *Arthrobacter rhombi* RE from chromium contaminated sites⁶⁰. Chromium reductase activity of *Arthrobacter rhombi* RE was assessed with cell free extract and then it was immobilized in calcium alginate bead, which proved to be an effective tool for reduction of Cr(VI). Wang et al (2010) used indigenous bacterial flora isolated from Cr(VI) contaminated water and applied it for detoxification of water by reducing Cr(VI) to Cr(III)⁶¹. The experiment showed that the flora could be able to carry out effective reduction of Cr(VI) to Cr(III) under aerobic conditions with

unadjusted pH. Bacterial isolates from matchworks industrial wastes containing *Bacillus* spp. M11 and *Micrococcus* spp. M12 immobilized in calcium alginate beads were subjected to Cr(VI) biosorption studies and it revealed that the beads were seemed to be very effective up to 3rd cycle after desorption⁶². Nancharaiah et al (2010) assessed the potential of mixed microbial consortia immobilized in granular biofilms which removed and aerobically reduced Cr(VI) to Cr(III)⁶³. Four bacterial strains were isolated from tannery effluents contaminated soil in Jajmau (Kanpur), India among which two were Cr(VI) resistant and the rest two were sensitive to Cr(VI). 16S rDNA sequencing revealed that they were *Stenotrophomonas maltophilia*, *Exiguobacterium* spp., *Panteo* spp. and *Aeromonas* spp. respectively. Cr(VI) biosorption was studied in all species using both dead and living cells. Both the living and dried biomass of *Exiguobacterium* spp. absorbed maximum amount of Cr(VI) from aqueous solution⁶⁴. Furthermore indigenous chromium reducing bacterial strain, *Ochrobactrum intermedium* RB-2 was isolated from tannery waste samples and was examined for its potential to reduce Cr(VI) to Cr(III). Its cell free extract contained reductase activity and transmission electron microscopy revealed the outer as well as inner distribution of Cr(III)⁶⁵. A Cr(VI) resistant bacterium *Ochrobactrum intermedium* SDCr-5 was studied and optimized for Cr(VI) reduction to Cr(III) and maximum Cr(VI) reduction was obtained with 96 hours of incubation at 37°C at pH 7⁶⁶. Sugiyama et al. isolated an actinobacterial strain *Flexivirga alba* ST13(T) reported to execute Cr(VI) reducing activity that could be further enhanced by molasses⁶⁷. On the other hand, Cr(VI) biosorption by four resistant autochthonous bacterial strains was examined by Oyetibo et al. to assess their potential for use in marine water pollution control⁶⁸. The bacterial strains exhibited their high chromium removal efficiency by removing 70%-90.5% Cr(VI) from the aqueous solution. Among four strains examined (*Rhodococcus* spp. ALO3Ni, *Burkholderiacephacia* AL96, *Corynebacterium kutscheri* FL108Hg and *Pseudomonas aeruginosa* CA207Ni) to execute maximum biosorption of Cr(VI) were obtained with *Rhodococcus* spp. LO3Ni with a maximum uptake of 107.6 mg/g dry cell weight. Srivastava and Thakur (2014) also isolated a bacterium from soil and sediment of a leather tanning mill's effluent and subsequently enlisted as *Serratia* spp. by 16S rDNA analysis⁶⁹. They examined its potency for chromium biosorption in shake flask culture containing chromium and also in tannery waste water by examining scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The SEM EDX analysis confirmed the interaction of Cr(VI) with the surface molecule of the bacterium. The TEM analysis depicted the accumulation of Cr(VI) throughout the bacterial cells. Abioye et al (2015) isolated *Bacillus subtilis* and *Pseudomonas aeruginosa* from the waste dump site and tested for Cr(VI) biosorption⁷⁰. They optimized different parameters like pH, biomass concentration, metal concentration, temperature and contact time to improve the efficiency of biosorption. *Bacillus subtilis* exhibited higher biosorption (86.7%) capacity than *Pseudomonas aeruginosa* (83.0%). Pun et al (2013) used non-living biomass of *Bacillus* sp. isolated from the soil of Sisol Landfill site and obtained excellent effectiveness with 99% removal of Cr(VI) from the leachate⁷¹. Figure. I depicted the Overview of the mechanism of bacterial Cr(VI) transport, toxicity, reduction and efflux.

Figure 1: Overview of the mechanism of bacterial Cr(VI) transport, toxicity, reduction and efflux

(1) Cr(VI) entry via sulfate uptake pathway; (2) Membrane associated chromate reductase; (3) Intracellular reduction of Cr(VI) to Cr(III); (4) Active efflux of intracellular Cr(VI) by membrane bound ChrA protein.


1.3 MECHANISM OF BACTERIAL BIOSORPTION, BIOACCUMULATION AND BIOTRANSFORMATION OF CR(VI)

Prokaryotic organisms being ubiquitous occupy and acclimatize with all the niches in our environment. They appear in a large variety of sizes and shapes and the most familiar eubacterial forms are named as *coccus*, *bacillus*, *vibrio*, *spirilla* and *spirochete* as well as the filamentous mold resembling actinomycetes; even *coccus* can appear in different forms depending on arrangement and plane of division and *bacilli* also differs in terms of arrangement. The eubacterial cell walls unlike plant cell walls contain a saccular peptidoglycan or murein meshwork which contribute to cellular shape and rigidity, protect the cell from osmotic and toxic stress and in pathogens enhance pathogenicity. The peptidoglycan layer alone can bring about significant diversity in the prokaryotes. If we concentrate only on the eubacteria domain, we will find noteworthy differences in the murein structure and its accessory components in both gram positive and negative bacteria; grossly at the firmness of the cross linkage and thickness of the murein meshwork and ultrastructurally at the absence of peptide interbridge in most gram negative bacteria. Gram positive cell walls also have anionic polymers such as teichoic and lipoteichoic acids as well as teichuronic acids extended from the murein meshwork which is completely absent in the gram negative ones. The peptide interbridge also has significant variation in the amino acid sequence from organisms to organisms. These anionic polymers contribute significantly to the negative charge of the gram positive cell wall and provide a very good site for interaction with metal ions. On the other hand, gram negative bacteria have lipopolysaccharides in their outer membrane contributing negative charge to the bacterial cell surface. The eubacteria

glycocalyx such as capsule and slime layer also contribute additional negative charge to the bacterial cell surface. Eventually, we find bacterial cell surfaces owing to their high negative charge density have a very high potential to interact with metal ions and even they do so. Bacterial outer cell surface is the principal component that first gets exposed to metal ions. Solute interaction with dead cells is extracellular and therefore the chemical functional groups of cell surface play vital roles in the biosorption process. Depending on species variations, several functional groups such as carboxyl, phosphate, amine, hydroxyl, sulfate etc are present on the bacterial cell surface. Among all the negatively charged functional groups, carboxyl group plays a major role in metal biosorption⁷²⁻⁷⁴. Cr(VI) upon adsorption, either gets precipitated over the surface of the bacterial cells or is transformed into Cr(III)⁸. The biotransformation of Cr(VI) to Cr(III) is either spontaneous or mediated via chromate reductase enzyme⁷⁵. In bacterial cells, chromate is transported via active transport through sulfate transporters. Within the cells, it is translocated via chromium binding proteins and finally converted to Cr(III) through several unstable oxidation states, either aerobically or anaerobically. In the presence of oxygen, either NADH or NADPH acts as an electron donor, but in anaerobic condition, Cr(VI) itself acts as a terminal electron acceptor and several respiratory chain complexes are involved in this process^{8,75,76}. Excess Cr(VI) is pumped out off the bacterial cells via plasma membrane associated transmembrane transporter proteins (encoded by plasmid gene Chr A)²⁹. For biosorption study, proper characterization of the surfaces of bacterial biomass is very important. Conventional methods used for such characterization include: Potentiometric titrations, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM) etc.^{73,77-85}. Potentiometric titration helps to find the nature and the

number of binding sites⁷³. FTIR-spectroscopy indicates the nature of binding sites and their involvement during biosorption⁸⁴. X-ray diffraction study confirms the involvement of cellular carboxyl and phosphate groups in the biosorption process⁸¹. The morphological characteristics of the cell surface can be studied by scanning electron microscope⁸². Ohtake et al (1987) had postulated that CrO_4^{2-} resistance in *Pseudomonas fluorescens* LB300(PLHBI) demonstrated reduced uptake of CrO_4^{2-} compared to the plasmid less strain LB303^{86, 51}. CrO_4^{2-} was transported via SO_4^{2-} active transport system. So, the cells grown in a medium containing repressor (such as cysteine) of SO_4^{2-} transport system appeared to be much more resistant to CrO_4^{2-} than the cell grown in the medium containing djenkolic acid (a derepressor of $^{35}\text{SO}_4^{2-}$ transporter system)⁸⁷. Kinetic studies for $^{51}\text{CrO}_4^{2-}$ uptake by *Pseudomonas fluorescens* with and without plasmid revealed that the V_{\max} for $^{51}\text{CrO}_4^{2-}$ uptake with the resistant strain was 2.2 times less than that sensitive strain but K_m remained the same in both cases the reductase activities from different bacterial species and ultimately adopted immobilized NADH-dependent reductase for *E.coli*NemA from Cr(VI) reduction instead of using whole cells^{88, 89}. However, till date chromate reductase activity was best studied in NADP-dependent ChrR isolated from *Pseudomonas putida*⁹⁰. During the course of Cr(VI) reduction,

reactive oxygen species are generated which reduce quinones that protect the bacterial cells from oxidative damage²⁹. Barak et al (2006) reported a similar enzyme, ChrR in *E.coli* that shares sequence homology with ChrR in *P.putida*⁹¹. From several proteomic studies, it has been revealed that ChrR in *P.putida* contains a ChrR with 100% structural homology with *Pseudomonas putida*2404 which is down regulated in response to acute chromate exposure^{91, 92}. On the contrary, genomic and proteomic studies of *S.oneidensis*MQ-1 showed that a NADPH-dependent FMN-reductase enzyme exhibited 28% structural homology with ChrR of *P.putida*, which is upregulated at high Cr(VI) concentration⁹³. Mugerfeld et al (2009) demonstrated that deletion of the SO3585 gene was not critical for the survival of bacterial cells in presence of Cr(VI)⁹⁴. Fein et al (2002) demonstrated non-metabolic bacterial reduction of Cr(VI) to Cr(III)^{95, 96} but, Nancharaiah et al (2010) clearly stated that reduction of Cr(VI) to Cr(III) is highly dependent on nutrient supply in aerobic bacteria⁶³. However, in recent study it has been postulated that in some cases dead microbial cells exhibited better Cr (VI) biosorption capacity than living counterpart⁹⁶. Figure. 2 showed an outline of the reduction of Cr(VI) to Cr(III) in bacteria.

Fig 2. Schematic diagram of Cr(VI) reduction to Cr(III) by bacteria. Under aerobic condition, NADH/NADPH serves as electron donor, where as cytochromes and iron -sulfur (FeS) clusters promote the conversion of Cr(VI) to Cr(III)

2. CONCLUSION

Bacterial biomass provides a potential biosorbent for removal of toxic Cr(VI) by biosorption, bioaccumulation and biotransformation from aqueous solution. Several researchers have identified superior bacterial strains for remediation of Cr(VI) contaminated groundwater, but poor selectivity and lack of reusability of the strains hinder their applications under real conditions. However, these limitations can be easily overcome by immobilization techniques with the continuing advanced research, especially on pilot and full scale biosorption processes the situation is likely to change in near future and gradually novel bioremediation technologies such as biosorption strategy will conquer over all other conventional

remediation technology still now used for removal of chromium from contaminated groundwater.

3. AUTHORS CONTRIBUTION STATEMENT

Dr. Subhadeep Ganguly conceived this idea and Dr.Smaranika Pattnayak guided him intellectually to make the review in a proper shape.

4. CONFLICT OF INTEREST

Conflict of interest declared none.

5. REFERENCES

1. Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Taveras H, Torrez-Guzman J.C. and Moreno-Sánchez R. Interactions of chromium with microorganisms and plants. *FEMS Microbiol. Rev.*, 2001; 25 (3): 335-347. DOI: 10.1016/S0168-6445(01)00057-2
2. Zinicovscaia I. A Review On Biosorption Of Chromium Ions By Microorganisms, *Chem. J.Mold.*, 2012; 7(2): 27-31.
3. Zhirkovich A. Importance of Chromium-DNA adducts in Mutagenicity and Toxicity of Chromium (VI). *Chem.Res.Technol.*, 2005; 18 (1): 3-11. DOI: 10.1021/tx049774+
4. Eisler R. Chromium Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. 1986.
5. Contaminant Hazard Reviews Report 6, Biological Report 85(1.6), U.S. Department of the Interior, Fish and Wildlife Service, Laurel, MD. James B.R The challenges of remediating chromium-contained soil: The complex chemistry of chromium compounds presents unique measurement and regulatory challenges. *Environ. Sci.Technol.*, 1996; 30: (6) A248-A2516.
6. Stasinakis S, Thomaidis N S, Mamais D, Karivali M, Lekkas T D. Chromium species behaviour in the activated sludge process. *Chemosphere*, 2003; 52 (6):1059-1067. DOI: 10.1016/S0045-6535(03)00309-6
7. Viti C, Decorosi F, Tatti E and Giovannetti L. Characterization Of Chromate-Resistant And -Reducing Bacteria By Traditional Means And By a High-Throughput Phenomic Technique For Bioremediation Purposes. *Biotechnol. Prog.*, 2007; 23 (3): 553-559.
8. Jobby R and Desai N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. *Chemosphere*, 2018; 207: 255-266. DOI: 10.1016/j.chemosphere.2018.05.050
9. Kaushik S, Juwarkar A, Malik A, Satya S. Biological removal of Cr(VI) by bacterial isolates obtained from metal contaminated sites. *J Environ Sci Health A Tox Hazard Subst Environ Eng.*, 2008; 43(4): 419-423. doi: 10.1080/10934520701795665.
10. Netzahualt-Munoz A R, Cristiani-Urbina M C and Cristiani-Urbina E. Chromium Biosorption from Cr(VI) Aqueous Solutions by *Cupressuslusitanica* Bark: Kinetics, Equilibrium and Thermodynamic Studies. *PLoS One*, 2015; 10(9): e0137086. doi: 10.1371/journal.pone.0137086
11. Deng L, Su Y, Su H, Wang X and Zhu X. Sorption and desorption of lead (II) from wastewater by green algae *Cladophorafascicularis*. *J. Hazard Mater*, 2007; 143 (1-2): 220-225. DOI:10.1016/j.jhazmat.2006.09.009
12. Aravindhan R, Fathima A, Selvamurugan M, Rao J R and Balachandran U N. Adsorption, desorption and kinetic study on Cr(III) removal from aqueous solution using *Bacillus subtilis* biomass. *Clean Technol. Environ. Policy*, 2012; 14 (4): 727-735. DOI: 10.1007/s10098-011-0440-7
13. Ma W, Meng F, Cheng X, Xin G. and Duan S. Synthesis of macroporous silica biomass nano composite based on XG/MgSiO₃ for the removal of toxic ions. *Bioresour.Technol.*, 2015; 186: 356-359. DOI: 10.1016/j.biortech.2015.03.133
14. Viti C, Marchi E, Decorosi F and Giovannetti L. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. *FEMS Microbiol. Rev.*, 2014; 38 (4): 633-659. doi: 10.1111/1574-6976.12051
15. Levina A and Lay P A. Chemical Properties and Toxicity of Chromium(III) Nutritional Supplements. *Chem. Res. Toxicol.*, 2008; 21 (3): 563-571 doi: 10.1021/tx700385t.
16. Di Bona K R, Love S, Rhodes N R, McAdory, De A, Sinha S H, Kern N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J and Rasco J F and Vincent JB. Chromium is not an essential trace element for mammals: effect of a 'low chromium' diet. *J.Biol.Inorg.Chem.*, 2011; 16 (3): 381-390. DOI:10.1007/s00775-010-0734-y
17. Gibb H J, Lees P S J, Pinsky P F and Rooney B C. Lung cancer among workers in chromiumchemical production. *Am. J.Ind. Med.*, 2000; 38 (2): 115-126. DOI: 10.1002/1097-0274(200008)38:2<115::AID-AJIM1>3.0.CO;2-Y.
18. Saha R, Nandi R and Saha B. Sources and toxicity of hexavalent chromium. *J COORD CHEM*, 2011; 64 (10):1782-1806. DOI: 10.1080/00958972.2011.583646
19. Achmad R T, Budiawan and Auerkari E I. Effects of Chromium on Human Body. *Annual Research and Review in Biology*, 2017; 13 (2): 1-8.
20. Zhang X H, Zhang X, Wang X C, Jin L F, Yang Z P, Jiang C X, Chen Q, Ren X B, Cao J Z, Wang Q and Zhu Y M. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers. *BMC Public Health*, 2011; 11(224); doi:10.1186/1471-2458-11-224. DOI: 10.9734/ARRB/2017/3346221.
21. Williams N. Occupational skin ulceration in chrome platers. *Occup. Med.Oxf.*, 1997; 47(5): 309-310.
22. Nies D H, Koch S, Wachi S, Peitzsch N and Saier M H, Jr. CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters, *J.Bacteriol.*, 1998; 180 (21): 5799-5802. PMCID: PMC107648
23. Pimentel B E, Moreno-Sánchez R and Cervantes, C., 2002. Efflux of chromate by *Pseudomonas aeruginosa* cells expressing the ChrA protein, *FEMS Microbiol. Lett.*, 2002; 212 (2): 249- 254. DOI: 10.1111/j.1574-6968.2002.tb11274.x
24. Aguilar-Barajas E, Diaz-Pérez C., Ramirez-Díaz M I, Riveros-Rosas H and Cervantes C. Bacterial transport of sulfate, molybdate and related oxyanions. *Biometals*, 2011; 24 (4): 687-707. DOI: 10.1007/s10534-011-9421-x
25. Flores-Alvarez L J, Corrales-Escobosa A R, Corte's-Penagos C, Martinez-Pacheco M, Wrobel- Zasada K, Wrobel-Kaczmarczyk K, Cervantes C and Gutierrez-Corona F. The *Neurosporacrassa* chr-1 gene is up-regulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation. *Curr.Genet.*, 2012; 58 (5-6): 281-290. doi: 10.1007/s00294-012-0383-5.
26. Monsieurs P, Moors H, Van Houdt R, Janssen P J, Janssen A, Coninx I, Mergeay M and Leys N. Heavy

metal resistance in *Cupriavidus metallidurans* CH34 is governed by an intricate transcriptional network. *Biometals.*, 2011; 24 (6):1133-1151. doi: 10.1007/s10534-011-9473-y.

27. Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A. The chromate-Inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. *J Bacteriol.*, 2008; 190 (21): 6996-7003. DOI:10.1128/JB.00289-08

28. Juhnke S, Peitzsch N, Hubener N, Grosse C and Nies D H. New genes involved in chromate resistance in *Ralstoniam etallidurans* strain CH34. *Arch.Microbiol.*, 2002; 179 (1): 15-25. DOI:10.1007/s00203-002-0492-5

29. Ramirez-Diaz M I, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J and Cervantes C. Mechanisms of bacterial resistance to chromium compounds. *Biometals*, 2008; 21(3): 321-332. DOI:10.1007/s10534-007-9121-8

30. Shi XG and Dalal N S. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium (V) species. *Arch. Biochem.Biophys*, 1990; 277 (2): 342-350. DOI: 10.1016/0003-9861(90)90589-Q

31. Zhitkovich A. Chromium in Drinking Water: Sources, Metabolism and Cancer Risks. *Chem. Res.Technol*, 2011; 24 (10): 1617-1629. doi: 10.1021/tx200251t

32. Kamaludeen S P, Megharaj M, Juhasz A L, Sethunathan N and Naidu R. Chromium-Microorganism Interactions in Soils: Remediation Implications. *Rev.Environ.Contam.Toxicol*, 2003; 178: 93-164. DOI: 10.1007/0-387-21728-2

33. Romanenko VI and Koren'Kov VN. Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. *Mikrobiologiya*, 1977; 46 (3): 414-417.

34. Srinath T, Khare S and Ramteke P W. Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. *J. Gen. Appl. Microbiol*, 2001; 47(6), 307-312. DOI:10.2323/jgam.47.307

35. Opperman D J and Van Heerden E. A membrane-associated protein with Cr(VI) reducing activity from *Thermuss cotuctus* SA-01. *FEMS Microbiol. Lett*, 2008; 280 (2), 210-218. doi: 10.1111/j.1574-6968.2007.01063.x.

36. Zhu W, Chai L, Ma Z, Wang Y, Xiao H and Zhao K. Anaerobic reduction of hexavalent chromium by bacterial cells of *Achromobacter* sp. Strain ch1. *Microbiol. Res.* 2008; 163 (6), 616-623. DOI:10.1016/j.micres.2006.09.008

37. Cetin D, Donmez S and Donmez G. The treatment of textile wastewater including chromium (VI) and reactive dye by sulfate-reducing bacterial enrichment. *J.Environ. Manage*, 2008; 88 (1): 76-82. DOI: 10.1016/j.jenvman.2007.01.019

38. Somasundaram V, Philip L and Bhallamudi S M. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination. *J.Hazard. Mater*, 2009; 172(2-3): 606-617. doi: 10.1016/j.jhazmat.2009.07.043.

39. Farag S and Zaki S. Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. *J. Environ. Biol*, 2010; 31(5): 877-882.

40. Chandhuru J, Harshitha S, Sujitha K and Mukesh Kumar D J. Isolation of chromium resistant *Bacillus* sp. MRKV and reduction of hexavalent chromium potassium dichromate. *J. Acad. Indus.Res*, 2012; 1(6): 317-319. Corpus ID: 46548025

41. Joutey N T, Sayel H, Bahafid W and El GhachTouli N. 2015. Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms, pp.45-69. In Whitacre, D.M. (Ed.), *Reviews of Environmental Contamination and Toxicology* vol 233. Springer, Berlin, Germany.

42. Zahoor A and Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. *J. Environ.Sci.*, 2009; 21: (6) 814-820. DOI: 10.1016/S1001-0742(08)62346-3.

43. He M, Li X, Liu H, Miller S J, Wang G and Rensing C. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain *Lysinibacillus fusiformis* ZC1. *J. Hazard. Mater*, 2011; 185 (2-3): 682-688. doi: 10.1016/j.jhazmat.2010.09.072.

44. Sannasi P, Kader J, Ismail B S and Salmijah S. Sorption of Cr(VI), Cu(II), and Pb(II) by growing and non-growing cells of a bacterial consortium. *Bioresour. Technol*, 2006; 97 (5): 740-747. DOI: 10.1016/j.biortech.2005.04.007.

45. Kader J, Sannasi P, Othman O, Ismail B S and Salmijah S. Removal of Cr(VI) from Aqueous Solutions by Growing and Non-growing Populations of Environmental Bacterial Consortia. *Global J. Environ. Res*, 2007; 1(1): 12-17.

46. Chen Y and Gu G. Preliminary studies on continuous chromium (VI) biological removal from wastewater by anaerobic-aerobic activated sludge process. *Biores.Technol*, 2005; 96 (15): 1713-1721. DOI: 10.1016/j.biortech.2004.12.024.

47. Pinon-Castillo H A, Brito E M, Goni-Urriza M, Guyonnaud R, Duran R, Nevarez-Moorillon G V, Gutierrez-Corona J F, Caretta C A, Reyna-Lopez G E. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. *J.Appl. Microbiol*, 2010; 109 (6): 2173-2182. doi: 10.1111/j.1365-2672.2010.04849.x.

48. Bopp L H and Ehrlich H L. Chromate resistance and reduction in *Pseudomonas fluorescens* strain LB₃₀₀. *Arch. Microbiol*, 1988; 150 (5): 426-431.

49. Srinath T, Verma T, Ramteke P W and Garg S K. Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. *Chemosphere*, 2002; 48 (4): 427-435. DOI: 10.1016/S0045-6535(02)00089-9

50. Camargo F A, Bento F M, Okeke B C, Frankenberger W T. Chromate reduction by chromium- resistant bacteria isolated from soils contaminated with dichromate. *J.Environ.Qual*, 2003; 32(4): 1228-1233. DOI: 10.2134/jeq2003.1228

51. Srinath T, Garg S K and Ramteke P W. Biosorption and elution of chromium from immobilized *Bacillus coagulans* biomass. *Indan. J. Exp. Biol.*, 2003; 41(9): 986-990. PMID:15242291

52. Ilhan S, Nourbakhsh M N, Kilicarslan S and Ozdag H. Removal Of Chromium, Lead And Copper Ions From Industrial Waste Waters By *Staphylococcus saprophyticus*. *Turk. Electronic J. Biotechnol.*, 2004; 2: 50-57

53. Camargo F A, Bento F M, Okeke B C, Frankenberger W T. Hexavalent chromium reduction by an actinomycete, *Arthrobacter crystallopieites* ES32. *Biol Trace Elem Res.*, 2004; 97(2): 183-194. DOI: 10.1385/BTER:97:2:183.

54. Faisal M and Hasnain S. Bacterial reduction of toxic Cr(VI) into Cr(III). *Sheng Wu Gong Cheng XueBao*, 2004; 20(5): 774-778. PMID:15974008

55. Congeeyaram S, Dhanarani S, Park J, Dexilin M and Thamaraiselvi K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. *J.Hazard. Mater.*, 2007; 146 (1-2): 270-277. DOI: 10.1016/j.jhazmat.2006.12.017

56. Polti MA, Amoroso MJ, Abate CM. Chromium (VI) resistance and removal by *Actinomycete* strains isolated from sediments. *Chemosphere*, 2007; 67(4): 660-667.

57. Quintelas C, Fernandes B, Castro J, Figueiredo H and Tavares T. Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study. *J. Hazard. Mater.*, 2008; 153 (1-2): 799-809. DOI:10.1016/j.jhazmat.2007.09.027

58. Srivastava J, Chandra H, Tripathi K, Naraian R and Sahu R K. Removal of chromium (VI) through biosorption by the *Pseudomonas* spp. isolated from tannery effluent. *J. Basic Microbiol.*, 2008; 48 (2): 135- 139. DOI:10.1002/jobm.200700291

59. Sivaprakash, A., Aravindhan, R., Rao, J.R. and Nair, B.U. Kinetics And Equilibrium Studies On The Biosorption Of Hexavalent Chromium From Aqueous Solutions Using *Bacillus subtilis* BIOMASS. *Appl. Ecol. Environ. Res.*, 2009; 7 (1): 45-57.

60. Elangovan R, Philip L and Chandraraj K. Hexavalent chromium reduction by free and immobilized cell-free extract of *Arthrobacter rhombi* RE. *Appl. Biochem. Biotechnol.*, 2010; 160 (1): 81-97. DOI:10.1007/s12010-008-8515-6

61. Wang Q, Xu X, Zhao F, Liu Z and Xu J. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution. *Water Sci. Technol.*, 2010; 61(11): 2889-2896. DOI: 10.2166/wst.2010.186

62. Kasthuri J and Senthil K D. Biosorption of Cr and Pb by the Metal Resistant Bacterial Isolates Immobilized in Calcium Alginate Coated with PHBV. *Int. J. Sci. Res.*, 2016; 5(10): 1720-1723. ID: ART20162431

63. Nancharaiah Y V, Dodge C, Venugopalan V P, Narasimhan S V and Francis A J. Immobilization of Cr(VI) and Its Reduction to Cr(III)Phosphate by Granular Biofilms Comprising a Mixture of Microbes. *Appl. Environ. Microbiol.*, 2010; 76 (8): 2433-2438. DOI: 10.1128/AEM.02792-09

64. Alam M Z and Ahmad S. Chromium Removal through Biosorption and Bioaccumulation by Bacteria from Tannery Effluents Contaminated soil. *Clean Soil Air Water*, 2011; 39 (3): 226-237. DOI: 10.1002/clen.201000259.

65. Batoor R, Yrjala K and Hasnain S. Hexavalent chromium reduction by bacteria from tannery effluent. *J. Microbiol. Biotechnol.*, 2012; 22(4): 547-554. DOI: 10.4014/jmb.1108.08029

66. Sultan S and Hasnain S. Reduction of toxic hexavalent chromium by *Ochrobactrum intermedium* strain SDCr-5 stimulated by heavy metals. *Bioresour.Technol.*, 2007; 98 (2): 340-344. DOI: 10.1016/j.biortech.2005.12.025.

67. Sugiyama T, Sugito H, Mamiya K, Suzuki Y, Ando K, Ohnuki T. Hexavalent chromium reduction by an *Actinobacterium flexivirgaalba*ST13(T) in the family Dermacoccaceae. *J. Biosci. Bioeng.*,2012; 113(3): 367-371. doi: 10.1016/j.jbiosc.2011.11.009.

68. Oyetibo G O, Ilori M O and Obayori O S. Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage. *Environ. Monit. Assess.*, 2013; 185(8): 6809-6818.

69. Srivastava S and Thakur I S. Biosorption and biotransformation of chromium by *Serratiasp* isolated from tannery effluent. *Environ. Technol.*, 2012; 33 (1-3): 113-122. DOI: 10.1080/09593330.2011.551842

70. Abioye O P, Aderfisan, A E, Aransiola S A and Danisa D. Biosorption of Chromium by *Bacillus subtilis* and *Pseudomonas aeruginosa* Isolated from Waste Dump Site. *Expert.Opin. Environ. Biol.*, 2015; 4(1): 1000112. DOI: 10.4172/2325-9655.1000112

71. Pun R, Raut P and Pant B R. Removal of Chromium(VI) From Leachate Using Bacterial Biomass. *Scientific World*, 2013; 11(11): 63-65. DOI: 10.3126/sw.v11i11.8554

72. Mc. Lean R J, Beauchemin D and Beveridge T J. Influence of oxidation state on iron binding by *Bacillus licheniformis* capsule. *Appl. Environ. Microbiol.*, 1992; 58 (1): 405-408. PMCID:PMC195223

73. Yee N and Fein J. Cd adsorption onto bacterial surfaces: A universal adsorption edge? *Geochim.Cosmochim. Acta.*, 2001; 65 (13): 2037-2042. DOI: 10.1016/S0016-7037(01)00587-7

74. Golab Z, Breitenbach M and Jezierski A. Sites of copper binding in *Streptomyces pilosus*.*Water Air Soil Poll.*, 1995; 82(3-4): 713-721. DOI: 10.1007/BF00479421

75. Singh S, Kang S H, Mulchandani A and Chen W. Bioremediation: environmental clean-up through pathway engineering .*Curr.Opin.Biotechnol.*, 2008; 19(5): 437-444. DOI: 10.1016/j.copbio.2008.07.012

76. Wielinga B, Mizuba M M, Hansel C M and Fendorf S. Iron Promoted Reduction of Chromate by Dissimilatory Iron-Reducing Bacteria. *Environ. Sci. Technol.*, 2001; 35 (3): 522-527. DOI: 10.1021/es001457b

77. Lopez A, Lazaro N, Priego J M and Marques A M. Effect of pH on the biosorption of nickel and other heavy metals by *Pseudomonas fluorescens*₄³⁹. *J. Ind. Microbiol.Biotechnol.*, 2000; 24(2): 146-151. DOI: 10.1038/sj.jim.2900793

78. Texier A C, Andres Y, Illemassene M and Le Cloirec P. Characterization of Lanthanide Ions Binding Sites in the Cell Wall of *Pseudomonas aeruginosa*. *Environ. Sci. Technol.*, 2000; 34(4): 610-615. DOI: 10.1021/es990668h

79. Won S W, Choi S B and Yun Y S. Interaction between protonated waste biomass of *Corynebacterium glutamicum* and anionic dye Reactive Red4. *Colloid Surf.APhysicochem.Eng. Asp.*, 2005; 262(1-3): 175-180.

80. Cabuk A, Akar T, Tunali S and Tabak O. Biosorption characteristics of *Bacillus* sp. ATS-2 immobilized in silica gel for removal of Pb(II). *J. Hazard. Mater.*, 2006; 136(2): 317-323. DOI:10.1016/j.jhazmat.2005.12.019

81. Kazy SK, Das S K and Sar P. Lanthanum biosorption by a *Pseudomonas* sp.: equilibrium studies and chemical characterization. *J. Ind. Microbiol. Biotechnol.*, 2006; 33(9), 773-783.
DOI:10.1007/s10295-006-0108-1

82. Lu WV B, Shi J J, Wang C H and Chang J S. Biosorption of lead, copper and cadmium by an indigenous isolate *Enterobacter* sp. JI possessing high heavy-metal resistance. *J. Hazard. Mater.*, 2006; 134(1-3): 80-86. 83.
DOI: 10.1016/j.hazmat.2005.10.036

83. Tunali S, Cabuk A and Akar T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. *Chem. Eng. J.*, 2006; 115(3): 203-211.
DOI: 10.1016/j.cej.2005.09.023

84. Vannela R and Verma S K. Cu²⁺ removal and recovery by Spi SORB: batch stirred and up-flow packed bed column reactor systems. *Bioprocess.Biosyst. Eng.*, 2006; 29 (1):7-17.
DOI:10.1007/s00449-006-0049-0

85. Vijayaraghavan K and Yun Y S. Utilization of fermentation waste (*Corynebacterium glutamicum*) for biosorption of Reactive Black 5 from aqueous solution. *J.Hazard. Mater.*, 2007; 141(1): 45-52.
DOI: 10.1016/j.hazmat.2006.06.081

86. Ohtake H, Cervantes C and Silver S. Decreased Chromate Uptake in *Pseudomonas fluorescens* Carrying a Chromate Resistance Plasmid. *J.Bacteriol.*, 1987; 169 (8): 3853-3856.
doi: 10.1128/jb.169.8.3853-3856.1987

87. Ohtake H, Komori K, Cervantes C and Toda K. Chromate-resistance in a chromate reducing strain of *Enterobacter cloacae*. *FEMS Microbiol Lett.*, 1990; 67 (1-2): 85-88.
DOI: 10.1111/j.1574-6968.1990.tb13841.x

88. Kwak H W, Yang Y S, Kim M K, Lee J Y, Yun H S, Kim M H and Lee K H. Chromium(VI) Adsorption Behavior of Silk Sericin Beads. *Int. J. Ind. Entomol.*, 2013; 26(1):47-53. DOI: 10.7852/ijie.2013.26.1.047

89. Robins K J, Hooks D O, Rehm B H A and Ackerley D F. *Escherichia coli*NemAIs an Efficient Chromate Reductase That Can Be Biologically Immobilized to Provide a Cell Free System for Remediation of Hexavalent Chromium. *PLoS ONE*, 2013; 8 (3): e59200.
DOI: 10.1371/journal.pone.0059200

90. Park C H, Keyhan M, Wielinga B, Fendorf S and Matin A. Purification to homogeneity and characterization of a novel *Pseudomonas putida* chromate reductase. *Appl. Environ. Microbiol.*, 2000; 66 (5): 1788-1795.
DOI:10.1128/aem.66.5.1788-1795.2000

91. Barak Y, Ackerley D F, Dodge C J, Banwari L, Alex C, Francis A J and Matin A. Analysis of Novel Soluble Chromate and UranylReductases and Generation of an Improved Enzyme by Directed Evolution. *Appl. Environ. Microbiol.*, 2006; 72 (11): 7074-7082.
doi: 10.1128/AEM.01334-06

92. Thompson D K, Chourey K, Wickham G S, Thieman S B, VerBerkmoes N C, Zhang B, McCarthy A T, Rudisill M A, Shah M and Hettich R L. Proteomics reveals a core molecular response of *Pseudomonas putida* to acute chromate challenge. *BMC Genomics*, 2010; 11:311.
DOI: 10.1186/1471-2164-11-311

93. Thompson M R, VerBerkmoes N C, Chourey K, Shah M, Thompson D K and HettichR. Dosage-Dependent Proteome Response of *Shewanella oneidensis*MR-1 to Acute Chromate Challenge. *J. Proteome Res.*, 2007; 6 (5): 1745-1757.
DOI:10.1021/pr060502x

94. Moogerfeld I, Law B A, Wickham G S and Thompson D K. A putative azoreductase gene is involved in the *Shewanella oneidensis* response to heavy metal stress. *Appl. Microbiol. Biotechnol.*, 2009; 82(6): 1131-1141.
doi: 10.1007/s00253-009-1911-1.

95. Fein J B, Fowle D A, Cahill J, Kemner K, Boyanov M and Bunker B. Nonmetabolic Reduction of Cr(VI) by Bacterial Surfaces Under Nutrient-Absent Conditions. *Geomicrobiol. J.*, 2002; 19 (3): 369-382.
DOI: 10.1080/01490450290098423

96. Ferreira G L R, Vendruscolo F and Filho N R A: Biosorption of hexavalent chromium by *Pleurotus ostreatus*.*Heliyon*, 2019; 5 (3): e01450
DOI: 10.1016/j.heliyon.2019.e01450