

Molecular Interaction Studies for Inhibition of the *Streptococcus pneumoniae* Competence Stimulating Peptide (CSPI) by Potent Plant-Derived Compounds.

Mekhala Nagabushan Chitagudigi¹, Govindaraju Shruthi² and Chandan Shivamallu^{1*}

¹ Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru- 570015, India.

² Glimetomics Bioresolve Private Limited, Hootagalli Industrial Area, Mysuru-570018, India.

Abstract: Antimicrobial resistance (AMR) is an immense medical concern; it is among the top causes of fatality worldwide. The development of resistance occurs most frequently with nosocomial and community-acquired infections, among which *Streptococcus pneumoniae* is a common causative organism. This study is focused on inhibiting the quorum-sensing (QS) mechanism using plant compounds as an alternate strategy to avert AMR. A major factor in the development of AMR is genetic variability. *S. pneumoniae* genetic variability is enabled by the natural competence and transformation of the organism, a trait historically most notable. It is regulated by the expression of *com* loci genes. The *com* loci regulation and the regulation of other subsequent signaling pathways are a QS mediated system, for which the competence stimulating peptide (CSPI) is the autoinducer. CSPI was selected as the target for inhibition studies due to its significant role in driving bacterial communication via QS, leading to competence, virulence, and resistance. Plant-derived compounds present a vast scope for developing antimicrobials; in this study, we have proposed using the plant compounds to avert the development of AMR by inhibiting the factor directly responsible, i.e. CSPI. Five natural plant compounds, selected based on the ADMET profile, were studied for inhibition of CSPI; these compounds were curcumin, ellagic acid, eugenol, kaempferol, tinosporinone. These five compounds had credible drug likeliness with no acute toxicity and satisfactory bioavailability score. The molecular docking studies between CSPI and the selected five compounds revealed a satisfactory interaction with the binding pocket of CSPI and act as potential inhibitors.

Keywords: Antimicrobial resistance, Quorum Sensing, *S. pneumoniae*, Molecular interaction, plant compounds.

*Corresponding Author

Chandan Shivamallu , Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru- 570015, India.

Received On 31 October 2020

Revised On 29 November 2020

Accepted On 03 December 2020

Published On 08 December 2020

Funding This work is supported by JSS Academy of Higher Education & Research, JSSAHER, Karnataka Grant no. 2019 (REG/DIR(R)/URG/54/2011-12).

Citation Mekhala Nagabushan Chitagudigi, Govindaraju Shruthi, Chandan Shivamallu , Molecular Interaction Studies for Inhibition of the *Streptococcus pneumoniae* Competence Stimulating Peptide (CSPI) by Potent Plant-Derived Compounds.(2020).Int. J. Life Sci. Pharma Res.10(5), 154-166 <http://dx.doi.org/10.22376/ijpbs/ijlpr.2020.10.5.P154-166>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)

Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Antimicrobial resistance (AMR) against the currently available medicines plays a pivotal role in treating infectious diseases¹. The development of resistance properties by the microorganisms renders the drug useless, increasing the morbidity and fatality due to the ensuing illness^{2,3}. AMR is of particular concern with the rampant transmission of the hospital and community-acquired infections^{4,5}. The antibiotic abuse and frequent misdiagnosis further augment the AMR crisis^{6,7}. Antimicrobials have a universal application in various fields such as animal husbandry, agriculture, scientific research, pharma, and the food industry; thus, its unscrupulous exploitation is not limited to the medical forum^{8,9}. The presently available antimicrobial drugs are structurally large and complex molecules; designed to null an infection by inhibiting critical cellular processes such as the synthesis of DNA, RNA, and proteins². However, these cellular processes are quintessential for life; hence, AMR has risen as a strategy for survival^{1,10}. Alternatively, targeting a non-essential microbial component is scope for consideration, allowing for the deterrence of resistance development rather than killing the organism. In this manner, the development of virulence and resistance can be stalled since the plant molecule functions in the extracellular environment and does not become the targeted antagonist of the bacteria; and meanwhile, also allowing the natural antibacterial defense mechanisms to kill the microorganisms¹¹⁻¹³. Furthermore, since the natural defense mechanisms are a part of normal physiology and commensal biology, the bacteria's drastic agonistic activity is less likely¹⁴. This study focused on small molecular weight plant molecules' activity as inhibitors of the non-essential secondary molecule CSPI produced by *Streptococcus pneumoniae*, a peptide essential for inducing genetic variability leading to AMR. *S. pneumoniae* is a gram-positive bacteria most noteworthy for the principle of genetic transformation and competence; the expression of these traits concurs with the development of resistance^{15,16}. The steps that bring about the development of resistance is a process precisely coordinated between the activities of autolysis and fratricide, the development of competence, and followed by the uptake of genetic material¹⁷⁻²⁰. The expression of competence increases the cell membrane permeability of *S. pneumoniae*, facilitating the uptake of external DNA. Competence is synchronized with *S. pneumoniae* autolysis and fratricide activities, carried out by the release of autolysin and bacteriocins, respectively^{15,21-23}. Autolysis and fratricide expel DNA into the extracellular environment, contributing to the genetic pool available for uptake by the surviving fraction of *S. pneumoniae* in the microenvironment^{20,24}. The development of resistance from this point onwards is ultimately a chance factor, directly proportional to the size of the gene pool; the larger the gene pool, the higher the chance of developing resistance⁷. The microorganism's inherent faculties enhance the development of AMR; these primarily include group behavior and communication²⁵. The QS mechanism, a form of bacterial communication prominent during the stationary phase of growth, drives the exhibition of competence and transformation via the *com* loci^{21,25-27}. It is directly involved in eliciting the competence phenotype, for which the competence stimulating peptide (CSPI) is the QS autoinducer^{21,28-30}. The production of autolysin and bacteriocins is also regulated by the *com* loci, specifically by the *comE* response regulator^{29,30}. The QS mediated upregulation of *com* loci by CSPI also upregulates the

autolytic and fratricidal activity. The induction of competence by CSPI contributes to the overall development of virulence and resistance by *S. pneumoniae*, thus making CSPI the primary target molecule^{26,27,30,31}. The doubling time of *S. pneumoniae*-D39 is 54 minutes, and it remains active for 12 hours before the commencement of cell death; this offers a window of opportunity to dissuade genetic transformation and development of AMR³². The use of natural plant-derived compounds is an extremely conducive option, considering the extensive breadth complexity of antimicrobials and AMR^{1,2,4,14,19,33-35}. Plant-derived antimicrobials are generally smaller molecules and have immense potency as a drug³⁶. The smaller size of plant compounds is particularly advantageous in subduing the development of resistance traits because small molecules quickly diffuse across cell barriers, such that it can directly carry out its function^{8,13,36-41}. Therefore, this research focuses on assessing potent antimicrobial plant-derived small molecules as inhibitors of CSPI.

2. METHODOLOGY

2.1 Screening of Biochemical Pathway

The virulent encapsulated D39 strain of *S. pneumoniae* was considered for the study. The QS pathway of *S. pneumoniae* D39 was analyzed using the KEGG pathway database.

2.2 Screening of Small Molecules

Plant-derived natural molecules with molecular mass less than 500, known to possess antimicrobial properties, were screened through the PubChem Database. The screened molecules were further scrutinized through the Drugbank based on Lipinski's rule and the ADME (absorption, distribution, metabolism, and excretion) and toxicity profile. ADME toxicity of all the screened compounds was estimated through the swiss ADME tool⁴².

2.3 Ligand Preparation

The 2D structure of the molecules selected as ligands were sketched using the Chemsketch tool⁴³. These structures were further cleaned and subsequently converted into the corresponding 3D structures by incorporating the appropriate 3D coordinates and hydrogens using the OpenBabel tool. Next, the 3D structures were processed to obtain a clean geometry of the structures by removing any deviations concerning its stereochemical properties using the ArgusLab tool⁴⁴. Finally, the cleaned 3D structures were saved in the PDB format.

2.4 Protein Structure Retrieval

The functional structure of CSPI, having no mutations and without the presence of any ligands, was screened for in the RCSB PDB database, and the appropriate form was retrieved in the PDB format⁴⁵.

2.5 Binding Site Prediction

The ligand-binding site in CSPI was predicted using multiple approaches involving the *in silico* screening via binding site prediction server Prankweb^{46,47}. *In silico* screening by data mining through the RCSB PDB database, multiple structures of CSPI bound to a ligand were analyzed to check the site of ligand interaction⁴⁵. This analysis was followed by a thorough

literature review concerning reports on *in vitro* studies of the interaction and binding sites of CSPI was conducted^{28,31}.

2.6 Molecular Interaction Studies

Molecular docking of the five selected natural compounds against CSPI was carried out using Autodock 4.0⁴⁸⁻⁵⁰. The grid was generated wherein CSPI was considered a macromolecule, and its binding site residues were comprised in the gridbox. The grid log file was generated using Autogrid v.4.0. The water molecules were deleted, followed by non-polar hydrogen merging, and the Gasteiger charges were conferred to the protein moiety. The rigid docking program was run using a genetic algorithm; the search parameters were set as follows: the population size of 150 at maximum, the number of evaluations at medium, and the maximum number of generations set to 27000. The docking parameter file was used to generate a docking log file through AutoDock 4.0⁴⁸.

2.7 Interaction Analysis

Molecular interaction between CSPI and each of the five natural compounds was individually studied and analyzed using the PMV and chimera applications⁵¹. The binding energy between CSPI and the five selected natural compounds were analyzed using the PMV of MGL tools⁵⁰.

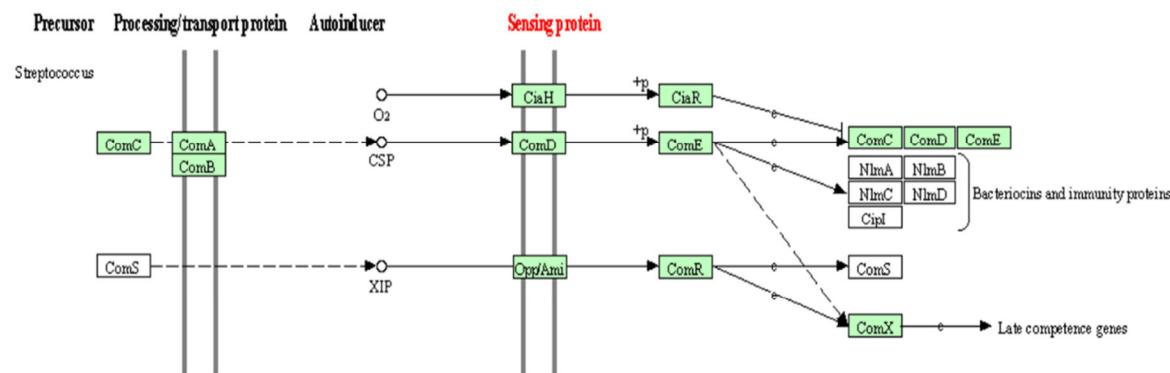


Fig 1: KEGG pathway of the *S. pneumoniae* QS pathway.

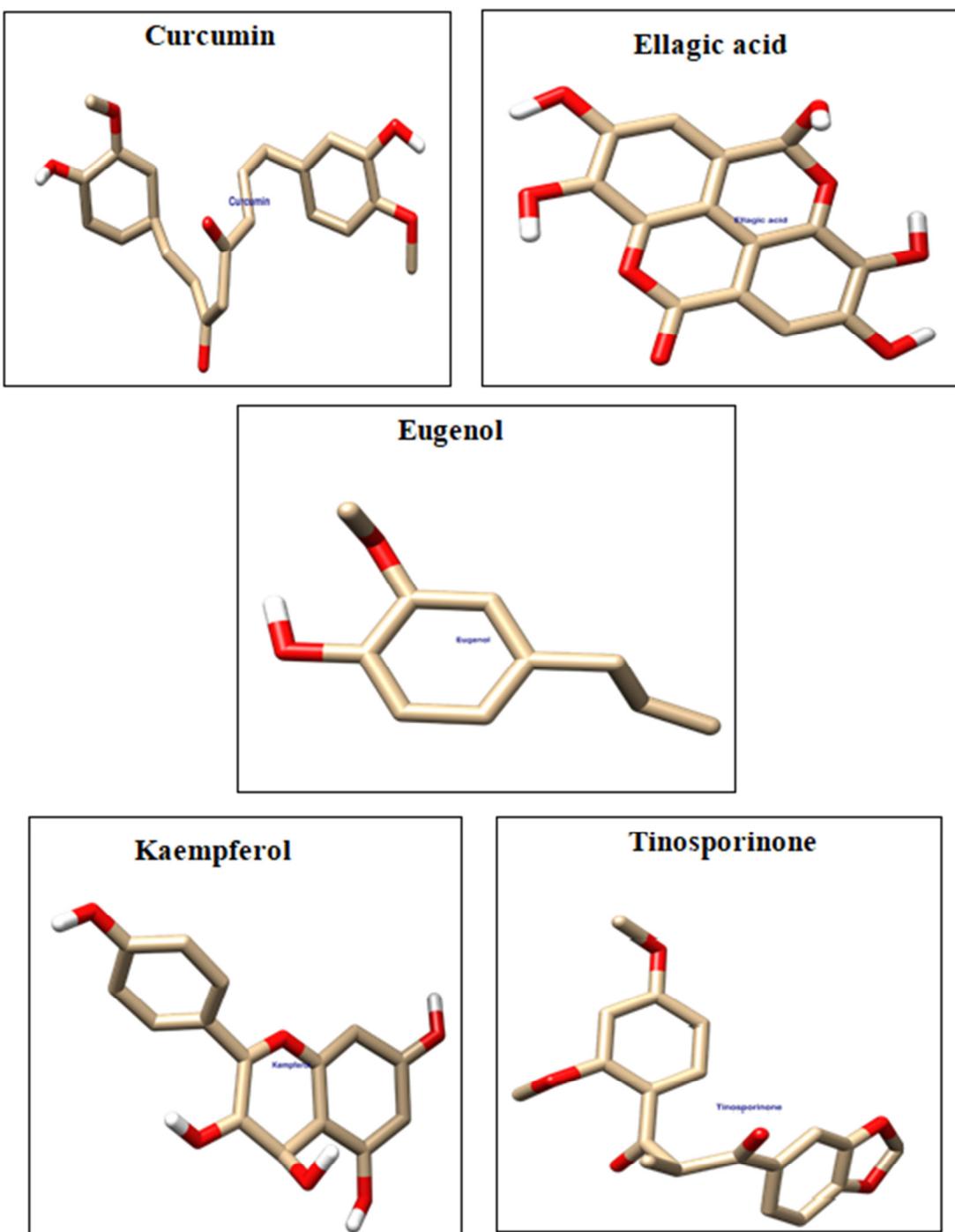
3.2 ADMET Studies

Five molecules found to fit the aforementioned criteria and possess potent antimicrobial and anti biofilm properties were selected as ligands for further study; these were curcumin, ellagic acid, eugenol, kaempferol, and tinosporinone⁵³⁻⁶⁰. Lipinski's rule of five was a guideline for determining the druggability of the test molecules. The rule states that for any molecule to work as a drug, it should have less than five hydrogen bond donors and ten hydrogen bond acceptors, a molecular weight less than 500, less than ten rotatable bonds, and a calculated p-log value less than five which corresponds to the octanol-water partition coefficient. Any deviation from the rules leads to lower permeability and poor absorption⁶¹. Therefore, it is critical for a molecule to obey Lipinski's rule of five to be considered a potential drug candidate. The Ghose filter determines the drug likeliness of a molecule via the following constraints, a p-log value must range between -0.4 and 5.6, the molecular weight must be between 160 and 480, a molecular refractivity between 40 and 130, and the total

number of atoms must be between 20 to 70⁶². Veber's rule decrees that two essential criteria must be met for a molecule to be acceptable for oral bioavailability. First, the number of hydrogen bonds in the molecule should not exceed ten, and second, the polar surface area must not exceed 140 Å², which subsequently corresponds to the molecule having less than twelve hydrogen donors and acceptors⁶³. Egan's rule states that a molecule has good oral bioavailability if they satisfy the p-log value in the range of -1.0 and 5.8 and a topological polar surface area (TPSA) value less than or equal to 130 Å²⁶⁴. Muegge's rule edicts for a molecule's druggability are that the molecular weight must be in the range of 200 to 600, a lipophilicity profile (xlopP3) between -2 and 5, the TPSA less than or equal to 150 Å². Additionally, the number of rings must be less than or equal to seven, the number of carbon atoms must be greater than or equal to four; the number of heteroatoms greater than one. The number of rotatable bonds must be lesser than or equal to fifteen. Finally, The number of hydrogen bond acceptors must be lesser than or equal to ten, and hydrogen

3. RESULTS AND DISCUSSION

3.1 Screening of Biochemical Pathway Involved in QS


Upon screening of the various pathways involved in the QS regulatory mechanism, it was found that the *com* loci play a significant and integral role in QS of *S. pneumoniae* D39 strain (Figure 1)²⁸. Further analysis led to the understanding that the *com* loci comprises six essential genes, namely *comABCDE* and *comX*; these genes encode for two transmembrane proteins, the competence stimulating peptide, the two-component regulatory system, and a transcriptional regulator^{18,22}. Among the six proteins expressed by the *com* loci, CSPI is the autoinducer of the *com* loci QS mechanism. It creates a QS mediated positive feedback loop involved in constituent gene expression²⁶. CSPI is known to be significantly involved in the QS signaling of *S. pneumoniae* biofilm and also reported to cause autolysis of neighboring bacterial cells in its niche, thus, imbuing virulence and pathogenicity to an otherwise commensal organism^{29,31}. Hence, CSPI was considered for further quorum quenching studies using the natural compounds selected as inhibitors.

bond donors must be lesser than or equal to five⁶⁵. Curcumin, kaempferol, and tinosporinone concur with all the discussed five criteria for drug likeliness; however, eugenol and ellagic acid were found to deviate slightly. Eugenol does not comply with Muegge's rule, having a molecular weight lesser than 200. Ellagic acid similarly digresses from Veber's rule and Egan's rule, having a TPSA greater than 140Å. The A-bioavailability score (ABS) is a semiquantitative rule that predicts the degree of oral bioavailability and permeability of a molecule based on Lipinski's rule of five, TPSA, and total molecular charge⁶⁶. An ABS of 0.55 is assigned to any molecule which passes Lipinski's rule of five; as such, all five

molecules tested for druggability obtained an ABS of 0.55. (Supplementary Data Figure 1-5).

3.3 Ligand Preparation

The selected ligands' 2D structures were sketched then cleaned using the Chem Sketch tool to obtain geometrically correct 2D structures. The 2D structures were converted to 3D upon addition of the 3D coordinates via the Open Babel tool; this conferred preliminary 3D structures with slight deviations in bond length and bond angles. These predicted structures were subsequently corrected using the Argus Lab tool, which yielded stereo chemically fit 3D structures of the ligands.

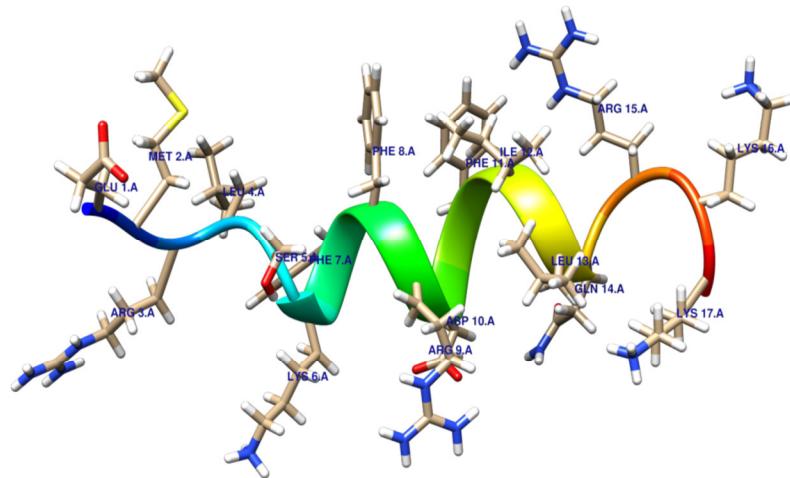


Fig 2: 3D structures of curcumin, ellagic acid, eugenol, kaempferol, and tinosporinone.

3.4 Protein Structure Retrieval

Upon screening through the RCSB PDB database for CSP structures, 15 structures from the source *S. pneumoniae* were retrieved. Among the 15 structures, 12 structures were found to be of CSPI, and the remaining three were

found to be structures of CSP2 protein. Out of the 12 structures of CSPI, two structures were devoid of mutations and ligands; these were PDB ID: 6COW and 6CJ8. PDB ID: 6COW had the least RMSZ value of 1.27 for bond length and 1.43 for the bond angle; hence, this structure was retrieved and used for further studies.

Fig 3: 3D structures of competence stimulating peptide (CSPI) (PDB ID: 6COW) retrieved from Protein Data Bank.

3.5 Binding Site Prediction

Previously published data provided the evidence that CSPI acts via its cognate receptor comD1, which subsequently brings about the QS mediated gene expression and regulation. The hydrophobic path of CSP was deciphered by *Johnsborg et al.* wherein the CSPI was found to have an amphiphilic α -helical structure; the amino acids in positions 6-12 contributed the specificity towards the cognate receptor comD1³¹. The amphiphilic region of CSPI comprises the non-polar residues PHE7, PHE8, PHE11, and ILE12 on one side of the helix and LYS56, ARG9, and ASP10 on the opposite side. Mutagenesis studies involving the replacement of the amino acid residues PHE7, PHE8, PHE11, and ILE12 revealed that these particular residues play a critical role in recognition and binding to the comD1 receptor. Furthermore, a recent study by *Yang et al.* established that the α -helix spans between LEU4 and LYS16 via high-resolution solution NMR spectroscopy²⁸. The amphiphilic nature of the helix was reiterated, reemphasizing its critical role in receptor binding (supplementary data figures 15 & 16). The specific interaction between the pair of molecules occurs through hydrophobic interactions. The residues of CSPI involved in this interaction are LEU4, PHE7, PHE8, PHE11, ILE12, LEU13, and ARG3. Since these residues form the binding site for CSPI, it is also a critical site for studying inhibition. Hence, these residues were considered for the interaction studies of CSPI with the five ligands (Figure 2).

3.6 Grid Generation

The grid encompassing the binding site residues with a dimension of X:61, Y:42, and Z:83 points was generated using Autogrid 4.0.

3.7 Interaction Analysis

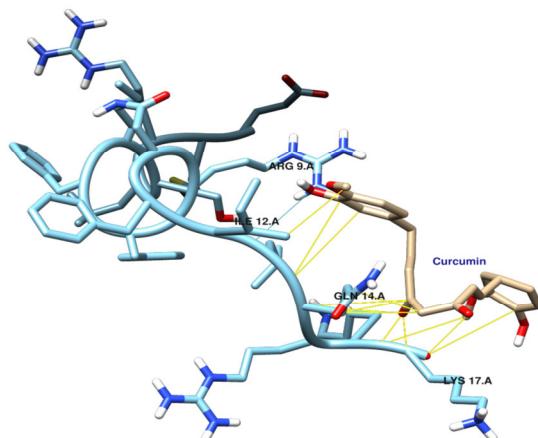
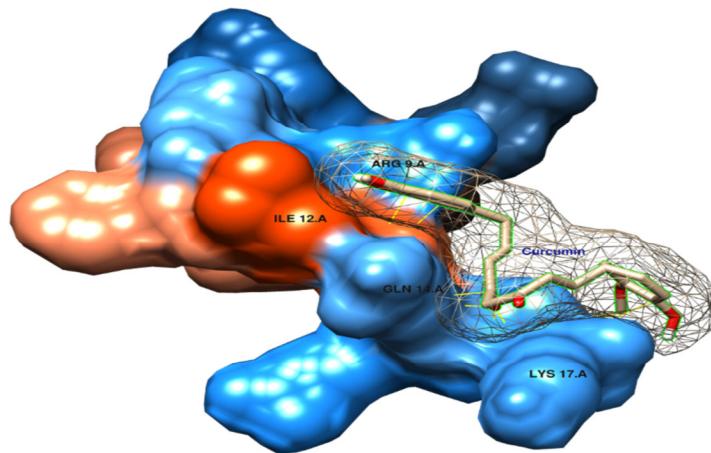
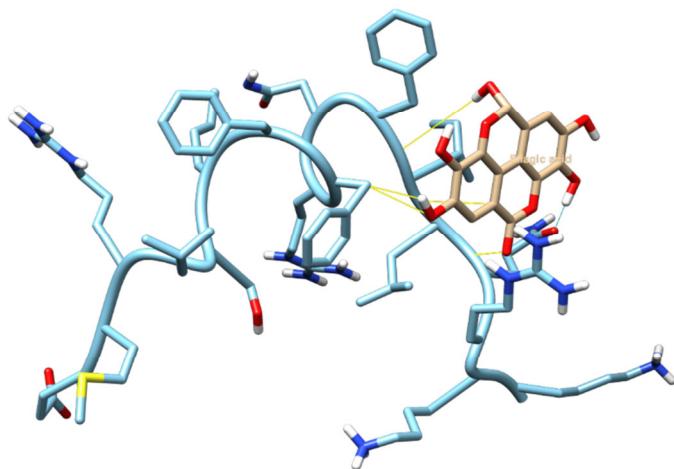
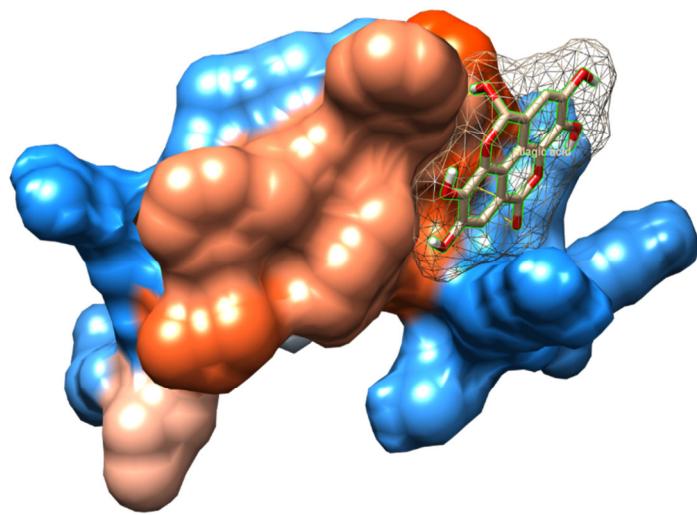

All the five compounds, i.e., curcumin, ellagic acid, eugenol, kaempferol, and tinosporinone, interact with CSPI via hydrophobic interactions at the binding site residues. Curcumin establishes hydrophobic interactions with ILE12, LEU13, GLN14, and LYS 17 residues, and a hydrogen bond interaction with LEU13 having bond length of 2.158 Å, respectively (Figures 4 & 5). Ellagic acid specifically interacts with PHE8, PHE11, ILE12, GLN14 and forms hydrogen bonds with PHE and GLN 14 having bond length of 1.740 Å, and 1.884 Å, respectively (Figures 6 & 7). Eugenol binds to PHE11, ILE12, LEU13, GLN14, and ARG15 at the binding pocket (Figure 8 & 9). Whereas, Kaempferol interacts with the residues PHE8, PHE11, ILE12, LEU13, GLN14, and ARG15 along with the formation of hydrogen bonds with ILE12, GLN14 and ARG15 having bond lengths of 2.136 Å, 2.162 Å, and 1.977 Å, respectively (Figures 10 & 11). Finally, tinosporinone interacts with ARG9, ILE12, and LEU13 residues and a hydrogen bond is formed with ARG9 having bond length of 1.910 Å of the CSPI binding site; analyzed through UCSF chimera and Ligplot + (v.2.2) (Figure 12 & 13; TableI; Figure 14) (Supplementary Data Figures 6-14).

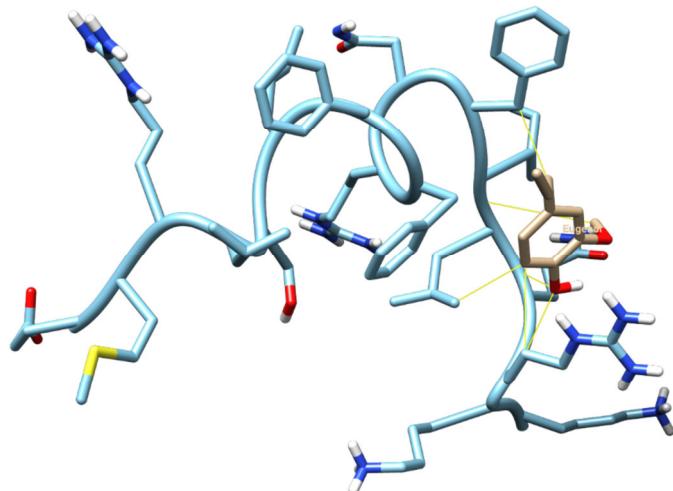
Table I: Binding interactions of natural compounds with CSPI

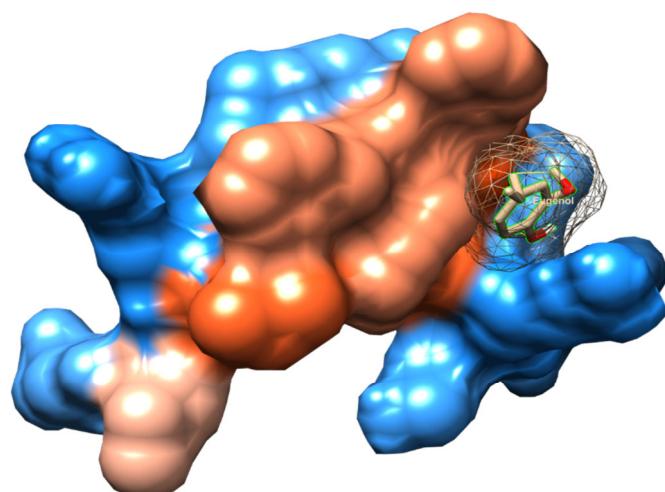

Sl.No.	Compound	Hydrophobic Interaction	Hydrogen Bond Interaction	Hydrogen Bond Length	Binding Energy (Kcal/mol)	Obedience of Lipinski's rule
1	Curcumin	ILE12, LEU13, GLN14, LYS17	LEU13	2.158 Å	-4.2	Yes
2	Ellagic Acid	GLN14, PHE8, ILE12, PHE11	PHE, GLN14	1.740 Å 1.884 Å	-4.7	Yes
3	Eugenol	ARG15, PHE11, ILE12, LEU13, GLN14			-3.6	Yes

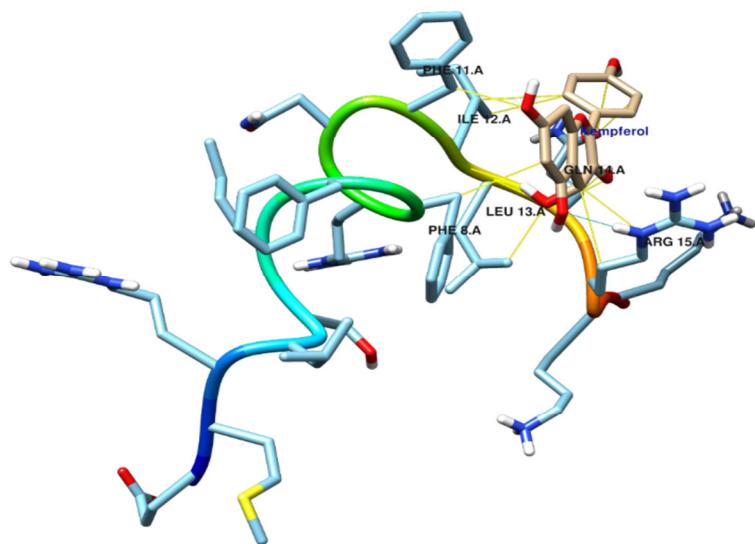
4	Kaempferol	PHE11, ILE12, PHE8, LEU13, ARG15, GLN14	ARG15, GLN14, ILE12	2.136 Å 2.162 Å 1.977 Å	-5.1	Yes
5	Tinosporinone	ARG9, ILE12, LEU13, GLN14, LYS16	ARG9	1.910 Å	-4.2	Yes

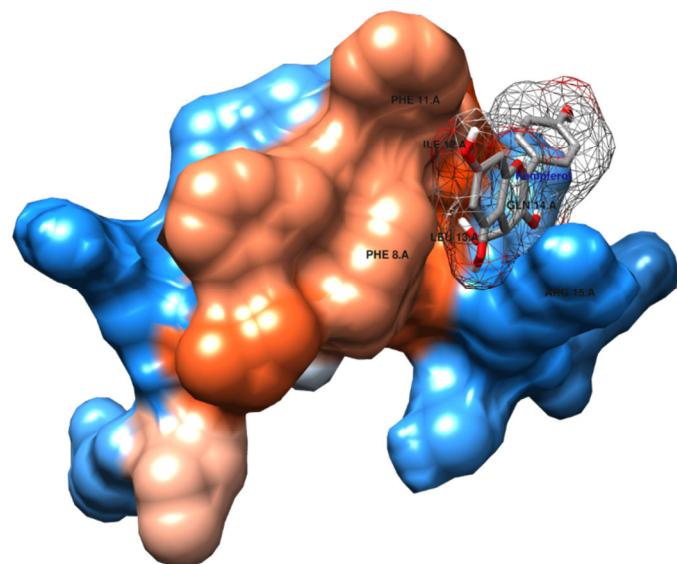

Obedience to Lipinski's rule indicates that the molecules have MW ≤ 500 , MlogP ≤ 4.15 , N or O ≤ 10 , NH or OH ≤ 5 .

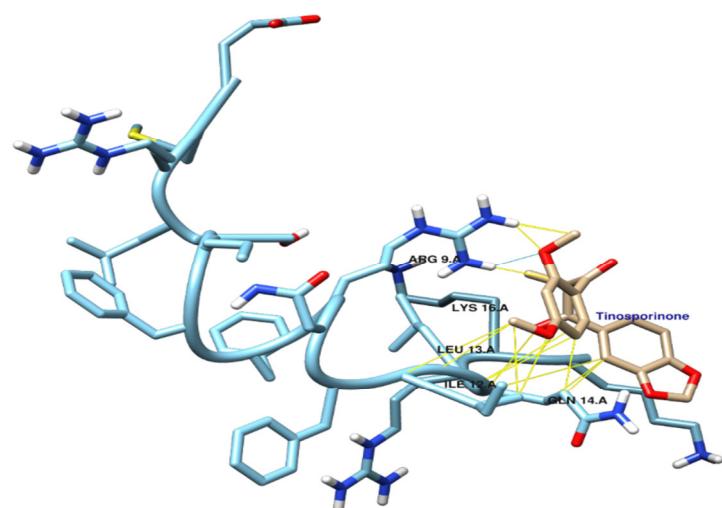

Fig 4: Interaction of curcumin with binding site residues of CSPI depicted in the ribbon model.

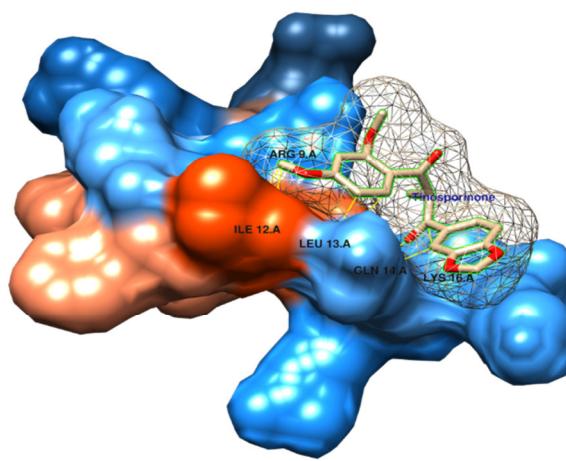

Fig 5: Curcumin bound to the binding pocket of CSPI depicted in the hydrophobicity surface model.

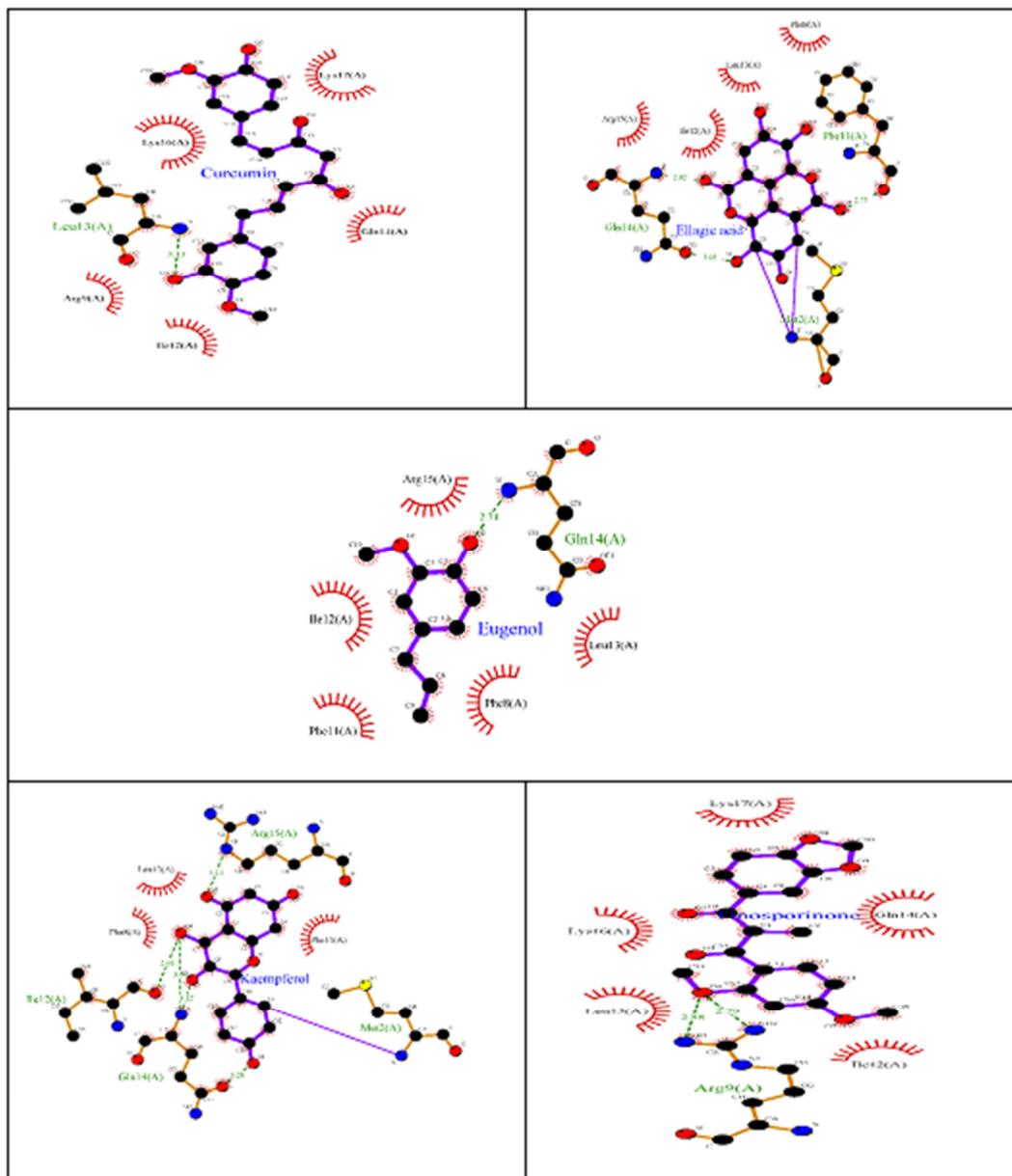

Fig 6: Interaction of ellagic acid with binding site residues of CSPI depicted in ribbon model

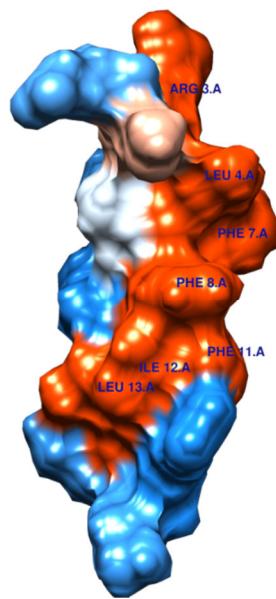

Fig 7: Ellagic acid bound to the binding pocket of CSPI depicted in the hydrophobicity surface model.


Fig 8: Interaction of eugenol with binding site residues of CSPI depicted in the ribbon model.


Fig 9: Eugenol bound to the binding pocket of CSPI depicted in the hydrophobicity surface model.


Fig 10: Interaction of kaempferol with binding site residues of CSPI depicted in the ribbon model.


Fig 11: Kaempferol bound to the binding pocket of CSPI depicted in the hydrophobicity surface model.


Fig 12: Interaction of tinosporinone with binding site residues of CSPI depicted in the ribbon model.

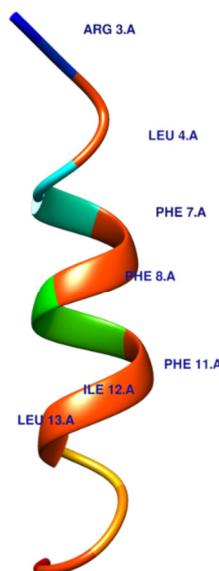

Fig 13: Tinosporinone bound to the binding pocket of CSPI depicted in the hydrophobicity surface model.

Fig 14: Ligplot exhibiting interactions of curcumin, ellagic acid, eugenol, kaempferol, and tinosporinone with the binding site residues of CSPI.

Fig 15: Structure of hydrophobic residues in the binding site of CSPI depicted in orange red hue.

Fig 16: Ribbon structure of hydrophobic residues in the binding site of CSPI depicted in orange red hue.

4. CONCLUSION

The inhibition of CSPI presented to be a prospective antimicrobial approach since quorum-quenching can avert virulence and resistance. Upon screening, five plant-derived molecules were selected for study based on the ADME profile; these were curcumin, ellagic acid, eugenol, kaempferol, and tinosporinone. The compounds were found to have credible drug likeliness with no acute toxicity and satisfactory bioavailability score. The molecular docking studies between CSPI and the selected compounds revealed a satisfactory interaction as inhibitors; the binding energy ranged between -3.6 to -5.1. Curcumin, ellagic acid, eugenol, kaempferol, and tinosporinone act as potential inhibitors of CSPI.

5. ACKNOWLEDGMENT

MCN and CS thank the JSS Academy of Higher Education & Research for funding this work under the JSSAHER Student Research Grant 2019 (REG/DIR(R)/URG/54/2011-12). MCN,

CS, and GS thank Glimetomics Bioresolve Private Limited for its enduring scientific support and aid in conducting this research study.

6. FUNDING ACKNOWLEDGEMENT

MCN and CS acknowledge and thank JSS Academy of Higher Education & Research for funding this work under the JSSAHER Student Research Grant 2019 (REG/DIR(R)/URG/54/2011-12).

7. AUTHORS CONTRIBUTION STATEMENT

CS guided planned and designed the work with MCN. MCN and GS have executed the work and gathered the data. Further data processing and analysis was carried out by MCN and GS. All authors contributed to final manuscript.

8. CONFLICT OF INTEREST

Conflict of interest declared none.

9. REFERENCE

1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. *Pathog Glob Health.* 2015;109(7):309-18. doi: 10.1179/204773215Y.0000000030, PMID 26343252.
2. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. *J Anaesthesiol Clin Pharmacol.* 2017 Jul 1;33(3):300-5. doi: 10.4103/joacp.JOACP_349_15, PMID 29109626.
3. Petchiappan A, Chatterji D. Antibiotic resistance: current perspectives. *ACS Omega.* 2017 Oct;2(10):7400-9. doi: 10.1021/acsomega.7b01368, PMID 30023551.
4. WHO. Antimicrobial Resistance Fact sheet. WHO, Antimicrob Resist. 2014.
5. Song JH, Huh K, Chung DR. Community-acquired pneumonia in the Asia-pacific region. *Semin Respir Crit Care Med.* 2016/12/13 Dec;37(6):839-54. doi: 10.1055/s-0036-1592075, PMID 27960208.
6. Ventola CL. The antibiotic resistance crisis: Part I: Causes and threats. *PT.* 2015 Apr;40(4):277-83. PMID 25859123.
7. Cantas L, Shah SQ, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garellick H, Bürgmann H, Sørum H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota [internet]. *Front Microbiol.* 2013;4:96. doi: 10.3389/fmicb.2013.00096, PMID 23675371.
8. Camele I, Elshafie HS, Caputo L, De Feo V. Anti-quorum sensing and antimicrobial effect of Mediterranean plant essential oils against phytopathogenic bacteria. *Front Microbiol.* 2019;10((Nov)):2619. doi: 10.3389/fmicb.2019.02619, PMID 31803159.
9. Cooper EE. Antimicrobials: use in animal husbandry & resistance in humans. *Australian Infection Control.* 2000;5(2):16-9. doi: 10.1071/HI00216.
10. Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of antibiotic Resistance in biofilm and planktonic Populations Exposed to Subinhibitory Levels of ciprofloxacin. *Antimicrob Agents Chemother.* 2018 Aug 1;62(8):e00320-18.
11. Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. *Appl Microbiol Biotechnol.* 2018;102(5):2063-73. doi: 10.1007/s00253-018-8787-x. PMID 29392389.
12. Kalia VC. Quorum sensing inhibitors: an overview. *Biotechnol Adv.* 2013;31(2):224-45. doi: 10.1016/j.biotechadv.2012.10.004, PMID 23142623.
13. Asfour HZ. Anti-quorum sensing natural compounds. *J Microsc Ultrastruct.* 2018;6(1):1-10. doi: 10.4103/JMAU.JMAU_10_18, PMID 30023261.
14. Rasmussen TB, Givskov M. Quorum sensing inhibitors: A bargain of effects. *Microbiology.* 2006;152(4):895-904. doi: 10.1099/mic.0.28601-0, PMID 16549654.
15. Gómez-Mejía A, Gámez G, Hammerschmidt S. *Streptococcus pneumoniae* two-component regulatory systems: the interplay of the pneumococcus with its environment. *Int J Med Microbiol.* 2018;308(6):722-37. doi: 10.1016/j.ijmm.2017.11.012, PMID 29221986.
16. Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. *FEMS Microbiol Rev.* 2011 Sep 1;35(5):707-35. doi: 10.1111/j.1574-6976.2010.00261.x, PMID 21223321.
17. Johnsborg O, Eldholm V, Bjørnstad ML, Håvarstein LS. A predatory mechanism dramatically increases the efficiency of lateral gene transfer in *Streptococcus pneumoniae* and related commensal species. *Mol Microbiol.* 2008;69(1):245-53. doi: 10.1111/j.1365-2958.2008.06288.x, PMID 18485065.
18. Steinmoen H, Knutsen E, Håvarstein LS. Induction of natural competence in *Streptococcus pneumoniae* triggers lysis and DNA release from a subfraction of the cell population. *Proc Natl Acad Sci U S A.* 2002 May 28;99(11):7681-6. doi: 10.1073/pnas.112464599, PMID 12032343.
19. Domingues S, Nielsen KM, da Silva GJ. Various pathways leading to the acquisition of antibiotic resistance by natural transformation. *Mob Genet Elem.* 2012 Nov;2(6):257-60. doi: 10.4161/mge.23089, PMID 23482877.
20. Straume D, Stamsås GA, Håvarstein LS. Natural transformation and genome evolution in *Streptococcus pneumoniae*. *Infect Genet Evol.* 2015;33:371-80. doi: 10.1016/j.meegid.2014.10.020, PMID 25445643.
21. Galante J, Ho AC, Tingey S, Charalambous BM. Quorum sensing and biofilms in the pathogen, *Streptococcus pneumoniae*. *Curr Pharm Des.* 2015;21(1):25-30. doi: 10.2174/138161282066140905113336, PMID 25189864.
22. Shanker E, Federle MJ. Quorum sensing regulation of competence and bacteriocins in *Streptococcus pneumoniae* and *mutans*. *Genes (Basel).* 2017 Jan;8(1). doi: 10.3390/genes8010015, PMID 28067778.
23. Whatmore AM, Dowson CG. The autolysin-encoding gene (*lytA*) of *Streptococcus pneumoniae* displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes. *Infect Immun.* 1999 Sep;67(9):4551-6. doi: 10.1128/IAI.67.9.4551-4556.1999, PMID 10456899.
24. Wei H, Håvarstein LS. Fratricide is essential for efficient gene transfer between pneumococci in biofilms. *Appl Environ Microbiol.* 2012/06/15 Aug;78(16):5897-905. doi: 10.1128/AEM.01343-12, PMID 22706053.
25. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. *Annu Rev Genet.* 2009;43:197-222. doi: 10.1146/annurev-genet-102108-134304, PMID 19686078.
26. Peterson S, Cline RT, Tettelin H, Sharov V, Morrison DA. Gene expression analysis of the *Streptococcus pneumoniae* competence regulons by use of DNA microarrays. *J Bacteriol.* 2000;182(21):6192-202. doi: 10.1128/jb.182.21.6192-6202.2000, PMID 11029442.
27. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr

PC, Do Y, Ahn S, Gilbert J, Fleischmann RD, Morrison DA. Identification of competence pheromone responsive genes in *Streptococcus pneumoniae* by use of DNA microarrays. *Mol Microbiol*. 2004;51(4):1051-70.
doi: 10.1046/j.1365-2958.2003.03907.x, PMID 14763980.

28. Yang Y, Cornilescu G, Tal-Gan Y. Structural characterization of competence-stimulating peptide analogues reveals key features for ComD1 and ComD2 receptor binding in *Streptococcus pneumoniae*. *Biochemistry*. 2018;57(36):5359-69.
doi: 10.1021/acs.biochem.8b00653, PMID 30125091.

29. Lee MS, Morrison DA. Identification of a new regulator in *Streptococcus pneumoniae* linking quorum sensing to competence for genetic transformation. *J Bacteriol*. 1999;181(16):5004-16.
doi: 10.1128/JB.181.16.5004-5016.1999, PMID 10438773.

30. Cheng Q, Campbell EA, Naughton AM, Johnson S, Masure HR. The com locus controls genetic transformation in *Streptococcus pneumoniae*. *Mol Microbiol*. 1997;23(4):683-92.
doi: 10.1046/j.1365-2958.1997.2481617.x, PMID 9157240.

31. Johnsborg O, Kristiansen PE, Blomqvist T, Håvarstein LS. A hydrophobic patch in the competence-stimulating peptide, a pneumococcal competence pheromone, is essential for specificity and biological activity. *J Bacteriol*. 2006;188(5):1744-9.
doi: 10.1128/JB.188.5.1744-1749.2006, PMID 16484185.

32. Yu Y, Chang D, Xu H, Zhang X, Pan L, Xu C, Huang B, Zhou H, Li J, Guo J, Liu C. The virulence of *Streptococcus pneumoniae* partially depends on dprA. *Braz J Microbiol*. 2016;12/06;48(2):225-31.
doi: 10.1016/j.bjm.2016.10.019, PMID 28011228.

33. Struelens MJ. The epidemiology of antimicrobial resistance in hospital acquired infections: problems and possible solutions. *BMJ*. 1998 Sep 5;317(7159):652-4.
doi: 10.1136/bmj.317.7159.652, PMID 9727997.

34. Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of antibiotic resistance in biofilm and planktonic *Pseudomonas aeruginosa* populations exposed to subinhibitory levels of ciprofloxacin. *Antimicrob Agents Chemother*. 2018;62(8):1-12.
doi: 10.1128/AAC.00320-18, PMID 29760140.

35. da Cunha MG, de Cássia Orlandi Sardi J, Freires IA, Franchin M, Rosalen PL. Antimicrobial, anti-adherence and antibiofilm activity against *Staphylococcus aureus* of a 4-phenyl coumarin derivative isolated from Brazilian geopropolis. *Microb Pathog*. 2020;139:103855.
doi: 10.1016/j.micpath.2019.103855.

36. Bacha K, Tariku Y, Gebreyesus F, Zerihun S, Mohammed A, Weiland-Bräuer N, Schmitz RA, Mulat M. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: implication for development of potent antimicrobial agents. *BMC Microbiol*. 2016;16(1):139.
doi: 10.1186/s12866-016-0765-9, PMID 27400878.

37. Machinaga N, Ashley GW, Reid R, Yamasaki A, Tanaka K, Nakamura K, Yabe Y, Yoshigae Y, Santi DV. A controlled release system for long-acting intravitreal delivery of small molecules. *Transl Vis Sci Technol*. 2018 Aug 28;7(4):21.
doi: 10.1167/tvst.7.4.21, PMID 30174998.

38. Rimpelä AK, Reunanan S, Hagström M, Kidron H, Urtti A. Binding of small molecule drugs to porcine vitreous humor. *Mol Pharm*. 2018 Jun 4;15(6):2174-9.
doi: 10.1021/acs.molpharmaceut.8b00038, PMID 29648838.

39. Chin R, Lee BY. Chapter 10. Dosing and intervention. In: Chin R, Lee B-P and P of CTM, editors. Available from: <http://www.sciencedirect.com/science/article/pii/B9780123736956000107>. New York: Academic Press; 2008. p. 181-212.

40. Ivanova A, Ivanova K, Tzanov T. Inhibition of quorum-sensing: A new paradigm in controlling bacterial virulence and biofilm formation. In: Berlin: Springer Singapore. p. 3-21. doi: 10.1007/978-981-10-9026-4_1; 2018. Biotechnological applications of quorum sensing inhibitors Kalia VC, editor [cited 21/11/2020].

41. LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. *Microbiol Mol Biol Rev*. 2013 Mar;77(1):73-111.
doi: 10.1128/MMBR.00046-12, PMID 23471618.

42. Daina A, Michelin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules [Sci Rep] [internet]. *Sci Rep*. 2017;7(1):42717.
doi: 10.1038/srep42717, PMID 28256516.

43. Spessard GO. P dB 3.5 and ChemSketch 3.5. *J Chem Inf Comput Sci/Log*. 1998.

44. Dewangan D, Nakhatte KT, Verma VS, Nagori K, Badwaik H, Nair N, Tripathi DK, Mishra A. Synthesis and molecular docking study of novel hybrids of 1,3,4-oxadiazoles and quinoxaline as a potential analgesic and anti-inflammatory agents. *J Heterocyclic Chem*. 2018;55(12):2901-10.
doi: 10.1002/jhet.3363.

45. Protein Data Bank. RCSB PDB: homepage. Rcsb Pdb.; 2019. Available from: <https://www.rcsb.org/structure/6COW> [cited 21/11/2020].

46. Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. *Nucleic Acids Res*. 2019 Jul 2;47(W1):W345-9.
doi: 10.1093/nar/gkz424, PMID 31114880.

47. Krivák R, Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. *J Cheminform*. 2018;10(1):39.
doi: 10.1186/s13321-018-0285-8, PMID 30109435.

48. Forli W, Halliday S, Belew R, Olson A. AutoDock Version 4.2. Citeseer; 2012.

49. Bursulaya BD, Totrov M, Abagyan R, Brooks CL. Comparative study of several algorithms for flexible ligand docking. *J Comput Aid Mol Des*. 2003;17(11):755-63.
doi: 10.1023/b:jcam.0000017496.76572.6f, PMID 15072435.

50. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. *J Comput Chem*. 2009

Dec;30(16):2785-91. doi: 10.1002/jcc.21256, PMID 19399780.

51. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem*. 2004 Oct;25(13):1605-12. doi: 10.1002/jcc.20084, PMID 15264254.

52. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. *Protein Eng*. 1995 Feb;8(2):127-34. doi: 10.1093/protein/8.2.127, PMID 7630882.

53. Adamczak A, Ożarowski M, Karpiński TM. Curcumin, a natural antimicrobial agent with strain-specific activity. *Pharmaceuticals*. 2020;13(7):1-12.

54. Quave CL, Estévez-Carmona M, Compadre CM, Hobby G, Hendrickson H, Beenken KE, et al. Ellagic acid derivatives from *Rubus ulmifolius* inhibit *Staphylococcus aureus* biofilm formation and improve response to antibiotics. *PLoS One*. 2012;7(1).

55. Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive *Staphylococcus aureus* clinical strain biofilms. *PLoS One*. 2015;10(3):1-21.

56. Adamczak A, Ożarowski M, Karpiński TM. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. *J Clin Med*. 2019;9(1):109.

57. Teffo LS, Aderogba MA, Eloff JN. Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from *Dodonaea viscosa* Jacq. var. *angustifolia* leaf extracts. *South African J Bot* [Internet]. 2010;76(1):25-9. DOI: 10.1016/j.sajb.2009.06.010.

58. Gupta R, Sharma V. Ameliorative effects of *tinospora cordifolia* root extract on histopathological and biochemical changes induced by aflatoxin-b(1) in mice kidney. *Toxicol Int* [Internet]. 2011 Jul;18(2):94-8. Available from: <https://pubmed.ncbi.nlm.nih.gov/21976812>

59. Sharma V, Pandey D. Beneficial Effects of *Tinospora cordifolia* on Blood Profiles in Male Mice Exposed to Lead. *Toxicol Int*. 2010 Jan;17(1):8-11. Available from: <https://pubmed.ncbi.nlm.nih.gov/21042466>.

60. Maurya R, Gupta P, Chand K, Kumar M, Dixit P, Singh N, et al. Constituents of *Tinospora sinensis* and their antileishmanial activity against *Leishmania donovani*. *Nat Prod Res*. 2009 Aug 15;23(12):1134-43. DOI: 10.1080/14786410802682239.

61. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings | PII of original article: S0169-409X(96)00423-1. The article was originally published in *Advanced Drug Delivery Reviews* 23 (1997) 3-25. I. *Adv Drug Deliv Rev* [Internet]. 2001;46(1):3-26. Available from: <http://www.sciencedirect.com/science/article/pii/S0169-409X00001290>.

62. Ghose AK, Viswanadhan VN, Wendoloski JJ. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. I. A Qualitative and Quantitative Characterization of Known Drug Databases. *J Comb Chem*. 1999 Jan 12;1(1):55-68. DOI: 10.1021/cc9800071.

63. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. *J Med Chem*. 2002;45(12):2615-23.

64. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. *J Med Chem*. 2000;43(21):3867-77.

65. Muegge I. Pharmacophore features of potential drugs. *Chem - A Eur J*. 2002;8(9):1976-81.

66. Martin YC. A bioavailability score. *J Med Chem*. 2005;48(9):3164-70.