

Immunomodulatory Activity of Natural Polysaccharides in Combating Covid -19, Cancer, Inflammatory Disorders: A Review

Priyanka Ray, Sumana Chatterjee*, Prerona Saha

*Guru Nanak Institute of Pharmaceutical Science & Technology
157/F Nilgunj Road, Sodepur, Panihati, Kolkata -700114, West Bengal, India*

Abstract : Natural polysaccharides are a source of carbohydrates with potent biological functions that can be explored for increasing its utilization in the field of food and medicine. If characterized, studied and explored, they would have a vital contribution in the health care policy of the world, and more particularly in numerous developing countries in the next decades. There are thousands of polysaccharides isolated from various natural sources which can affect the immune system by stimulating the immune response or by influencing the formation of antibodies. They consist of various monomer units such as β -glucan, mannan, arabinose, galacturonic acid, fucoidan, laminarin, carrageenan etc. These polysaccharides follow different mechanisms to show the desired biological activity. This review presents a detailed account of the immunomodulatory properties of polysaccharides isolated from microorganisms, plants and marine sources. The outbreak of the novel coronavirus disease COVID-19 which is caused by the SARS-COV-2 provide full description of SARS-COV-2 virus has been a serious threat to public health as there are no clinically significant vaccines yet produced for its prevention. Polysaccharide with good immunomodulator and antivirus activity have potent anti-coronavirus applications. This study focuses on the advancements in the inhibition of SARS-COV-2 virus responsible for COVID-19. It also gives a detailed account of the anti-cancer activity of various natural polysaccharides and anti-inflammatory effects. The established therapy strategy for the treatment of cancer and inflammatory disorders involves the use of various chemotherapeutic agents and non-steroidal anti-inflammatory drugs respectively, which have prominent side effects. Polysaccharides obtained from natural sources have gained attention owing to their safety and less side effects. The mechanism of action of the polysaccharides showing immunomodulatory activity owing to treatment of COVID-19, cancer and inflammatory disorders has been discussed in the review. Most polysaccharides are tested using preclinical animal models or by clinical trials. This review will provide guidelines for the development of new formulations for utilising the various biological activity of the natural polysaccharides.

Keywords : Immunomodulator, Plant Polysaccharides, Marine polysaccharides, SARS COV 2, COVID -19, Anticancer, Anti-inflammatory.

***Corresponding Author**

**Sumana Chatterjee , Guru Nanak Institute of Pharmaceutical
Science & Technology 157/F Nilgunj Road, Sodepur,
Panihati, Kolkata -700114, West Bengal, India**

Received On 13 November 2020

Revised On 15 December 2020

Accepted On 17 December 2020

Published On 19 December 2020

Funding We acknowledge the resources and support for the study provided by Guru Nanak Institute of Pharmaceutical Science & Technology.

Citation Priyanka Ray, Sumana Chatterjee, Prerona Saha , Immunomodulatory Activity of Natural Polysaccharides in Combating Covid -19, Cancer, Inflammatory Disorders: A Review.(2020).Int. J. Life Sci. Pharma Res.10(5), 191-206
<http://dx.doi.org/10.22376/ijpbs/lpr.2020.10.5.P191-206>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Polysaccharides belong to the category of biomacromolecules and are found in various traditional herbs, marine organisms or microorganisms. They exhibited a variety of biological activities such as immunomodulatory, antioxidant, antiaging, antitumor and anti-inflammatory activities^{1,2}. Many studies have been carried out to study the bioactivity of these plant polysaccharides. These polysaccharides have shown broad-spectrum antiviral properties which contribute to its efficacy in treatment of COVID 19. The polysaccharides are believed to be a T-cell independent antigen and they usually do not show any cell-mediated immune responses. This shows the induction of IgM and IgG antibodies⁴. The T-cells does not take part in the development of immunologic memory due to which the response is not long-lasting⁵. The antigen-presenting cell (APC) does not process the polysaccharide antigens. This is why T cell doesn't contributes and this results in exhibiting the stimulation of long-lived cell-mediated and humoral responses. The APCs are internalizing the different proteins antigens, carry out their degradation to peptide units. Thereafter present these subunits and the major histocompatibility complex (MHC)-II molecules on the surface of the cells. The T cells are capable of recognizing these antigens and they are activated further to perform the various effector functions: which provides the T cell help for producing specific IgG antibodies by the different B cells. It can also act as the cytotoxic cells in causing lysis of the various infected host cells. The investigation on the different polysaccharides obtained from microbial sources proved to possess potent immunomodulator property particularly activities of T cells and APC cells like the monocytes and macrophages⁶. This review aims to explore the established immunomodulatory function of polysaccharides from different sources such as microbial, plant and marine. The

plants such as *Artemisia* species, *Astragalus* species, *Glycyrrhiza*, potato pectin etc⁷ contain these polysaccharides. The various microbial sources consisting of various types of mushrooms and marine sources consisting of carrageenans and laminarin^{8,9}

I.I ETIOLOGY OF IMMUNOMODULATION

Immunomodulators are defined as the different biological or synthetic substances capable of inducing, suppressing, or modulating the adaptive and innate immune system. The cells of the immune system can recognize the non-self-antigens and their products and the compounds present in the dietary substances and environment. Pattern recognition receptors (PPRs) are involved in mediating the interaction of host cells and the environment. One of the common examples of PPRs is toll-like receptors (TLRs)^{10,11} and are found in innate immune response cells. They function in recognizing the expression of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These receptors stimulate the secretion of cytokines, microbial molecules and inducing adaptive immunity¹²⁻¹⁴. Regulatory T cells regulate the immune response by inhibiting the activity of Th1, Th2, and Th17 cells, mainly by the secretion of transforming growth factor- β (TGF- β) or IL-10. T-helper cells are essential for the activation of naive CD8+ T cells¹⁵, B lymphocytes, and phagocytes. The gut-associated lymphoid tissue (GALT) is the largest immune compartment in the body and consists of both organized lymphoid tissues, such as mesenteric lymph node and Peyer's patches, and diffuse scattered lymphocytes in the intestinal lamina propria and epithelium. The immune system is regulated not only by its symbiotic relationship with microbiota, but is very sensitive to diet. The mechanism of immunomodulation has been shown in Fig.1.

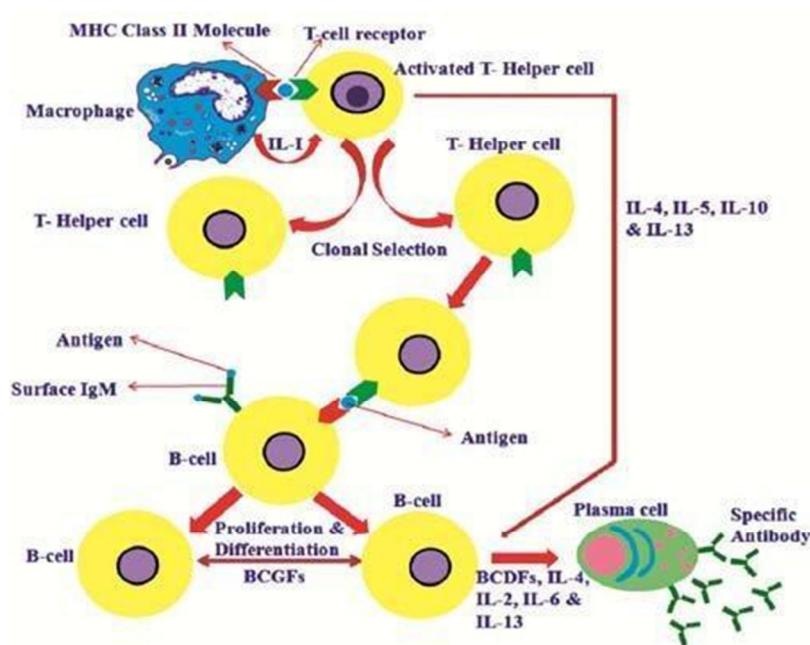


Fig 1. Mechanism of immunomodulation¹⁶

1.2 STRUCTURAL CHARACTERISTICS OF THE POLYSACCHARIDES

1.2.1 Structural features of biologically active polysaccharides from Microbial sources.

The therapeutic activity of the polysaccharides largely depends upon the structure, conformation, their composition and molecular weight. Amongst them β -glucans is a polysaccharide which yields higher biological activity¹⁷. They

are the homopolymers of D-glucose are the most abundant carbohydrates in the cellular walls of several microorganisms, such as mushrooms, yeast, algae, bacteria, lichens, and plants, and exhibit immunomodulatory, antitumor, and anti-inflammatory activities⁸. The other components are Mannan-oligosaccharides which contains polymers of mannose that are obtained from yeast cell walls, and are located on the outer surface of yeast cell walls attached to β -glucans of the inner matrix via β -(1,6) and β -(1,3) glycosidic linkages. The structures are given in Fig 2.

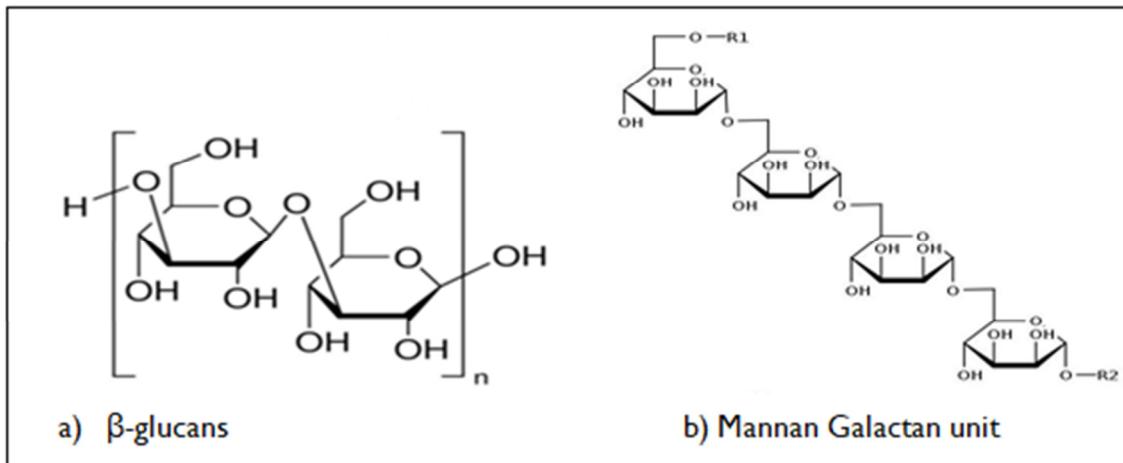


Fig2. Biologically important chemical moieties present in microbial polysaccharides¹⁸

1.2.2 Structural features of biologically active polysaccharides from Plant sources.

The several plant derived polysaccharides contain monosaccharide units of arabinose, rhamnose, galacturonic acid, galactose, xylose, glucose, and mannose¹⁹. The structures are shown in Fig 3.

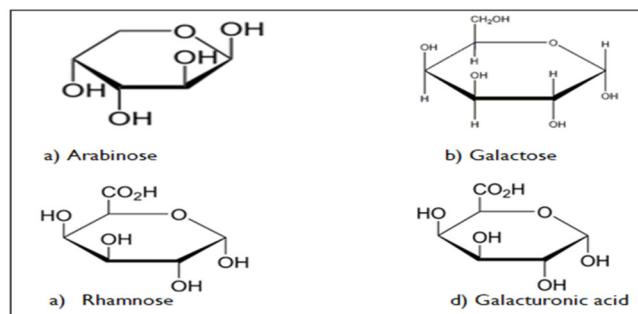
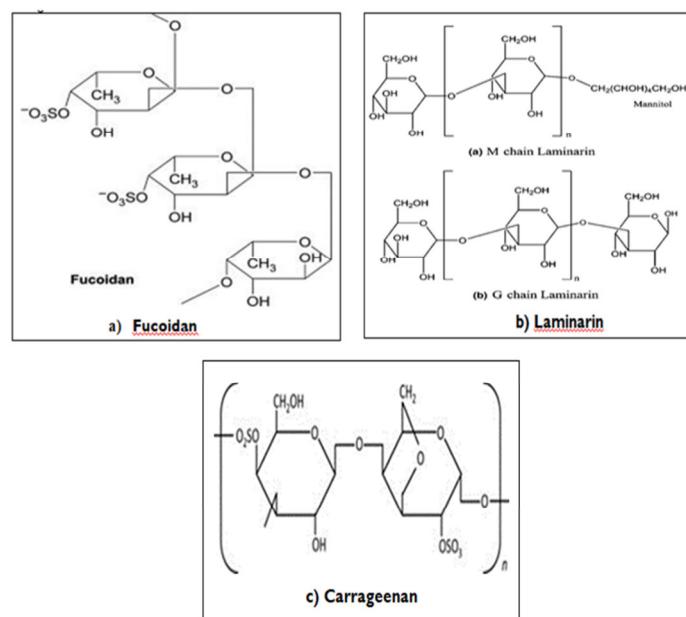



Fig3. Biologically important chemical moieties present in plant polysaccharides²⁰

1.2.3 Structural features of biologically active polysaccharides from Marine sources.

The marine sources of polysaccharides chiefly consist of Laminarin, Fucoidan and Carrageenan derived from the seaweeds and brown algae. Structurally, laminarin is composed of β -(1,3)-linked glucose containing large amounts of sugars and a low fraction of Uronic acids²¹. Two types of polymeric chains are present in laminarin, G-chains with

glucose at the end and M-chains with mannitol as the terminal reducing end²². The structure of fucoidan consists mainly of α (1,3)-linked L-fucopyranose residues with sulphates at the C-2 position²³. Carrageenan is a polysaccharide obtained from Red algae and the biological activity is shown mainly due to the sulphate ester residue of the structure²⁴. The structure of the chief components of these polysaccharides with biological activity is represented in Fig 4.

Fig4. Biologically important chemical moieties present in marine polysaccharides⁶⁰

2. IMMUNOMODULATORY ACTION OF POLYSACCHARIDES

Polysaccharides from various sources such as microorganism, plants, marine sources have potential and has increased the economic and clinical interest in them. They have exhibited clinical interest in them by demonstrating nutraceutical and chemo preventive activities and are relatively nontoxic. Their activity greatly depends on the active chemical constituent present, structural conformation and molecular size²⁶.

Various polysaccharides can be obtained from different microbial sources specially from the fungus. Amongst them the most commonly available are β -glucans, non-starchy carbohydrates, Glycan, mannan obtained from different microbial sources such as fungus bacteria, etc. They vary in conformational complexity, molecular weight, and number of branches²⁷ Table I represents the different polysaccharides from the microbial sources showing immunomodulatory action.

Table 1. Immunomodulator Activity of polysaccharides from microorganisms.

S.No	Name of the Plant source	Active chemical composition	Mechanism of Immunomodulation	Reference
1.	<i>Agaricus blazei</i> Agaricaceae	β-Glucan	-Stimulates the different immune cells such as NK cells, dendritic cells, macrophages and granulocytes (polymorphonuclear leukocytes)	28-30
2.	<i>Pleurotus ostreatus</i> Pleurotaceae	Dietary fibres, β-glucans, non-starchy carbohydrates	-Shows potent immunostimulant activity by improving CD4+/CD8+ ratio	31-32
3.	<i>Lentinula edodes</i> Omphalotaceae	β-Glucan	-Improves cellular immunity, humoral immunity and innate immunity.	33-34
4.	<i>Grifola frondosa</i> Meripilaceae	β-Glucan	-Induces cytokine production in macrophages through the Dectin-1/Syk/NF-B signalling pathway resulting in immunomodulatory and antitumor activities	35-36
5.	<i>Coriolus versicolor</i> Polyporaceae	β-Glucan	-Induces pro-inflammatory cytokines -Shows effect on tumour necrosis factor (TNF)-α -Induces apoptosis	37-38
6.	<i>Trametes versicolor</i> Polyporaceae	Polysaccharopeptides	-Enhances mitogenic activity -Induces cytokines (interleukin (IL)-1β and IL-6) production in stimulated macrophages; -Increases the proliferation of cell	39
7.	<i>Bacillus Calmette-Guerin (Natural BRM)</i>	Live mycobacteria	-Induces granulomatous reaction at the site of administration	40
8.	<i>Candida albicans</i> Saccharomycetaceae	Glycan, Mannan	-Enhances the suppression of the various antibody responses when administered with type III pneumococcal polysaccharide (SSS-III) and with sheep erythrocytes (SRBC) in mice.	41
9.	<i>Aspergillus fumigatus</i> Trichocomaceae	Galactosaminogalactan	-Inhibits the T-helper 1 and 17 G cytokine production in human PBMCs by inducing Interleukin-1 receptor antagonist * *It is a potent anti-inflammatory cytokine IL-1 signalling	42
10.	<i>Cryptococcus neoformans</i> Tremellaceae	β-Glucan	-Role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied <i>in vitro</i> and in animal models of cryptococcal infection.	43
11.	<i>Laminaria digitata</i> Laminariaceae	β-Glucan	-Dose-dependent induction of cell death -Increase in the percentage of cells in the sub-G1 and G2-M phases -Inhibits heregulin-stimulated phosphorylation of ErbB2 -Decreases in proliferation of cell	27
12.	<i>Caulerpa lentillifera</i>	β-Glucan	-Stimulates the NO production by murine macrophage RAW 264.7 cells, activates both NF-κB and p38 mitogen-activated protein kinase (MAPK) signalling pathways, increased the phagocytosis of latex beads -Induces the expression of proinflammatory cytokines IL-1β, TNF-α, and IL-6	44

Several polysaccharides have been derived from the plant source which can act on the immune system³⁹. Many plant-based polysaccharides are pectic which are enriched in arabinan, galactan, arabinogalactan side chains. Apart from pectic polysaccharides there are different plant polysaccharides which composed of monomers units of arabinose, rhamnose, galacturonic acid, xylose, glucose, mannose, Rhamnogalacturonan type I and II etc.⁴⁰ They exhibit very potent immunomodulatory activity. An account of the several plant sources of polysaccharides, chemical composition, method of extraction, mechanism of action and therapeutic activity is given in Table 2.

Table 2. Immunomodulatory Activity of Plant cell polysaccharides

S.no	Name of the plant source	Active chemical composition	Method of extraction	Mechanism of Immunomodulation	Therapeutic uses	Ref
1.	<i>Sambuci flos</i> , Family – Adoxaceae Plant part-Aerial parts	Rahmnose, Arabinose, galacturonic acid, Galactose, Xylose Mannose	It is extracted from 50% ethanol at 50 °C. and from water at 100°C	-Suppress of macrophages activity - Inhibits the delayed-type hypersensitivity reaction. -stimulation of phagocytosis -Increases production of antibodies	Used for instance chill, influenza, or pyrexia.	47-49
2.	<i>Artemisia afra</i> Family- Asteraceae Plant part- Leaves	Galactose, Arabinose Galactose, Xylose, Arabinogalactans	The leaves were taken and extracted with organic solvents in order to remove the lipophilic substances -the ppt obtained was then extracted with 50% ethanol in water and then extracted at 100 °C with water.	-Shows significant effect in vitro when tested in complement assay for the immunomodulating properties.	Used for cough and cold, fever, loss of appetite, treatment of malaria.	50
3.	<i>Terminalia macroptera</i> Guill Family- Combretaceae Plant part-Stem bark, Root bark, leaves	Rhamnogalacturonan type I Arabinogalactan type II	The extraction is carried out by using 96% ethanol which is followed by extraction with hydroalcoholic solvent of water and ethanol.	-Mediates the stimulation of antibodies production	Used for cough and sores, <i>H.pylori</i> infection ,arthritis hepatitis and tuberculosis	51
4.	<i>Lycium ruthenicum</i> Murr Family-Solanaceae Plant part -Fruit	Galacturonic acid, Xylose, Rahmnose, Arabinose, Galactose	Isolated by water extraction from the fruits of <i>L. ruthenicum</i>	-Inhibits NO production and mRNA expression of inducible nitric oxide synthase -Suppresses proinflammatory cytokines in lipopolysaccharides stimulated macrophages -Inhibits HT -29 cell proliferation	Used in hypertension, heart disease, antioxidation, anti fatigue, and hypoglycaemic activity	2,52
5.	Potato pectin <i>Solanum tuberosum</i> Family-Solanaceae Plant part-Tubers	Pectin	Galacturonic acid and rhamnose	-Inhibits HT 29 proliferation -Induces cell cycle arrest of G2/M colon cancer cells.	-effective in inflammatory and allergic responses	49
6.	<i>Ziziphus jujuba</i> Family-Rhamnaceae Plant Part-Fruits	Arabinose and Galactose	Isolated as a purified water-soluble polysaccharide	-Elevates activity of glutathione peroxidase and superoxide dismutase -Induced T lymphocyte proliferation	Chronic Fatigue Syndrome	53
7.	<i>Artocarpus</i>	D-Galactose and D-	Isolated as a purified water-soluble	-Increased	Effective in colon cancer	54

	<i>heterophyllus</i> Family-Moraceae Plant part-Fruits	Galacturonic acid, D-Xylose and D-Glucose.	polysaccharide (WSP)	IL 6 level -Stimulates IL-1 β production by tumour cell		
8.	<i>Aloe vera</i> Family-Liliaceae Plant plant-Gel from the leaves	Acemannan	The gel obtained was washed with normal water and rinsed with distilled water. It was kept in distilled water at 4°C to get rid of yellow exudation. The clear gel is then homogenized followed by centrifugation.	-Induces haematopoiesis -Shows upregulation of cytokines such as TNF α and IL 1.	-Anti allergic -protects against radiation hazard -Anticancer	39.55 .56
9.	<i>Echinacea purpurea</i> Family- Asteraceae Plant part-Aerial parts	Arabinogalactan	-aqueous extract of the aerial parts yield polysaccharides	Increases activation of macrophages. -Increases the IL-1, TNF α and IFN β	Used for treatment of wounds, burns, measles and mumps	57.58
10.	<i>Glycyrrhiza glabra</i> Family-Fabaceae Plant part-Root and stolons	β -1,3-linked d-galactose residues; α -1,4-linked d-glucose	-aqueous extract of roots yield polysaccharides	-Activates the RE system -Reproduces immune cells such as lymphocytes and macrophages -Promotes the maturation of immune cells	-Expectorant -Lung detoxifying agent -Stomach ulcer	59.60
11.	<i>Plantago asiatica</i> Family- Plantaginaceae Plant part-Seeds	Glucurono-arabinoxylane	Aqueous extract of the seeds yields the polysaccharide	-Induces the maturation of murine DCs.	Stimulate maturation transformation of bone marrow	61
12.	<i>Trigonella foenum-graecum L</i> Family-Fabaceae Plant part -Seeds	Galactomannan	Seeds are crushed and then aqueous extract is made. The polysaccharide is precipitated from the slurry by alcohol.	-Immunostimulatory activity	-Used in stomach ulcer -Cough suppressant	62
13.	<i>Dendrobium officinale</i> Family-Orchidaceae Plant part-Stem	Arabinose, Rhamnose, Galactose, Mannose, Xylose	Subjected to aqueous extraction followed by ethanol precipitation	-Promotes proliferation of splenocyte -Enhances natural killer cell-mediated cytotoxicity -Increases the phagocytosis and nitric oxide production of macrophages.	promote the production of body fluids, benefit the stomach, moisten the lungs, and relieve cough	63
14.	<i>Chlorophytum borivilianum</i> Family -Liliaceae Plant part-Roots	Fructans, Acetylated Mannans	Hot water extraction	-Improves NK cell response -Increases phagocytosis	-hypolipidemic -prevents testicular damage	64

Many marine organisms are excellent sources of polysaccharides. Although some similarities may be found between the polysaccharides from each group of organisms, they can be heterogeneous and structurally different ⁶⁵. The renewable source and biodegradable nature of these polysaccharides makes them promising compounds for the application in pharmaceuticals, therapeutics, and regenerative medicine. The immunomodulatory action of these polysaccharides has been listed in Table 3.

Table 3. Immunomodulator Activity of Marine polysaccharides

S.N0	Name of the Marine organism	Active chemical composition	Mechanism of Immunomodulation	Ref
1.	<i>Laminaria digitata</i> Laminariaceae	β -1,3 Glucan oligomer (from Laminarin)	-Stimulates TNF α production in human monocytes	65
2.	<i>L. hyperboreana</i> <i>L. digitata</i> Laminariaceae	Laminarin, Fucoidan	-Extracts from both sources increases IL-8 expression when studied on pigs	66
3.	<i>Fucus Evanscens</i> Fucaceae	Sulphated polysaccharides	-Activates the NF -kB in HEK 293 eukaryotic cells	67
4.	<i>F. vesiculosus</i> Fucaceae	Fucoidan	-Enhances dendritic cells (C) maturation in human monocytes -Up regulation of TNF-a induced secretion of matrix metalloproteinase-9 (MMP-9) (an enzyme necessary for migration of immune cells) in monocytic cell line U937 -Increases phagocytosis, lysozyme activity and production of nitric oxide (NO), hydrogen peroxide, TNF-a, and IL-6 in splenic lymphocytes of BALB/c mice	68-70
5.	<i>Undaria Pinnatifida</i> Alariaceae	Fucoidan	-Suppresses anti-inflammatory cytokines— IL-4, IL-5, IL-13 in male BALB/c mice	71
6.	<i>Fucus vesiculosus</i> Fucaceae	Fucoidan	-Increases production of TNF-a, IL 12, and maturation of dendritic cells via NF-kB signalling pathway in C57BL/6 mice	72
7.	<i>L. japonica</i> Caprifoliaceae	β -D-Mannuronate residue of Alginic	-Stimulates immunological activity of intestinal cells through the Peyer's patch cells of C3H/HeJ mice	73
8.	<i>Chlorella stigmatophora</i> Syngnathidae	Carageenan	-Shows immunosuppressant effects	74
9.	<i>Phaeodactylum tricornutum</i> , Phaeodactylaceae	Sulphated α -mannan	-Shows immunostimulatory effects	75
10.	<i>Chlorella pyrenoidosa</i> , Mytilidae	Xylose, Arabinose, Rhamnose	-Enhances phagocytic rate and phagocytic index	11
11.	<i>Spirulina fusiformis</i> , Oscillatoriaceae	Fucoidan	-Shows immunosuppressive effect	75
12.	<i>Crenomytilus grayanus</i> , Mytilidae	Bioglycan (Mytilan)	-Shows immunomodulating activity	76
13.	<i>Chlorella stigmatophora</i> Syngnathidae	Carageenan	-Shows immunosuppressant effects by proliferation of NK cells	74
14.	<i>Phaeodactylum tricornutum</i> , Phaeodactylaceae	Sulphated α -mannan	-Shows immunostimulatory effects	74
15.	<i>Litopenaeus vannamei</i> , Penaeoidea	Fucoidan, Glycoprotein	-Shows immunomodulatory action of superoxide dismutase (SOD)	77
16.	<i>Endarachne binghamiae</i> , Phaeophyceae	Sodium Alginate, Alginic Acid, Glycoprotein	-Sodium alginate and alginic acid exhibits stimulation activity for macrophage and T cell proliferation -Induces the production of TNF- α and nitric oxide by macrophages and IFN- γ by T cells in a concentration-dependent manner	78

17.	<i>Phoma herbarum</i> , Pleosporaceae	Alginic acid,Fucoidan	Activates and proliferates T cell, -Promotes IL-12 secretion and expression of markers (CD80, CD86, and MHC II) via TLR-4 on DCs.	79
18.	<i>Laminaria japonica</i> , Laminariaceae	Laminarin oligosaccharides	-Induces immune response proteins were induced and apoptotic cell death proteins were reduced significantly by LO (Laminarin oligosaccharides)	80
19.	<i>Litopenaeus vannamei</i> , Penaeoidea	Fucoidan	-Shows immunomodulatory action of superoxide dismutase (SOD) and its possible use as an indicator of immune responses	77
20.	<i>Chondrus ocellatus</i> , Gigartinaceae	Carrageenan	- λ -carrageenan samples of polysaccharides antitumor and immunomodulation activities	81

3. THERAPEUTIC ROLE OF POLYSACCHARIDES

3.1 COVID -19

In the present situation when the world is going through a pandemic situation due to the spread of SARs COV 2 virus. There are a total 49,207,942 cases of coronavirus recorded till date causing 12,42,308 deaths. Therefore, it is creating a need for effective inhibitors to the virus. The antiviral properties of polysaccharides are functions of their vast structural characteristics, chain length etc⁸². The carbohydrate binding agents present in the natural polysaccharides helps to inhibit the coronaviruses along with infectious bronchitis (IBV), mouse hepatitis virus (MHV) and feline coronaviruses serotypes I and II^{78,79}.

3.1.1 Immunomodulators from marine sources

Polysaccharides obtained from marine sources are chitosan, carrageenan, chitosan and their derivatives, have shown the antiviral activities. This provides the basis for studying their activity against SARS COV -2. Chitosan's cationic modified form named as N-(2- hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), shows significant inhibition against the human coronavirus HCoV- 229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, and the hydrophobic derivative (HM-HTCC) has shown inhibitory property against coronaviruses. This signifies that the polymers which are based on chitosan is showing inhibitory action on the low pathogenic human coronaviruses⁸⁵. Antiviral activity of the polysaccharides from Red algae *Gelidium robustum* has been established. It protects the embryonic egg against influenza B or mumps virus⁸⁶.

3.1.2 Immunomodulators from plant sources

Hedysarum multijugum can be used to treat viral infections. The Avian coronavirus is capable of causing infectious bronchitis (IB). The polysaccharides from *Astragalus* species are capable of reducing the infectious bronchitis virus by inhibiting its replication in the chicken embryo kidney cells. The *Astragalus* polysaccharides (APS) treatment has increased the lymphocyte proliferation, levels of expression for interleukin (IL)-1 β , IL-2, IL-8, and TNF- α . These findings show that APS can enhance immunity. During the outbreak of SARS coronaviruses in China, RI, as a Chinese medicinal herb, was prepared as an antiviral drug⁸⁷. The polysaccharide from another herb named *Radix isatidis* stimulates the expression of cytokines like IL 2 and interferon. This helps to regulate and increase the nonspecific immunological function, humoral and cellular immunity when tested in mice. This is the mechanism of antiviral effects of *Radix isatidis*⁸⁸. The polysaccharides from *Ginkgo biloba* has been studied and analysed against Porcine epidemic diarrhoea virus (PEDV) infection showed potent inhibitory activity. It is particularly inhibited on viral attachment entry steps of PEDV life cycle. The α -glucan-based polysaccharide of *Lentinula edodes* mycelia has been studied against influenza virus, herpes virus, avian influenza virus ,HPV .It shows the immunostimulant action of inducing protective immune response⁸⁹.

3.2 ANTICANCER

3.2.1 Immunomodulators from plant sources

Many plant polysaccharides have shown potent anticancer activity. Potato pectin which is Rhamnogalacturonan-I (RG-I) acts on HT-29 cells and inhibits its proliferation. It also induces arrest of the G2/M phase of the cell cycle and shows activity against colon cell cancer⁹⁰. *Lonicera japonica* flower with active composition of RG-I along with rhamnose, galactose and arabinose inhibits the pancreatic cell cancer⁹¹. Persimmon leaves composed of RG I and RG II have developed NK cell-mediated cytotoxicity for the lymphoma tumour cells. It has also inhibited the lung metastasis and lymphoma tumour cells. *Astraeus hygrometricus* was studied on the Dalton's lymphoma-bearing mice and showed inhibition of tumour growth, induction of process of cell apoptosis and activation of immune system⁹². Inhibition of tumour growth and induction of cell apoptosis was shown by the polysaccharides from *Auricularia auricula-judae* when investigated on S180-bearing mice⁹³. Buckwheat was studied on THP-1 cells and it increased the cell proliferation and maturity⁹⁴. *Curcuma kwangsiensis* investigated on CNE-2 cells inhibited cell proliferation and also induced the cell apoptosis process⁹⁵. *Ginkgo biloba* polysaccharide was studied on U937 cells and resulted in the inhibition of cell proliferation⁹⁶. *Melia toosendan* Sieb also inhibited cell proliferation when studied on Et Zucc BGC-823 cells⁹⁷. *Passiflora edulis* inhibited the growth of tumour when tested on S180-bearing mice. *Prunella vulgaris* L showed inhibition of tumour growth when investigated on lung carcinoma mice model and also improved the immune function⁹⁸. Inhibition of cell proliferation was shown by the polysaccharides of *Punica granatum* when studied on MCF-7 and K562 cells. The pectin from sweet Potato inhibited tumour cells⁹⁹. *Ziziphus jujuba* investigated on melanoma cells shows inhibition of cell proliferation, induced cell apoptosis¹⁰⁰.

3.2.2 Immunomodulators from microorganisms

A mushroom named *Agaricus subrufescens* was studied on Walker-256 (W256) tumour-bearing rats for its antitumor activity and it showed beneficial effects on tumour treatment¹⁰¹. The cell wall of *Ledodes* contains Lentinan which showed better antitumor effects than other mushroom polysaccharides¹⁰². *Cordyceps gunnii* analysed on K562 cells results in inhibition of cell growth¹⁰³. *Flammulina velutipes* polysaccharides was tested on both BGC-823 cells, A549 cells and it inhibited cell growth¹⁰⁴. Another polysaccharides obtained from *Phellinus ribis* inhibited cell growth and also caused blockage of new angiogenic vessel formation when studied on Zebrafish model¹⁰⁵.

3.2.3 Immunomodulators from marine sources

Several polysaccharides from marine sources have been studied and shown to find potent anticancer properties. Polysaccharide obtained from *Ascophyllum nodosum* were tested on U937 cells. It has shown potent inhibitory action on cell proliferation, induced DNA-fragmentation and apoptosis¹⁰⁶. *Cladosiphon okamuranus* Tokida showed inhibition of growth of tumour and stimulation of macrophages when investigated on S180 bearing mice¹⁰⁷. *Fucus evanescens* has been investigated MT-4 cells which enhanced etoposide induced cell death¹⁰⁸. *Fucus vesiculosus* investigated on AGS cells, inhibited cell growth, induced apoptotic and autophagic cell death¹⁰⁹. *Saccharina japonica*, *Undaria pinnatifida* T-47D and SK-MEL-28 cells Inhibited cell proliferation and colony formation¹¹⁰. *Undaria pinnatifida*

studied on A549 cells Inhibited cell proliferation, induced apoptosis ¹¹¹.

3.3 ANTI-INFLAMMATORY

3.3.1 Immunomodulators from microorganisms.

Antrodia cinnamomea polysaccharides were studied using LPS-induced RAW264.7 model and it caused inhibition of TNF- α and IL-6 release ¹¹². *Pleurotus eryngii* causes a decrease of the ratios of pro or anti-inflammatory cytokines secretion ¹¹³. *Ganoderma lucidum* yielding β -1,3 or 1,6-glucan was obtained from high-cholesterol diet-induced inflammation in male C57BL/6 mice and it caused the induction of the serum IgA and IgG production ¹¹⁴. Polysaccharide-extracts of the fruits of the plant *Polyporus dermoporus* contain β -Glucose as the active chemical constituents. It was investigated on the models of oil-induced ear edema in male BALBc mice and Carrageenan-induced pleurisy in male Wistar rats shown decrease of the nitrate/nitrite ratio and also inhibited diapedesis ¹¹⁵. *Echinodontium tinctorium* containing the monosaccharides glycan, galacturonic acid, mannose, fucoidan was tested on LPS-induced RAW264.7 macrophages and histamine-induced inflammatory event in mouse gluteus maximus muscle and it has inhibited the TNF- α and production of NO ¹¹⁶. *Hericium erinaceus* studied on model of ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer in Sprague-Dawley rats decreased the expression of TNF- α , IL-1 β and inhibit the MPO activity ¹¹⁷.

3.3.2 Immunomodulators from Plant sources

The polysaccharide isolated from Seabuckthorn berry was studied on the carbon tetrachloride (CCl₄)-induced hepatotoxicity in male C57BL/6 mice and it causes inhibition of the TLR4-MAPK-NF- κ B signalling pathway ¹¹³. Inhibition of NO, IL-6, IL-1 β and TNF- α along with the increased level of production of IL-10 was caused by the pectin obtained from purple sweet potato when studied on the model of LPS-treated RAW 264.7 macrophage cells ¹¹⁴. Another study analyses the effect of sulphated polysaccharides, fucans, from *Lophophora variegata* showed reduction of oedema and serum on zymosan-induced arthritis in rats.

3.3.3 Immunomodulators from marine sources

Inhibition of MAPK and NF- κ B signalling pathway was shown by brown alga *Sargassum cristaefolium* when its polysaccharide was investigated on LPS-stimulated RAW264.7 ¹²⁰.

9. REFERENCES

- Lin L, Xiong S, Zhao L, et al. Extraction, Characterization, Antioxidant, and Immunostimulatory Activities of Polysaccharides from *Hedyotis corymbosa*. Calapai G, ed. *Evidence-Based Complement Altern Med*. 2018;2018:8617070. doi:10.1155/2018/8617070
- Liu S, Wang L, Ren Q, et al. Immunomodulatory and Antioxidant Activities of a Polysaccharide from *Ligustrum vicaryi* L. Fruit. Ren K, ed. *Evidence-Based Complement Altern Med*. 2020;2020:5431350. doi:10.1155/2020/5431350
- Niki M, Suzukawa M, Akashi S, et al. Evaluation of Humoral Immunity to *Mycobacterium tuberculosis*-

4. CONCLUSION

Immunomodulators can act through various mechanisms on innate immunity or adaptive immunity systems. Polysaccharides obtained from microbial sources have shown potential immunomodulatory activity in pre-clinical models. The plant derived polysaccharides can be a potential therapeutic strategy to treat COVID 19 due to their immunomodulatory properties along with anticancer and anti-inflammatory activities. The marine polysaccharides possess immunomodulatory activity which is mainly due to the presence of sulphate residue in their chemical structures and Chitosan has shown potent activity against SARS COV-2 virus. The natural polysaccharides from different sources are a promising subject for further research in the field of pharmaceutical and nutraceutical formulation development. Their considerable availability from renewable sources and the non-toxic effect can be an additional benefit. Therefore, the current review can provide a roadmap to the development of new formulations for utilising the versatile therapeutic activity of the natural polysaccharides.

5. AUTHOR'S CONTRIBUTION STATEMENT

Ms. Priyanka Ray collected the data from the available literature on Pubmed, Research Gate, Mendley, ScienceDirect etc. under the able guidance of Dr. Sumana Chatterjee and Dr. Prerona Saha. The data was then compiled to draft the manuscript. Dr. Sumana Chatterjee and Dr. Prerona Saha made critical revisions and approved the final version of the manuscript. All authors reviewed and approved the final manuscript.

6. ACKNOWLEDGEMENT

The authors are grateful to Guru Nanak Institute of Pharmaceutical Science and Technology for providing provisions and facilities to complete the research work.

7. FUNDING ACKNOWLEDGEMENT

We acknowledge the resources and support for the study provided by Guru Nanak Institute of Pharmaceutical Science & Technology.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

- Specific Antigens for Correlation with Clinical Status and Effective Vaccine Development. Reche PA, ed. *J Immunol Res*. 2015;2015:527395. doi:10.1155/2015/527395
- Noreen A, Nazli Z-I-H, Akram J, et al. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. *Int J Biol Macromol*. 2017;101:254-272. doi:10.1016/j.ijbiomac.2017.03.029
- Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. *Blood*. 2008;112(5):1557-1569. doi:10.1182/blood-2008-05-078154
- Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from

natural resources: A review. *Carbohydr Polym.* 2018;183:91-101. doi:10.1016/j.carbpol.2017.12.009

8. Yamada H, Kiyohara H. Immunomodulating Activity of Plant Polysaccharide Structures. *Compr Glycosci.* 2007;4:663-694. doi:10.1016/B978-044451967-2/00125-2
9. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. *Appl Microbiol Biotechnol.* 2002;60(3):258-274. doi:10.1007/s00253-002-1076-7
10. Raposo M, Morais AMMB, Morais R. Marine Polysaccharides from Algae with Potential Biomedical Applications. *Mar Drugs.* 2015;13:2967-3028. doi:10.3390/mdl3052967
11. Beutler B. Innate immunity: an overview. *Mol Immunol.* 2004;40(12):845-859. doi:10.1016/j.molimm.2003.10.005
12. Joffre O, Nolte MA, Spörri R, Reis e Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. *Immunol Rev.* 2009;227(1):234-247. doi:10.1111/j.1600-065X.2008.00718.x
13. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. *Nat Rev Immunol.* 2003;3(12):984-993. doi:10.1038/nri1246
14. Martin TR, Frevert CW. Innate immunity in the lungs. *Proc Am Thorac Soc.* 2005;2(5):403-411. doi:10.1513/pats.200508-090JS
15. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. *Nat Rev Immunol.* 2011;11(11):723-737. doi:10.1038/nri3073
16. Guidotti LG, Chisari F V. Noncytolytic control of viral infections by the innate and adaptive immune response. *Annu Rev Immunol.* 2001;19:65-91. doi:10.1146/annurev.immunol.19.1.65
17. Mukherjee P, Nema N, Bhadra S, Mukherjee D, Braga F, Matsabisa M. Immunomodulatory leads from medicinal plants. *Indian J Tradit Knowl.* 2014;13:235-256. doi:10.1187/ijtk.9876
18. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P. Chemistry, physico-chemistry and applications linked to biological activities of β -glucans. *Nat Prod Rep.* 2011;28(3):457-466. doi:10.1039/c0np00018c
19. Abuajah C. Functional Components and Medicinal Properties of Food. In: ; 2017:1-34. doi:10.1007/978-3-319-54528-8_39-1
20. Minzanova ST, Mironov VF, Arkhipova DM, et al. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. *Polymers (Basel).* 2018;10(12). doi:10.3390/polym10121407
21. Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. *J Plant Res.* 2016;129(5):781-792. doi:10.1007/s10265-016-0834-z
22. Moroney NC, O'Grady MN, Lordan S, Stanton C, Kerry JP. Seaweed polysaccharides (laminarin and fucoidan) as functional ingredients in pork meat: an evaluation of anti-oxidative potential, thermal stability and bioaccessibility. *Mar Drugs.* 2015;13(4):2447-2464. doi:10.3390/mdl3042447
23. Devillé C, Damas J, Forget P, Dandrifosse G, Peulen O. Laminarin in the dietary fibre concept. *J Sci Food Agric.* 2004;84(9):1030-1038. doi:10.1002/jsfa.1754
24. Anastyuk SD, Shevchenko NM, Dmitrenok PS, Zvyagintseva TN. Structural similarities of fucoidans from brown algae *Silvetia babingtonii* and *Fucus evanescens*, determined by tandem MALDI-TOF mass spectrometry. *Carbohydr Res.* 2012;358:78—81. doi:10.1016/j.carres.2012.06.015
25. Yermak IM, Barabanova AO, Aminin DL, et al. Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. *Carbohydr Polym.* 2012;87(1):713—720. doi:10.1016/j.carbpol.2011.08.053
26. Wang W, Wang S-X, Guan H-S. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview. *Mar Drugs.* 2012;10:2795-2816. doi:10.3390/mdl10122795
27. Santa HSD, Romão PRT, Sovrani V, Oliveira FR, Peres A, Monteiro MC. Dietary PolysaccharidesDietary polysaccharidesand Immune Modulation BT - Polysaccharides: Bioactivity and Biotechnology. In: Ramawat KG, Mérillon J-M, eds. Springer International Publishing; 2021:1-24. doi:10.1007/978-3-319-03751-6_6-1
28. Bonfim-Mendonça P de S, Capuci IRG, Tobaldini-Valerio FK, Negri M, Svidzinski TIE. Overview of -Glucans from *Laminaria* spp.: Immunomodulation Properties and Applications on Biologic Models. *Int J Mol Sci.* 2017;18(9):1629. doi:10.3390/ijms18091629
29. Ahn W-S, Kim D-J, Chae G-T, et al. Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, *Agaricus blazei* Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. *Int J Gynecol Cancer Off J Int Gynecol Cancer Soc.* 2004;14(4):589-594. doi:10.1111/j.1048-891X.2004.14403.x
30. Fujimiya Y, Suzuki Y, Katakura R, Ebina T. Tumor-specific cytoidal and immunopotentiating effects of relatively low molecular weight products derived from the basidiomycete, *Agaricus blazei* Murill. *Anticancer Res.* 1999;19(1A):113—118. <http://europepmc.org/abstract/MED/10226531> doi:10.1023/a:1008054111445
31. Gonzaga MLC, Bezerra DP, Alves APNN, et al. In vivo growth-inhibition of Sarcoma 180 by an alpha-(1-->4)-glucan-beta-(1-->6)-glucan-protein complex polysaccharide obtained from *Agaricus blazei* Murill. *J Nat Med.* 2009;63(1):32-40. doi:10.1007/s11418-008-0286-4
32. AA N. Immunomodulatory Effects of Oyster Mushroom (*Pleurotus sajor-caju*) Extract In Balb/c Mice. *Res Rev J Pharm Pharm Sci.* 2014;3:27-32. doi:10.1615/IntJMedMushrooms.v19.i6.40.
33. Bauerová K, Paulovicová E, Mihalová D, Svík K, Ponist S. Study of new ways of supplementary and combinatory therapy of rheumatoid arthritis with immunomodulators. Glucomannan and Imunoglukán in adjuvant arthritis. *Toxicol Ind Health.* 2009;25(4-5):329-335. doi:10.1177/0748233709102945
34. Oba K, Kobayashi M, Matsui T, Kodera Y, Sakamoto J. Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. *Anticancer Res.* 2009;29(7):2739-2745.
35. Chen S, Liu C, Huang X, et al. Comparison of immunomodulatory effects of three polysaccharide fractions from *Lentinula edodes* water extracts. *J Funct Foods.* 2020;66:103791. doi:<https://doi.org/10.1016/j.jff.2020.103791>

36. Sakamoto J, Morita S, Oba K, et al. Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. *Cancer Immunol Immunother.* 2006;55(4):404-411. doi:10.1007/s00262-005-0054-1

37. Louie B, Rajamahanty S, Won J, Choudhury M, Konno S. Synergistic potentiation of interferon activity with maitake mushroom d-fraction on bladder cancer cells. *BJU Int.* 2010;105(7):1011-1015. doi:10.1111/j.1464-410X.2009.08870.x

38. Deng G, Lin H, Seidman A, et al. A phase I/II trial of a polysaccharide extract from *Grifola frondosa* (Maitake mushroom) in breast cancer patients: immunological effects. *J Cancer Res Clin Oncol.* 2009;135(9):1215-1221. doi:10.1007/s00432-009-0562-z

39. Wu M-J, Cheng T-L, Cheng S-Y, Lian T-W, Wang L, Chiou S-Y. Immunomodulatory properties of *Grifola frondosa* in submerged culture. *J Agric Food Chem.* 2006;54(8):2906-2914. doi:10.1021/jf052893q

40. Ramberg JE, Nelson ED, Sinnott RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. *Nutr J.* 2010;9:54. doi:10.1186/1475-2891-9-54

41. Patil US, Jaydekar A V, Bandawane DD. Immunomodulators: A pharmacological review. *Int J Pharm Pharm Sci.* 2012;4:30-36. doi:10.5455/njppp.2017.7.0203808032017

42. Domer J, Elkins K, Ennist D, Baker P. Modulation of Immune Responses by Surface Polysaccharides of *Candida albicans*. *Rev Infect Dis.* 1988;10:S419-S422. <https://doi.org/10.0162/8812.1004>

43. Gresnigt MS, Bozza S, Becker KL, et al. A Polysaccharide Virulence Factor from *Aspergillus fumigatus* Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. *PLOS Pathog.* 2014;10(3):e1003936. <https://doi.org/10.1371/journal.ppat.1003936>

44. Antachopoulos C, Walsh TJ. Immunotherapy of *Cryptococcus* infections. *Clin Microbiol Infect.* 2012;18(2):126-133. doi:<https://doi.org/10.1111/j.1469-0691.2011.03741.x>

45. Maeda R, Ida T, Ihara H, Sakamoto T. Immunostimulatory activity of polysaccharides isolated from *Caulerpa lentillifera* on macrophage cells. *Biosci Biotechnol Biochem.* 2012;76(3):501-505. doi:10.1271/bbb.110813

46. Omarsdottir S, Olafsdottir E, Freysdottir J. Immunomodulating effects of lichen-derived polysaccharides on monocyte-derived dendritic cells. *Int Immunopharmacol.* 2006;6:1642-1650. doi:10.1016/j.intimp.2006.06.006

47. Sophie AA, Nguema-Ona E, Boudjeko T, Driouch A. Plant cell wall polysaccharides: Immunomodulators of the immune system and source of natural fibers. *Curr Top Phytochem.* Published online September 1, 2011. doi:10.1134/S0006297913070134.

48. Ho GTT, Wangensteen H, Barsett H. Elderberry and Elderflower Extracts, Phenolic Compounds, and Metabolites and Their Effect on Complement, RAW 264.7 Macrophages and Dendritic Cells. *Int J Mol Sci.* 2017;18(3):584. doi:10.3390/ijms18030584

49. Ho GTT, Zou Y-F, Wangensteen H, Barsett H. RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators. *Int J Biol Macromol.* 2016;92:731—738. doi:10.1016/j.ijbiomac.2016.07.090

50. Popov S V, Ovodov YS. Polypotency of the immunomodulatory effect of pectins. *Biochemistry (Mosc).* 2013;78(7):823-835. doi:10.1134/S0006297913070134

51. Braünlich PM, Inngjerdingen KT, Inngjerdingen M, Johnson Q, Paulsen BS, Mabusela W. Polysaccharides from the South African medicinal plant *Artemisia afra*: Structure and activity studies. *Fitoterapia.* 2018;124:182-187. doi:10.1016/j.fitote.2017.11.016

52. Silva O, Viegas S, de Mello-Sampayo C, et al. Anti-*Helicobacter pylori* activity of *Terminalia macroptera* root. *Fitoterapia.* 2012;83(5):872—876. doi:10.1016/j.fitote.2012.03.019

53. Peng Q, Liu H, Shi S, Li M. *Lycium ruthenicum* polysaccharide attenuates inflammation through inhibiting TLR4/NF-κB signaling pathway. *Int J Biol Macromol.* 2014;67:330-335. doi:10.1016/j.ijbiomac.2014.03.023

54. Chi A, Kang C, Zhang Y, et al. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of *Ziziphus Jujube* on Chronic Fatigue Syndrome rats. *Carbohydr Polym.* 2015;122:189-196. doi:10.1016/j.carbpol.2014.12.082

55. Wiater A, Paduch R, Trojnar S, et al. The Effect of Water-Soluble Polysaccharide from Jackfruit (*Artocarpus heterophyllus* Lam.) on Human Colon Carcinoma Cells Cultured In Vitro. *Plants (Basel, Switzerland).* 2020;9(1):103. doi:10.3390/plants9010103

56. Kumar S, Tiku AB. Immunomodulatory potential of acemannan (polysaccharide from *Aloe vera*) against radiation induced mortality in Swiss albino mice. *Food Agric Immunol.* 2016;27(1):72-86. doi:10.1080/09540105.2015.1079594

57. Nazeam JA, Gad HA, Esmat A, El-Hefnawy HM, Singab A-NB. *Aloe arborescens* Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity. *J Med Food.* 2017;20(5):491-501. doi:10.1089/jmf.2016.0148

58. Manayi A, Vazirian M, Saeidnia S. *Echinacea purpurea*: Pharmacology, phytochemistry and analysis methods. *Pharmacogn Rev.* 2015;9(17):63-72. doi:10.4103/0973-7847.156353

59. Emmendörffer AC, Wagner H, Lohmann-Matthes M-L. Immunologically active polysaccharides from *Echinacea purpurea* plant and cell cultures BT - Immunomodulatory Agents from Plants. In: Wagner H, ed. Birkhäuser Basel; 1999:89-104. doi:10.1007/978-3-0348-8763-2_3

60. Cheng A, Wan F, Wang J, Jin Z, Xu X. Macrophage immunomodulatory activity of polysaccharides isolated from *Glycyrrhiza uralensis* Fish. *Int Immunopharmacol.* 2008;8(1):43-50. doi:10.1016/j.intimp.2007.10.006

61. Cao P, Wu S, Wu T, et al. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. *Carbohydr Polym.* 2020;240:116346. doi:10.1016/j.carbpol.2020.116346

62. Michaelsen TE, Gilje A, Samuelsen AB, Høgåsen K, Paulsen BS. Interaction Between Human Complement and a Pectin Type Polysaccharide Fraction, PMII, from the Leaves of *Plantago major* L. *Scand J Immunol.* 2000;52(5):483-490. doi:10.1046/j.1365-3083.2000.00801.x

63. Wani SA, Kumar P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. *J Saudi Soc Agric Sci.* 2018;17(2):97-106. doi:<https://doi.org/10.1016/j.jssas.2016.01.007>

64. Xia L, Liu X, Guo H, Zhang H, Zhu J, Ren F. Partial characterization and immunomodulatory activity of polysaccharides from the stem of *Dendrobium officinale* (Tiepishihu) in vitro. *J Funct Foods.* 2012;4(1):294-301. doi:<https://doi.org/10.1016/j.jff.2011.12.006>

65. Thakur M, Connellan P, Deseo MA, Morris C, Dixit VK. Immunomodulatory Polysaccharide from *Chlorophytum borivilianum* Roots. *Evidence-Based Complement Altern Med.* 2011;2011:598521. doi:[10.1093/ecam/nea012](https://doi.org/10.1093/ecam/nea012)

66. Miyanishi N, Iwamoto Y, Watanabe E, Odaz T. Miyanishi, N., Iwamoto, Y., Watanabe, E. & Oda, T. Induction of TNF- α production from human peripheral blood monocytes with β -1,3-glucan oligomer prepared from laminarin with β -1,3-glucanase from bacillus clausii NM-1. *J. Biosci. Bioeng.* 95, 192-195. *J Biosci Bioeng.* 2003;95:192-195. doi:[10.1263/jbb.95.192](https://doi.org/10.1263/jbb.95.192)

67. Reilly P, O'Doherty J V, Pierce KM, Callan JJ, O'Sullivan JT, Sweeney T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. *Animal.* 2008;2(10):1465-1473. doi:[10.1017/S1751731108002711](https://doi.org/10.1017/S1751731108002711)

68. Makarenkova ID, Logunov DY, Tukhvatulin AI, Semenova IB, Besednova NN, Zvyagintseva TN. Interactions between sulfated polysaccharides from sea brown algae and Toll-like receptors on HEK293 eukaryotic cells in vitro. *Bull Exp Biol Med.* 2012;154(2):241-244. doi:[10.1007/s10517-012-1922-2](https://doi.org/10.1007/s10517-012-1922-2)

69. Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. *J Biomed Mater Res Part A.* 2009;90A(2):411-418. doi:[10.1002/jbm.a.32096](https://doi.org/10.1002/jbm.a.32096)

70. Sun J, Feng A, Zhang Y, et al. Fucoidan increases TNF-alpha-induced MMP-9 secretion in monocytic cell line U937. *Inflamm Res Off J Eur Histamine Res Soc.* [et al]. 2010;59(4):271-276. doi:[10.1007/s00011-009-0095-6](https://doi.org/10.1007/s00011-009-0095-6)

71. Choi E-M, Kim A-J, Kim Y-O, Hwang J-K. Immunomodulating activity of arabinogalactan and fucoidan in vitro. *J Med Food.* 2005;8(4):446—453. doi:[10.1089/jmf.2005.8.446](https://doi.org/10.1089/jmf.2005.8.446)

72. Maruyama H, Tamauchi H, Hashimoto M, Nakano T. Suppression of Th2 immune responses by mekabu fucoidan from *Undaria pinnatifida* sporophylls. *Int Arch Allergy Immunol.* 2005;137(4):289-294. doi:[10.1159/000086422](https://doi.org/10.1159/000086422)

73. Kim M-H, Joo H-G. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. *Immunol Lett.* 2008;115(2):138-143. doi:[10.1016/j.imlet.2007.10.016](https://doi.org/10.1016/j.imlet.2007.10.016)

74. Suzuki S, Christensen BE, Kitamura S. Effect of manuronate content and molecular weight of alginates on intestinal immunological activity through Peyer's patch cells of C3H/HeJ mice. *Carbohydr Polym.* 2011;83(2):629-634. doi:<https://doi.org/10.1016/j.carbpol.2010.08.032>

75. Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from *Chlorella* stigmatophora and *Phaeodactylum tricornutum*. *Phytother Res.* 2003;17(6):665-670. doi:[10.1002/ptr.1227](https://doi.org/10.1002/ptr.1227)

76. Rasool M, Sabina EP. Appraisal of immunomodulatory potential of *Spirulina fusiformis*: an in vivo and in vitro study. *J Nat Med.* 2009;63(2):169-175. doi:[10.1007/s11418-008-0308-2](https://doi.org/10.1007/s11418-008-0308-2)

77. Ovodova RG, Glazkova VE, Mikheyskaya L V, et al. The structure of mytilan, a bioglycan-immunomodulator isolated from the mussel *Crenomytilus grayanus*. *Carbohydr Res.* 1992;223:221-226. doi:[10.1016/0008-6215\(92\)80018-v](https://doi.org/10.1016/0008-6215(92)80018-v)

78. Campa-Córdova AI, Hernández-Saavedra NY, Ascencio F. Superoxide dismutase as modulator of immune function in American white shrimp (*Litopenaeus vannamei*). *Comp Biochem Physiol C Toxicol Pharmacol.* 2002;133(4):557-565. doi:[10.1016/s1532-0456\(02\)00125-4](https://doi.org/10.1016/s1532-0456(02)00125-4)

79. Huang R, Lee H. Immunological Properties of the Marine Brown Alga *Endarachne binghamiae* (Phaeophyceae). Published online 2005:167-173. doi:[10.1016/s0192-0561\(98\)00063-0](https://doi.org/10.1016/s0192-0561(98)00063-0)

80. Shan BE, Yoshida Y, Kuroda E, Yamashita U. Immunomodulating activity of seaweed extract on human lymphocytes in vitro. *Int J Immunopharmacol.* 1999;21(1):59—70. doi:[10.1016/s0192-0561\(98\)00063-0](https://doi.org/10.1016/s0192-0561(98)00063-0)

81. Kim K, Kim Y-W, Kim H, Lee BJ, Lee D. Anti-apoptotic Activity of Laminarin Polysaccharides and their Enzymatically Hydrolyzed Oligosaccharides from *Laminaria japonica*. *Biotechnol Lett.* 2005;28:439-446. doi:[10.1007/s10529-005-6177-9](https://doi.org/10.1007/s10529-005-6177-9)

82. Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from *Chondrus ocellatus*. *Pharmacol Res.* 2004;50(1):47-53. doi:[10.1016/j.phrs.2003.12.002](https://doi.org/10.1016/j.phrs.2003.12.002)

83. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. *Glycobiology.* 2009;19(1):2-15. doi:[10.1093/glycob/cwn092](https://doi.org/10.1093/glycob/cwn092)

84. Honda-Okubo Y, Barnard D, Ong CH, Peng B-H, Tseng C-TK, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. *J Virol.* 2015;89(6):2995-3007. doi:[10.1128/JVI.02980-14](https://doi.org/10.1128/JVI.02980-14)

85. van der Meer FJUM, de Haan CAM, Schuurman NMP, et al. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. *Antiviral Res.* 2007;76(1):21—29. doi:[10.1016/j.antiviral.2007.04.003](https://doi.org/10.1016/j.antiviral.2007.04.003)

86. Milewska A, Kaminski K, Ciejka J, et al. HTCC: Broad Range Inhibitor of Coronavirus Entry. *PLoS One.* 2016;11(6):e0156552. doi:<https://doi.org/10.1371/journal.pone.0156552>

87. Pereira L, Critchley AT. The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? *J Appl Phycol.* 2020;32(3):1875-1877. doi:[10.1007/s10811-020-02143-y](https://doi.org/10.1007/s10811-020-02143-y)

88. Liao H-F, Lu M-C, Chang H-C, et al. Effects of herbal medicinal formulas on suppressing viral replication and modulating immune responses. *Am J Chin Med.* 2010;38(1):173-190. doi:10.1142/S0192415X10007749

89. Zhao Y, Wang J, Shan L, Jin C, Ma L, Xiao X. Effect of *Radix isatidis* polysaccharides on immunological function and expression of immune related cytokines in mice. *Chin J Integr Med.* 2008;14(3):207-211. doi:10.1007/s11655-008-0207-2

90. Di Pierro F, Bertuccioli A, Cavecchia I. Possible therapeutic role of a highly standardized mixture of active compounds derived from cultured *Lentinula edodes* mycelia (AHCC) in patients infected with 2019 novel coronavirus. *Minerva Gastroenterol Dietol.* 2020;66(2):172-176. doi:10.23736/S1121-421X.20.02697-5

91. Maxwell EG, Colquhoun IJ, Chau HK, et al. Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression. *Carbohydr Polym.* 2015;132:546—553. doi:10.1016/j.carbpol.2015.06.082

92. Lin L, Wang P, Du Z, et al. Structural elucidation of a pectin from flowers of *Lonicera japonica* and its antipancreatic cancer activity. *Int J Biol Macromol.* 2016;88:130-137. doi:10.1016/j.ijbiomac.2016.03.025

93. Mallick SK, Maiti S, Bhutia SK, Maiti TK. Antitumor properties of a heteroglucan isolated from *Astraeus hygrometricus* on Dalton's lymphoma bearing mouse. *Food Chem Toxicol.* 2010;48(8):2115-2121. doi:https://doi.org/10.1016/j.fct.2010.05.013

94. Ma Z, Wang J, Zhang L. Structure and chain conformation of beta-glucan isolated from *Auricularia auricula-judae*. *Biopolymers.* 2008;89(7):614-622. doi:10.1002/bip.20971

95. Wu S-C, Lee B-H. Buckwheat Polysaccharide Exerts Antiproliferative Effects in THP-1 Human Leukemia Cells by Inducing Differentiation. *J Med Food.* 2010;14(1-2):26-33. doi:10.1089/jmf.2010.1252

96. Zeng J, Dai P, Ren L, et al. Apoptosis-induced anti-tumor effect of *Curcuma kwangsiensis* polysaccharides against human nasopharyngeal carcinoma cells. *Carbohydr Polym.* 2012;89(4):1067-1072. doi:https://doi.org/10.1016/j.carbpol.2012.03.064

97. Yang J, Zhou D, Liang Z. A new polysaccharide from leaf of *Ginkgo biloba* L. *Fitoterapia.* 2009;80(1):43—47. doi:10.1016/j.fitote.2008.09.012

98. He L, Ji P, Gong X, et al. Physico-chemical characterization, antioxidant and anticancer activities in vitro of a novel polysaccharide from *Melia toosendan* Sieb. Et Zucc fruit. *Int J Biol Macromol.* 2011;49(3):422—427. doi:10.1016/j.ijbiomac.2011.05.028

99. Feng L, Jia X-B, Shi F, Chen Y. Identification of two polysaccharides from *Prunella vulgaris* L. and evaluation on their anti-lung adenocarcinoma activity. *Molecules.* 2010;15(8):5093-5103. doi:10.3390/molecules15085093

100. Kumalasari I, Sugahara T, Nishi K. Immunostimulating effect of sweet potato fiber extract on IgM production by HB4C5 cells. *IOP Conf Ser Mater Sci Eng.* 2020;821:12028. doi:10.1088/1757-899X/821/1/012028

101. Hung C-F, Hsu B-Y, Chang S-C, Chen B-H. Antiproliferation of melanoma cells by polysaccharide isolated from *Zizyphus jujuba*. *Nutrition.* 2012;28(1):98-105. doi:10.1016/j.nut.2011.05.009

102. Jumes F, Lugarini D, Bastos-Pereira A, et al. Effects of *Agaricus brasiliensis* mushroom in Walker-256 tumor-bearing rats. *Can J Physiol Pharmacol.* 2010;88:21-27. doi:10.1139/Y09-111

103. Bisen PS, Baghel RK, Sanodiya BS, Thakur GS, Prasad GBKS. *Lentinus edodes*: a macrofungus with pharmacological activities. *Curr Med Chem.* 2010;17(22):2419-2430. doi:10.2174/092986710791698495

104. Zhu Z, Liu N, Si C, et al. Structure and anti-tumor activity of a high-molecular-weight polysaccharide from cultured mycelium of *Cordyceps gunnii*. *Carbohydr Polym.* 2012;88(3):1072-1076. doi:https://doi.org/10.1016/j.carbpol.2012.01.068

105. Ma Z, Cui F, Gao X, Zhang J, Zheng L, Jia L. Purification, characterization, antioxidant activity and anti-aging of exopolysaccharides by *Flammulina velutipes* SF-06. *Antonie Van Leeuwenhoek.* 2014;107. doi:10.1007/s10482-014-0305-2

106. Liu Y, Liu C, Tan H, Zhao T, Cao J, Wang F. Sulfation of a polysaccharide obtained from *Phellinus ribis* and potential biological activities of the sulfated derivatives. *Carbohydr Polym.* 2009;77(2):370-375. doi:https://doi.org/10.1016/j.carbpol.2009.01.008

107. Nakagawa Y, Yanagawa K, Matsunaga N, Noda S. [A case of gastric cancer with para-aortic lymph node metastasis successfully treated with S-1/paclitaxel/lentinan combination therapy]. *Gan to kagaku ryoho Cancer & Chemother.* 2010;37(6):1131—1134. doi: 10.1007/s10120-016-0619-z

108. Takeda K, Tomimori K, Kimura R, Ishikawa C, Nowling TK, Mori N. Anti-tumor activity of fucoidan is mediated by nitric oxide released from macrophages. *Int J Oncol.* 2012;40(1):251-260. doi:10.3892/ijo.2011.1168

109. Philchenkov A, Zavelevich M, Imbs T, Zvyagintseva T, Zaporozhets T. Sensitization of human malignant lymphoid cells to etoposide by fucoidan, a brown seaweed polysaccharide. *Exp Oncol.* 2007;29(3):181—185. <http://europepmc.org/abstract/MED/18004241>. DOI: 10.3390/med11124876

110. Park HS, Kim G-Y, Nam T-J, Deuk Kim N, Hyun Choi Y. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. *J Food Sci.* 2011;76(3):T77-83. doi:10.1111/j.1750-3841.2011.02099.x

111. Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds *Saccharina japonica* and *Undaria pinnatifida*: isolation, structural characteristics, and antitumor activity. *Carbohydr Res.* 2011;346(17):2769-2776. doi:10.1016/j.carres.2011.09.034

112. Boo H-J, Hyun J-H, Kim S-C, et al. Fucoidan from *Undaria pinnatifida* Induces Apoptosis in A549 Human Lung Carcinoma Cells. *Phyther Res.* 2011;25(7):1082-1086. doi:10.1002/ptr.3489

113. Cheng Jing-Jy A4 - Chao, Chi-Hsein A4 - Chang, Pin-Chun A4 - Lu, Mei-Kuang J-JA-C. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi *Antrodia cinnamomea*. *Food Hydrocoll.* 2016;v. 53:37-45-2016 v.53. doi:10.1016/j.foodhyd.2014.09.035

114. Li S, Shah NP. Anti-inflammatory and anti-proliferative

activities of natural and sulphonated polysaccharides from *Pleurotus eryngii*. *J Funct Foods.* 2016;23:80-86. doi:<https://doi.org/10.1016/j.jff.2016.02.003>

115. Wu Y-S, Ho S-Y, Nan F-H, Chen S-N. *Ganoderma lucidum* beta 1,3/1,6 glucan as an immunomodulator in inflammation induced by a high-cholesterol diet. *BMC Complement Altern Med.* 2016;16(1):500. doi:[10.1186/s12906-016-1476-3](https://doi.org/10.1186/s12906-016-1476-3)

116. Dore CMPG, Alves MG das CF, Santos M da GL, de Souza LAR, Baseia IG, Leite EL. Antioxidant and Anti-Inflammatory Properties of an Extract Rich in Polysaccharides of the Mushroom *Polyporus dermoporus*. *Antioxidants (Basel, Switzerland).* 2014;3(4):730-744. doi:[10.3390/antiox3040730](https://doi.org/10.3390/antiox3040730)

117. Javed S, Li WM, Zeb M, et al. Anti-Inflammatory Activity of the Wild Mushroom, *Echinodontium tinctorium*, in RAW264.7 Macrophage Cells and Mouse Microcirculation. *Molecules.* 2019;24(19). doi:[10.3390/molecules24193509](https://doi.org/10.3390/molecules24193509)

118. Wang X-Y, Yin J-Y, Zhao M-M, Liu S-Y, Nie S-P, Xie M-Y. Gastroprotective activity of polysaccharide from *Hericium erinaceus* against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities. *Carbohydr Polym.* 2018;186:100—109. doi:[10.1016/j.carbpol.2018.01.004](https://doi.org/10.1016/j.carbpol.2018.01.004)

119. Zhang W, Zhang X, Zou K, et al. Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and anti-inflammatory activities. *Food Funct.* 2017;8(9):3130-3138. doi:[10.1039/C7FO00399D](https://doi.org/10.1039/C7FO00399D)

120. Chen H, Sun J, Liu J, et al. Structural characterization and anti-inflammatory activity of alkali-soluble polysaccharides from purple sweet potato. *Int J Biol Macromol.* 2019;131:484—494. doi:[10.1016/j.ijbiomac.2019.03.126](https://doi.org/10.1016/j.ijbiomac.2019.03.126)

121. Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. In-vitro anti-inflammatory activity, free radical (DPPH) scavenging, and ferric reducing ability (FRAP) of *Sargassum cristaefolium* lipid-soluble fraction and putative identification of bioactive compounds using UHPLC-ESI-ORBITRAP-MS/MS. *Food Res Int.* 2020;137:109702. doi:<https://doi.org/10.1016/j.foodres.2020.109702>.